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Abstract

We review the early insights of Halbert White who over thirty years ago inaugurated a form of statistical

inference for regression models that is asymptotically correct even under “model misspecification.” This form

of inference, which is pervasive in econometrics, relies on the “sandwich estimator” of standard error. Whereas

the classical theory of linear models in statistics assumes models to be correct and predictors to be fixed, White

permits models to be “misspecified” and predictors to be random. Careful reading of his theory shows that it is

a synergistic effect — a “conspiracy” — of nonlinearity and randomness of the predictors that has the deepest

consequences for statistical inference. It will be seen that the synonym “heteroskedasticity-consistent estimator”

for the sandwich estimator is misleading because nonlinearity is a more consequential form of model deviation

than heteroskedasticity, and both forms are handled asymptotically correctly by the sandwich estimator. The

same analysis shows that a valid alternative to the sandwich estimator is given by the “pairs bootstrap” for which

we establish a direct connection to the sandwich estimator. We continue with an asymptotic comparison of the

sandwich estimator and the standard error estimator from classical linear models theory. The comparison shows

that when standard errors from linear models theory deviate from their sandwich analogs, they are usually too

liberal, but occasionally they can be too conservative as well. We conclude by answering questions that would

occur to statisticians acculturated to the assumption of model correctness and conditionality on the predictors:

(1) Why should we be interested in inference for models that are not correct? (2) What are the arguments for

conditioning on predictors, and why might they not be valid? In this review we limit ourselves to linear least

squares regression as the demonstration object, but the qualitative insights hold for all forms of regression.

Keywords: Ancillarity of predictors; First and second order incorrect models; Model misspecification

1 Introduction

The classical Gaussian linear model reads as follows:

y = Xβ + ε , ε ∼ N (0N , σ
2IN×N ) (y, ε ∈ IRN , X ∈ IRN×(p+1), β ∈ IRp+1). (1)

Important for the present focus are two aspects of how the model is commonly interpreted: (1) the model is

assumed correct, that is, the conditional response means are a linear function of the predictors and the errors

are independent, homoskedastic and Gaussian; (2) the predictors are treated as known constants even when

they arise as random observations just like the response. Statisticians have long enjoyed the fruits that can be
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harvested from this model and they have taught it as fundamental at all levels of statistical education. Curiously

little known to many statisticians is the fact that a different modeling framework is adopted and a different

statistical education is taking place in the parallel universe of econometrics. For over three decades, starting with

Halbert White’s (1980a, 1980b, 1982) seminal articles, econometricians have used multiple linear regression without

making the many assumptions of classical linear models theory. While statisticians use assumption-laden exact

finite sample inference, econometricians use assumption-lean asymptotic inference based on the so-called

“sandwich estimator” of standard error. In our experience most statisticians have heard of the sandwich estimator

but do not know its purpose, use, and underlying theory. One of the goals of the present exposition is to convey an

understanding of the relatively assumption-lean framework of this part of basic econometrics in a language that is

intelligible to statisticians. The approach is to interpret linear regression in a semi-parametric fashion as extracting

the parametric linear part of a general nonlinear response surface. The modeling assumptions can then be reduced

to i.i.d. sampling from largely arbitrary joint ( ~X, Y ) distributions that satisfy a few moment conditions. It is in

this assumption-lean framework that the sandwich estimator produces asymptotically correct standard errors.

A second goal of this exposition is to connect the assumption-lean econometric framework to a form of statistical

inference in linear models that is known to statisticians but appreciated by few: the “pairs bootstrap.” As the name

indicates, the pairs bootstrap consists of resampling pairs (~xi, yi), which contrasts with the “residual bootstrap”

which resamples residuals ri. Among the two, the pairs bootstrap is the less promoted even though asymptotic

theory exists to justify both types of bootstrap under different assumptions (Freedman 1981, Mammen 1993).

It is intuitively clear that the pairs bootstrap can be asymptotically justified in the asumption-lean framework

mentioned above, and for this reason it produces standard error estimates that solve the same problem as the

sandwich estimators. Indeed, we establish a connection that shows the sandwich estimator to be the asymptotic

limit of the m-of-n pairs bootstrap when m→∞. An advantage of the pairs bootstrap over the sandwich estimator

is that higher-order corrections exist for the former when asymptotic normality is an insufficient approximation

to the sampling distribution of estimates. In what follows we will use the general term “assumption-lean

estimators of standard error” to refer to either the sandwich estimators or the pairs bootstrap estimators of

standard error.

A third goal of this article is to theoretically and practically compare the standard error estimates from

assumption-lean theory and from classical linear models theory. We will consider a ratio of asymptotic variances

— “RAV ” for short — that describes the discrepancies between the two types of standard error estimates in the

asymptotic limit. If there exists a discrepancy, RAV 6= 1, it will be assumption-lean standard errors (sandwich

or pairs bootstrap) that are asymptotically correct, and the linear models standard error is then indeed asymp-

totically incorrect. If RAV 6= 1, there exist deviations from the linear model in the form of nonlinearities and/or

heteroskedasticities. If RAV = 1, the standard error estimates from classical linear models theory are asymptot-

ically correct, but this does not imply that the linear model (1) is correct, the reason being that nonlinearities

and heteroskedasticities can conspire to produce a coincidentally correct size for the standard error from linear

models theory. An important aspect of the RAV is that it is specific to each regression coefficient because the

discrepancies between the two types of standard errors generally vary from coefficient to coefficient.

A fourth goal is to move the RAV from theory to practice by estimating it as a ratio of the two types of

standard errors squared. For this estimate we derive an asymptotic null distribution that can be used in a test

for the presence of model violations that invalidate the classical standard error. While it is true that this can be

called a “misspecification test” in the tradition of econometrics, we prefer to view it as guidance as to the choice of

the better standard error. An interesting question raised by such a test concerns the performance of an inferential

procedure that chooses the type of standard error depending on the outcome of the test; to this question we do

not currently have an answer. (Similar in spirit is Angrist and Pischke’s proposal (2009) to choose the larger of
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the two standard errors; the resulting procedure forfeits the possibility of detecting the classical standard error as

too pessimistic.)

A fifth and final goal is to propose answers to questions and objections that would be natural to statisticians

who represent the following lines of thinking:

1. Models need to be “nearly correct” for inference to be meaningful. The implication is that assumption-lean

standard errors are misguided because inference in a “misspecified model” is meaningless.

2. Predictors in regression models should or can be treated as fixed even if they are random. Here the implication

is that inference which treats predictors as random is unprincipled or at a minimum superfluous.

A strong proponent of position 1. is the late David Freedman (2006). We will counter-argue as follows:

1.a Models are always approximations, not truths.

1.b If models are approximations, it is still possible to give regression slopes meaningful interpretations.

1.c If models are approximations, it is prudent to use inference that is less dependent on model correctness.

These arguments will be developed in subsequent sections. Position 2. above has proponents to various degrees.

More forceful ones hold that conditioning on the predictors is a necessary consequence of the ancillarity principle

while others hold that the principle confers license, not a mandate. The ancillarity principle says in simplified

terms that valid inference results by conditioning on statistics whose distribution does not involve the parameters

of interest. When the predictors in a regression are random, their distribution is ancillary for the regression

parameters, hence conditioning on the predictors is necessary or at least permitted. This argument, however, fails

when the parametric model is only an approximation and the predictors are random. It will be seen that under

these circumstances the population slopes do depend on the predictor distribution which is hence not ancillary.

This effect does not exist when the conditional mean of the response is a linear function of the predictors and/or

the predictors are truly nonrandom.

[To be updated] This article continuous as follows: Section xyzshows a data example in which the conventional

and bootstrap standard errors of some slopes are off by as much as a factor 2. Section xyzintroduces notation

for populations and samples, LS approximations, adjustment operations, nonlinearities, and decompositions of

responses. Section xyzdescribes the sampling variation caused by random predictors and nonlinearities. Sec-

tion xyzcompares three types of standard errors and shows that both the (potentially flawed) conventional and the

(correct) unconditional standard errors are inflated by nonlinearities, but Section xyzshows that asymptotically

there is no limit to which inflation of the unconditional standard error can exceed inflation of the conventional

standard error. Appendix 13 gives intuitive meaning to LS slopes in terms of weighted average slopes found in the

data.

2 Discrepancies between Standard Errors Illustrated

The table below shows regression results for a dataset in a sample of 505 census tracts in Los Angeles that has been

used to examine homelessness in relation to covariates for demographics and building usage (Berk et al. 2008).

We do not intend a careful modeling exercise but show the raw results of linear regression to illustrate the degree

to which discrepancies can arise among three types of standard errors: SElin from linear models theory, SEboot
from the pairs bootstrap (Nboot = 100, 000) and SEsand from the sandwich estimator (according to McKinnon and

White (1985)). Ratios of standard errors are shown in bold font when they indicate a discrepancy exceeding 10%.
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β̂j SElin SEboot SEsand
SEboot
SElin

SEsand
SElin

SEsand
SEboot

tlin tboot tsand

Intercept 0.760 22.767 16.505 16.209 0.726 0.712 0.981 0.033 0.046 0.047

MedianInc ($K) -0.183 0.187 0.114 0.108 0.610 0.576 0.944 -0.977 -1.601 -1.696

PercVacant 4.629 0.901 1.385 1.363 1.531 1.513 0.988 5.140 3.341 3.396

PercMinority 0.123 0.176 0.165 0.164 0.937 0.932 0.995 0.701 0.748 0.752

PercResidential -0.050 0.171 0.112 0.111 0.653 0.646 0.988 -0.292 -0.446 -0.453

PercCommercial 0.737 0.273 0.390 0.397 1.438 1.454 1.011 2.700 1.892 1.857

PercIndustrial 0.905 0.321 0.577 0.592 1.801 1.843 1.023 2.818 1.570 1.529

The ratios SEsand/SEboot show that the standard errors from the pairs bootstrap and the sandwich estimator are

in rather good agreement. Not so for the standard errors based on linear models theory: we have SEboot, SEsand >

SElin for the predictors PercVacant, PercCommercial and PercIndustrial, and SEboot, SEsand < SElin for

Intercept, MedianInc ($1000), PercResidential. Only for PercMinority is SElin off by less than 10% from

SEboot and SEsand. The discrepancies affect outcomes of some of the t-tests: Under linear models theory the

predictors PercCommercial and PercIndustrial have commanding t-values of 2.700 and 2.818, respectively,

which are reduced to unconvincing values below 1.9 and 1.6, respectively, if the pairs bootstrap or the sandwich

estimator are used. On the other hand, for MedianInc ($K) the t-value −0.977 from linear models theory becomes

borderline significant with the bootstrap or sandwich estimator if the plausible one-sided alternative with negative

sign is used.

The second illustration of discrepancies between types of standard errors, shown in the table below, is with

the Boston Housing data (Harrison and Rubinfeld 1978) which will be well known to many readers. Again, we

dispense with the question as to how meaningful the analysis is and simply focus on the comparison of standard

errors. Here, too, SEboot and SEsand are mostly in agreement as they fall within less than 2% of each other, an

exception being CRIM with a deviation of about 10%. By contrast, SEboot and SEsand are larger than their linear

models cousin SElin by a factor of about 2 for RM and LSTAT, and about 1.5 for the intercept and the dummy

variable CHAS. On the opposite side, SEboot and SEsand are only a fraction of about 0.73 of SElin for TAX. Also

worth stating is that for several predictors there is no substantial discrepancy among all three standard errors,

namely ZN, NOX, B, and even for CRIM, SElin falls between the somewhat discrepant values of SEboot and SEsand.

β̂j SElin SEboot SEsand
SEboot
SElin

SEsand
SElin

SEsand
SEboot

tlin tboot tsand

(Intercept) 36.459 5.103 8.038 8.145 1.575 1.596 1.013 7.144 4.536 4.477

CRIM -0.108 0.033 0.035 0.031 1.055 0.945 0.896 -3.287 -3.115 -3.478

ZN 0.046 0.014 0.014 0.014 1.005 1.011 1.006 3.382 3.364 3.345

INDUS 0.021 0.061 0.051 0.051 0.832 0.823 0.990 0.334 0.402 0.406

CHAS 2.687 0.862 1.307 1.310 1.517 1.521 1.003 3.118 2.056 2.051

NOX -17.767 3.820 3.834 3.827 1.004 1.002 0.998 -4.651 -4.634 -4.643

RM 3.810 0.418 0.848 0.861 2.030 2.060 1.015 9.116 4.490 4.426

AGE 0.001 0.013 0.016 0.017 1.238 1.263 1.020 0.052 0.042 0.042

DIS -1.476 0.199 0.214 0.217 1.075 1.086 1.010 -7.398 -6.882 -6.812

RAD 0.306 0.066 0.063 0.062 0.949 0.940 0.990 4.613 4.858 4.908

TAX -0.012 0.004 0.003 0.003 0.736 0.723 0.981 -3.280 -4.454 -4.540

PTRATIO -0.953 0.131 0.118 0.118 0.899 0.904 1.005 -7.283 -8.104 -8.060

B 0.009 0.003 0.003 0.003 1.026 1.009 0.984 3.467 3.379 3.435

LSTAT -0.525 0.051 0.100 0.101 1.980 1.999 1.010 -10.347 -5.227 -5.176

Important messages are the following: (1) SEboot and SEsand are in substantial agreement; (2) SElin on the

one hand and {SEboot, SEsand} on the other hand can show substantial discrepancies; (3) these discrepancies are

specific to predictors. In what follows we describe how the discrepancies arise from nonlinearities in the conditional

mean and/or heteroskedasticities in the conditional variance of the response given the predictors. Furthermore, it

will turn out that SEboot and SEsand are asymptotically correct while SElin is not.
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3 Populations and Targets of Estimation

Before we compare standard errors it is necessary to define targets of estimation in a semi-parametric framework.

Targets of estimation will no longer be parameters in a generative model but statistical functionals that are well-

defined for a large nonparametric class of data distributions. A seminal work that inaugurated this approach is

P.J. Huber’s 1967 article whose title is worth citing in full: “The behavior of maximum likelihood estimation under

nonstandard conditions.” The “nonstandard conditions” are essentially arbitrary distributions for which certain

moments exist.

A population view of regression with random predictors has as its ingredients random variables X1, ..., Xp and

Y , where Y is singled out as the response. At this point the only assumption is that these variables have a joint

distribution

P = P (dy,dx1, ...,dxp)

whose second moments exist and whose predictors have a full rank covariance matrix. We write

~X = (1, X1, ..., Xp)
T .

for the column random vector consisting of the predictor variables with a constant 1 prepended to accommodate

an intercept term. Values of the random vector ~X will be denoted by lower case ~x = (1, x1, ..., xp)
T . We write

any function f(X1, ..., Xp) of the predictors equivalently as f( ~X) because the prepended constant 1 is irrelevant.

Correspondingly we also use the notations

P = P (dy,d~x), P (d~x), P (dy | ~x) or P = P
Y, ~X

, P ~X
, P

Y | ~X (2)

for the joint distribution of (Y, ~X), the marginal distribution of ~X, and the conditional distribution of Y given ~X,

respectively. Nonsingularity of the predictor covariance matrix is equivalent to nonsingularity of the cross-moment

matrix E[ ~X ~X
T

].

Among functions of the predictors, a special one is the best L2(P ) approximation to the response Y , which is

the conditional expectation of Y given ~X:

µ( ~X) := argmin
f( ~X)∈L2(P )

E[(Y − f( ~X))2] = E[Y | ~X ] . (3)

This is sometimes called the “conditional mean function” or the “response surface”. Importantly we do not assume

that µ( ~X) is a linear function of ~X.

Among linear functions l( ~X) = βT ~X of the predictors, one stands out as the best linear L2(P ) or population

LS linear approximation to Y :

β(P ) := argminβ∈IRp+1E[(Y − βT ~X)2] = E[ ~X ~X
T

]−1E[ ~XY ] . (4)

The right hand expression follows from the normal equations E[ ~X ~X
T

]β −E[ ~XY ] = 0 that are the stationarity

conditions for minimizing the population LS criterion E[(Y − βT ~X)2] = −2βTE[ ~XY ] + βTE[ ~X ~X
T

]β + const.

By abuse of terminology, we use the expressions “population coefficients” for β(P ) and “population approxi-

mation” for β(P )T ~X, omitting the essential terms “linear” and “LS”/L2(P ) to avoid cumbersome language. We

will often write β, omitting the argument P when it is clear from the context that β = β(P ).

The population coefficients β = β(P ) form a statistical functional that is defined for a large class of data

distributions P . The question of how β(P ) relates to coefficients in the classical linear model (1) will be answered

in Section 5.
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Error:

ε|x = y|x − µ(x)

Nonlinearity:

η(x) = µ(x) − βTx

Deviation from Linear:

δ|x = η(x) + ε|x

Figure 1: Illustration of the decomposition (6).

The population coefficients β(P ) provide also the best linear L2(P ) approximation to µ( ~X):

β(P ) = argminβ∈IRp+1E[(µ( ~X)− βT ~X)2] = E[ ~X ~X
T

]−1E[ ~Xµ( ~X) ] . (5)

This fact shows that β(P ) depends on P only in a limited way, as will be spelled out below.

The response Y has the following natural decompositions:

Y = βT ~X + (µ( ~X)− βT ~X)︸ ︷︷ ︸+ (Y − µ( ~X)︸ ︷︷ ︸
= βT ~X + η( ~X) + ε︸ ︷︷ ︸
= βT ~X + δ

(6)

These equalities define the random variable η = η( ~X), called “nonlinearity”, and ε, called “error” or “noise”, as

well δ = ε + η, for which there is no standard term so that “linearity deviation” may suffice. Unlike η = η( ~X),

the error ε and the linearity deviation δ are not functions of ~X alone; if there is a need to refer to the conditional

distribution of either given ~X, we may write them as ε| ~X and δ| ~X, respectively. An attempt to depict the

decompositions (6) for a single predictor is given in Figure 1.

The error ε is not assumed homoskedastic, and indeed its conditional distributions P (dε| ~X) can be quite

arbitrary except for being centered and having second moments almost surely:

E[ ε | ~X]
P
= 0, σ2( ~X) := V [ ε | ~X] = E[ ε2 | ~X]

P
< ∞. (7)
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Figure 2: Illustration of the dependence of the population LS solution on the marginal distribution of the predictors:

The left figure shows dependence in the presence of nonlinearity; the right figure shows independence in the presence

of linearity.

We will also need a quantity that describes the total conditional variation of the response around the LS linear

function:

m2( ~X) := E[ δ2 | ~X] = σ2( ~X) + η2( ~X). (8)

We refer to it as the “conditional mean squared error” of the population LS function.

Equations (6) above can be given the following semi-parametric interpretation:

µ( ~X)︸ ︷︷ ︸ = βT ~X︸ ︷︷ ︸ + η( ~X)︸ ︷︷ ︸
semi-parametric part parametric part nonparametric part

(9)

The purpose of linear regression is to extract the parametric part of the response surface and provide statistical

inference for the parameters even in the presence of a nonparametric part.

To make the decomposition (9) identifiable one needs an orthogonality constraint:

E[ (βT ~X) η( ~X) ] = 0.

For η( ~X) as defined above, this equality follows from the more general fact that the nonlinearity η( ~X) is uncor-

related with all predictors. Because we will need similar facts for ε and δ as well, we state them all at once:

E[ ~X η ] = 0, E[ ~X ε ] = 0, E[ ~X δ ] = 0. (10)

Proofs: The nonlinearity η is uncorrelated with the predictors because it is the population residual of the regression

of µ( ~X) on ~X according to (5). The error ε is uncorrelated with ~X because E[ ~Xε] = E[ ~XE[ε| ~X]] = 0. Finally,

δ is uncorrelated with ~X because δ = η + ε.
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While the nonlinearity η = η( ~X) is uncorrelated with the predictors, it is not independent from them as it

still is a function of them. By comparison, the error ε as defined above is not independent of the predictors either,

but it enjoys a stronger orthogonality property than η: E[ g( ~X) ε ] = 0 for all g( ~X) ∈ L2(P ).

Observations:

(0) The error ε and the predictors ~X are independent if and only if the conditional distribution of ε given ~X is

the same across predictor space or, more precisely:

E[f(ε) | ~X]
P
= E[f(ε)] ∀f(ε) ∈ L2.

(1) The LS functional β(P ) depends on P only through the conditional mean function and the predictor distribu-

tion; it does not depend on the conditional error distribution. That is, for two data distributions P 1(dy,d~x)

and P 2(dy,d~x) we have:

P 1(d~x) = P 2(d~x), µ1( ~X)
P 1,2
= µ2( ~X) =⇒ β(P 1) = β(P 2).

(2) Furthermore, β(P ) does not depend on the predictor distribution if and only if µ( ~X) is linear. More precisely,

for a fixed measurable function µ0(~x) consider the class of data distributions P for which µ0(.) is a version

of their conditional mean function: E[Y | ~X] = µ( ~X)
P
= µo( ~X). In this class we have:

(2a) µ0(.) is nonlinear =⇒ ∃P 1,P 2 : β(P 1) 6= β(P 2),

(2b) µ0(.) is linear =⇒ ∀P 1,P 2 : β(P 1) = β(P 2).

(For proof details, see Appendix A.1.) In the nonlinear case (2a) the clause ∃P 1,P 2 : β(P 1) 6= β(P 2) is

driven solely by differences in the predictor distributions P 1(d~x) and P 2(d~x) because P 1 and P 2 share the mean

function µ0(.) while their conditional error distributions are irrelevant by observation (1).

Observation (2) is much more easily explained with a graphical illustration: Figure 2 shows a single predictor

situation with a nonlinear and a linear mean function and two predictor distributions. The two population LS

lines for the two predictor distributions differ in the nonlinear case and they are identical in the linear case.

The relevance of observation (2) is that in the presence of nonlinearity the LS functional β(P ) depends on the

predictor distribution, hence the predictors are not ancillary for β(P ). The practical implication is this: Consider

two empirical studies that use the same predictor and response variables. If their statistical inferences about β(P )

seem superficially contradictory, there may yet be no contradiction if the response surface is nonlinear and the

predictor distributions in the two studies differ: it is then possible that the two studies differ in their targets

of estimation, β(P 1) 6= β(P 2). A difference in predictor distributions in two studies can be characterized as a

difference in the “range of possibilities.” This is illustrated in Figure 3, again with a one-dimensional predictor.

Differences in the range of possibilities, however, become the more likely and the less detectable the higher the

dimension of predictor space is.

At this point one might argue against a semi-parametric interpretation of linear regression that allows non-

linearities in the response surface. One may hold that nonlinearities render the results from linear regression too

dependent on the range of possibilities, and consequently one may be tempted to return to the idea that linear

regression should only be applied when it originates from a well-specified linear model. Against this view one may

counter-argue that the emergence of nonlinearity may well be a function of the range of possibilities: For studies

that sample from a joint distribution P (d~x) with large support in predictor space it is more likely that nonlinearity
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X

Y Y = µ(X)

P2(dx)

P1(dx)

Figure 3: Illustration of the interplay between the “range of possibilities” and nonlinearity: Over the small support

of P 1 the nonlinearity will be undetectable and immaterial for realistic sample sizes, whereas over the extended

support of P 2 the nonlinearity is more likely to be detectable and relevant.

becomes an important factor because linearity is unlikely to hold globally even if it provides good approximations

locally. This is a general fact that cannot be argued away by appeal to “substantive theory” because even the best

of theories have limited ranges of validity as has been the experience even with the hardest of theories, those of

physics. It therefore seems justified to develop inferential tools for the linear approximation to a nonlinear response

surface even if this approximation depends on the range of possibilities. — Figure 3 illustrates the impact of the

range of possibilities on β(P ) in the presence of nonlinearity.

4 Observational Datasets and Estimation

The term “observational data” means in this context “cross-sectional data” consisting of i.i.d. cases (Yi, Xi,1, ..., Xi,p)

drawn from a joint multivariate distribution P (dy,dx1, ...,dxp) (i = 1, 2, ..., N). We collect the predictors of case

i in a column (p+ 1)-vector ~Xi = (1, Xi,1, ..., Xi,p)
T , prepended with 1 for an intercept. We stack the N samples

to form random column N -vectors and a random predictor N × (p+ 1)-matrix:

Y =


Y1
..

..

YN

 , Xj =


X1,j

..

..

XN,j

 , X = [1,X1, ...,Xp] =


~X
T

1

...

...

~X
T

N

 .
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Similarly we stack the values µ( ~Xi), η( ~Xi), εi = Yi − µ( ~Xi), δi, and σ( ~Xi) to form random column N -vectors:

µ =


µ( ~X1)

..

..

µ( ~XN )

 , η =


η( ~X1)

..

..

η( ~XN )

 , ε =


ε1
..

..

εN

 , δ =


δ1
..

..

δN

 , σ =


σ( ~X1)

..

..

σ( ~XN )

 . (11)

The definitions of η( ~X), ε and δ in (6) translate to vectorized forms:

η = µ−Xβ, ε = Y − µ, δ = Y −Xβ. (12)

It is important to keep in mind the distinction between population and sample properties. In particular, the

N -vectors δ, ε and η are not orthogonal to the predictor columns Xj in the sample. Writing 〈·, ·〉 for the usual

Euclidean inner product on IRN , we have in general 〈δ,Xj〉 6= 0, 〈ε,Xj〉 6= 0, 〈η,Xj〉 6= 0, even though the

associated random variables are orthogonal to Xj in the population: E[ δXj ] = E[ εXj ] = E[ η( ~X)Xj ] = 0.

The sample linear LS estimate of β is the random column (p+ 1)-vector

β̂ = (β̂0, β̂1, ..., β̂p)
T = argminβ̃ ‖Y −Xβ̃‖

2 = (XTX)−1XTY . (13)

Randomness stems from both the random response Y and the random predictors in X. Associated with β̂ are

the following:

the hat or projection matrix: H = XT (XTX)−1XT ,

the vector of LS fits: Ŷ = Xβ̂ = HY ,

the vector of residuals: r = Y −Xβ̂ = (I −H)Y .

The vector r of residuals is of course distinct from the vector δ = Y −Xβ as the latter arises from β = β(P ).

5 Decomposition of the LS Estimate According to Two Sources of Variation

When the predictors are random and linear regression is interpreted semi-parametrically as the extraction of

the linear part of a nonlinear response surface, the sampling variation of the LS estimate β̂ can be additively

decomposed into two components: one component due to error ε and another component due to nonlinearity

interacting with randomness of the predictors. This decomposition is a direct reflection of the decomposition

δ = ε + η, according to (6) and (12). We give elementary asymptotic normality statements for each part of the

decomposition. The relevance of the decomposition is that it explains what the pairs bootstrap estimates, while

the associated asymptotic normalities are necessary to justify the pairs bootstrap.

In the classical linear models theory, which is conditional on X, the target of estimation is E[β̂|X]. When X is

treated as random and nonlinearity is permitted, the target of estimation is the population LS solution β = β(P )

defined in (4). In this case, E[β̂|X] is a random vector that sits between β̂ and β:

β̂ − β = (β̂ −E[β̂|X]) + (E[β̂|X]− β) (14)

This decomposition corresponds to the decomposition δ = ε+ η as the following lemma shows.

10
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Figure 4: Error-less Response: The filled and the open circles represent two “datasets” from the same population.

The x-values are random; the y-values are a deterministic function of x: y = µ(x) (shown in gray).

Left: The true response µ(x) is nonlinear; the open and the filled circles have different LS lines (shown in black).

Right: The true response µ(x) is linear; the open and the filled circles have the same LS line (black on top of gray).

Definition and Lemma: The following quantities will be called “Estimation Offsets” or “EO” for short, and

they will be prefixed as follows:

Total EO : β̂ − β = (XTX)−1XTδ,

Error EO : β̂ −E[ β̂|X] = (XTX)−1XT ε,

Nonlinearity EO : E[ β̂|X]− β = (XTX)−1XTη.

(15)

This follows immediately from the decompositions (12), ε = Y − µ, η = µ−Xβ, δ = Y −Xβ, and these facts:

β̂ = (XTX)−1XTY , E[ β̂|X] = (XTX)−1XTµ, β = (XTX)−1XT (Xβ).

The first equality is the definition of β̂, the second uses E[Y |X] = µ, and the third is a tautology.

The variance/covariance matrix of β̂ has a canonical decomposition with regard to conditioning on X:

V [ β̂ ] = E[V [ β̂ |X]] + V [E[ β̂ |X]]. (16)

This decomposition reflects the estimation decomposition (14) and δ = ε+ η in view of (15):

V [ β̂ ] = V [ (XTX)−1XTδ ] , (17)

E[V [ β̂ |X]] = E[V [ (XTX)−1XT ε |X] ] , (18)

V [E[ β̂ |X]] = V [ (XTX)−1XTη ] . (19)

(Note that in general E[ (XTX)−1XTη ] 6= 0 even though E[XTη ] = 0 and hence (XTX)−1XTη −→ 0 a.s.)

11



6 RandomX Combined with Nonlinearity as a Source of Sampling Variation

Mainstream statistics is largely about sampling variability due to error (18). The fact that there exists another

source of sampling variability is little known: nonlinearity (19) in the presence of random predictors. It may

be useful to isolate this source and illustrate it in a situation that is free of error: Consider a response that is

a deterministic noiseless but nonlinear function of the predictors: Y = η( ~X). (This may actually be a realistic

situation when outcomes from expensive deterministic simulation experiments are modeled based on inputs.)

Assume therefore ε = 0 but η 6= 0, hence there exists sampling variability in β̂ which is solely due to the

nonlinearity η: β̂−β = (XTX)−1XTη in conjunction with the randomness of the predictors — the “conspiracy”

in the title of this article. Figure 4 illustrates the situation with a single-predictor example by showing the LS lines

fitted to two “datasets” consisting of N = 5 predictor values each. The random differences between datasets cause

the fitted line to exhibit sampling variability under nonlinearity (left hand figure), which is absent under linearity

(right hand figure). Compare this figure with the earlier Figure 2: mathematically the effects illustrated in both

are identical; Figure 2 shows the effect for different populations (theoretical X distributions) while Figure 4 shows

it for different datasets (empiricalX distributions). Thus nonlinearity creates complications on two interconnected

levels: (1) in the definition of the population LS parameter, which becomes dependent on the predictor distribution,

and (2) through the creation of sampling variability due to E[ β̂ |X] which becomes a true random vector.

The case of error free but nonlinear data is of interest to make another point regarding statistical inference:

If classical linear models theory conditions on the predictors and assumes erroneously that the response surface is

linear, it is not so that the resulting procedures do “not see” see the sampling variability caused by nonlinearity,

but they misinterpret it as due to error. The consequences of the confusion of errors and nonlinearities for

statistical inference will be examined in Section 10.2. This misinterpretation also seeps into the residual bootstrap

as it assumes the residuals to originate from exchangeable errors only. By comparison, the pairs bootstrap gets

statistical inference right even in the error-free nonlinear case, at least asymptotically. It receives its justification

from central limit theorems.

7 Assumption-Lean Central Limit Theorems

The three EOs arise from the decomposition δ = ε+η (6). The respective CLTs draw on the analogous conditional

second moment decomposition m2( ~X) = σ2( ~X) + η2( ~X) (8). The asymptotic variance/covariance matrices have

the well-known sandwich form:

Proposition: The three EOs follow central limit theorems under usual multivariate CLT assumptions:

N1/2 (β̂ − β)
D−→ N

(
0, E[ ~X ~X

T
]−1E[ δ2 ~X ~X

T
] E[ ~X ~X

T
]−1
)

(20)

N1/2 (β̂ −E[ β̂|X])
D−→ N

(
0, E[ ~X ~X

T
]−1E[ ε2 ~X ~X

T
] E[ ~X ~X

T
]−1
)

(21)

N1/2 (E[ β̂|X]− β)
D−→ N

(
0, E[ ~X ~X

T
]−1E[ η2 ~X ~X

T
] E[ ~X ~X

T
]−1
)

(22)

Note: The center parts of the first two asymptotic sandwich covariances can equivalently be written as

E[m2( ~X) ~X ~X
T

] = E[ δ2 ~X ~X
T

], E[σ2( ~X) ~X ~X
T

] = E[ ε2 ~X ~X
T

], (23)

which follows from m2( ~X) = E[ δ2| ~X] and σ2( ~X) = E[ ε2| ~X] according to (7) and (8).

12



Proof Outline: The three cases follow the same way; we consider the first. Using E[ δ ~X ] = 0 from (10) we have:

N1/2 (β̂ − β) =
(

1
N
XTX

)−1 (
1

N1/2
XTδ

)
=

(
1
N

∑ ~Xi
~X
T

i

)−1 (
1

N1/2

∑ ~Xi δi

)
D−→ E[ ~X ~X

T
]−1N

(
0,E[ δ2 ~X ~X

T
]
)

= N
(
0,E[ ~X ~X

T
]−1E[ δ2 ~X ~X

T
]E[ ~X ~X

T
]−1
)
,

(24)

The proposition can be specialized in a few ways to cases of partial or complete well-specification:

• First order well-specification: When there is no nonlinearity, η( ~X)
P
= 0, then

N1/2 (β̂ − β)
D−→ N

(
0, E[ ~X ~X

T
]−1E[ ε2 ~X ~X

T
] E[ ~X ~X

T
]−1
)

The sandwich form of the asymptotic variance/covariance matrix is solely due to heteroskedasticity.

• First and second order well-specification: When additionally homoskedasticity holds, σ2( ~X)
P
= σ2,

then

N1/2 (β̂ − β)
D−→ N

(
0, σ2E[ ~X ~X

T
]−1
)

The familiar simplified form is asymptotically valid under first and second order well-specification but without

the assumption of Gaussian errors.

• Deterministic nonlinear response: σ2( ~X)
P
= 0, then

N1/2 (β̂ − β)
D−→ N

(
0, E[ ~X ~X

T
]−1E[ η2 ~X ~X

T
] E[ ~X ~X

T
]−1
)

The sandwich form of the asymptotic variance/covariance matrix is solely due to nonlinearity and random

predictors.

8 The Sandwich Estimator and the M-of-N Pairs Bootstrap

Empirically one observes that standard error estimates obtained from the pairs bootstrap and from the sandwich

estimator are generally close to each other. This is intuitively unsurprising as they both estimate the same

asymptotic variances. A closer connection between them will be established below.

8.1 The Plug-In Sandwich Estimator of Asymptotic Variance

The simplest form of the sandwich estimator of asymptotic variance is the plug-in version of the asymptotic

variance as it appears in the CLT of (20), replacing the hard-to-estimate quantity m2( ~X) with the easy-to-

estimate quantity δ2 = (Y − β ~X)2 according to (20). For plug-in one estimates the population expectations

E[ ~X ~X
T

] and E[ (Y − ~X
T
β) ~X ~X

T
] with sample means and the population parameter β with the LS estimate β̂.

For this we use the notation Ê[...] to express sample means:

Ê[ ~X ~X
T

] = 1
N

∑
i=1...N

~Xi
~X
T

i = 1
N (XTX)

Ê[ (Y − ~Xβ̂)2 ~X ~X
T

] = 1
N

∑
i=1...N (Yi − ~Xiβ̂)2 ~Xi

~X
T

i = 1
N (XTD2

rX),

13



where D2
r is the diagonal matrix with squared residuals r2i = (Yi − ~Xiβ̂)2 in the diagonal. With this notation

the simplest and original form of the sandwich estimator of asymptotic variance can be written as follows (White

1980a):

ÂVsand := Ê[ ~X ~X
T

]−1 Ê[ (Y − ~X
T
β̂)2 ~X ~X

T
] Ê[ ~X ~X

T
]−1 (25)

The sandwich standard error estimate for the j’th regression coefficient is therefore defined as

ŜEsand(β̂j) :=
1

N1/2
(ÂVsand)

1/2
jj . (26)

8.2 The M-of-N Pairs Bootstrap Estimator of Asymptotic Variance

To connect the sandwich estimator (25) to its bootstrap counterpart we need the M -of-N bootstrap whereby the

resample size M is allowed to differ from the sample size N . It is at this point important not to confuse

• M -of-N resampling with replacement, and

• M -out-of-N subsampling without replacement.

In resampling the resample size M can be any M <∞, whereas for subsampling it is necessary that the subsample

size M satisfy M < N . We are here concerned with bootstrap resampling, and we will focus on the extreme case

M � N , namely, the limit M →∞.

Because resampling is i.i.d. sampling from some distribution, there holds a CLT as the resample size grows,

M → ∞. It is immaterial that in this case the sampled distribution is the empirical distribution PN of a given

dataset {( ~Xi, Yi)}i=1...N , which is frozen of size N as M →∞.

Proposition: For any fixed dataset of size N , there holds a CLT for the M -of-N bootstrap as M →∞. Denoting

by β∗M the LS estimate obtained from a bootstrap resample of size M , we have

M1/2 (β∗M − β̂)
D−→ N

(
0, Ê[ ~X ~X

T
]−1 Ê[ (Y − ~X

T
β̂)2 ~X ~X

T
] Ê[ ~X ~X

T
]−1
)

(M →∞). (27)

This is a straight application of the CLT of the previous section to the empirical distribution rather than the actual

distribution of the data, where the middle part (the “meat”) of the asymptotic formula is based on the empirical

counterpart r2i = (Yi − ~X
T

i β̂)2 of δ2 = (Y − ~X
T
β)2. A comparison of (25) and (27) results in the following:

Observation:The sandwich estimator (25) is the asymptotic variance estimated by the limit of the M -of-N pairs

bootstrap as M →∞ for a fixed sample of size N .

9 Adjusted Predictors

The adjustment formulas of this section serve to express the slopes of multiple regressions as slopes in simple

regressions using adjusted single predictors. The goal is to analyze the discrepancies between the proper and

improper standard errors of regression estimates in subsequent sections.
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9.1 Adjustment formulas for the population

To express the population LS regression coefficient βj = βj(P ) as a simple regression coefficient, let the adjusted

predictor Xj• be defined as the “residual” of the population regression of Xj , used as the response, on all other

predictors. In detail, collect all other predictors in the random p-vector ~X−j = (1, X1, ..., Xj−1, Xj+1, ..., Xp)
T ,

and let βj• be the coefficient vector from the regression of Xj onto ~X−j :

βj• = argminβ̃∈IRp E[ (Xj − β̃
T ~X−j)

2] = E[ ~X−j ~X
T

−j ]
−1E[ ~X−jXj ] .

The adjusted predictor Xj• is the residual from this regression:

Xj• = Xj − βTj• ~X−j . (28)

The representation of βj as a simple regression coefficient is as follows:

βj =
E[Y Xj•]

E[Xj•
2]

=
E[µ( ~X)Xj•]

E[Xj•
2]

. (29)

9.2 Adjustment formulas for samples

To express estimates of regression coefficients as simple regressions, collect all predictor columns other than Xj

in a N × p random predictor matrix X−j = (1, ...,Xj−1,Xj+1, ...) and define

β̂j•̂ = argminβ̃ ‖Xj −X−jβ̃‖2 = (XT
−jX−j)

−1XT
−jXj .

Using the notation “•̂” to denote sample-based adjustment to distinguish it from population-based adjustment

“•”, we write the sample-adjusted predictor as

Xj•̂ = Xj −X−jβ̂j•̂ = (I −H−j)Xj . (30)

where H−j = X−j(X
T
−jX−j)

−1XT
−j is the associated projection or hat matrix. The j’th slope estimate of the

multiple linear regression of Y on X1, ...,Xp can then be expressed in the well-known manner as the slope

estimate of the simple linear regression without intercept of Y on Xj•̂:

β̂j =
〈Y ,Xj•̂〉
‖Xj•̂‖2

. (31)

With the above notation we can make the following distinctions: Xi,j• refers to the i’th i.i.d. replication of

the population-adjusted random variable Xj•, whereas Xi,j•̂ refers to the i’th component of the sample-adjusted

random column Xj•̂. Note that the former, Xi,j•, are i.i.d. for i = 1, ..., N , whereas the latter, Xi,j•̂, are not

because sample adjustment introduces dependencies throughout the components of the random N -vector Xj•̂. As

N →∞ for fixed p, however, this dependency disappears asymptotically, and we have for the empirical distribution

of the values {Xi,j•̂}i=1...N the obvious convergence in distribution:

{Xi,j•̂}i=1...N
D−→ Xj•

D
= Xi,j• (N →∞).

Actually, under suitable moment assumptions this holds even in Mallows metrics, meaning that not only empir-

ical frequencies converge to their limiting probabilities but also empirical moments converge to their population

moments.
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9.3 Adjustment Formulas for Decompositions and Their CLTs

The vectorized formulas for estimation offsets (14) have the following component analogs:

Total EO : β̂j − βj =
〈Xj•̂, δ〉
‖Xj•̂‖2

,

Error EO : β̂j −E[ β̂j |X] =
〈Xj•̂, ε〉
‖Xj•̂‖2

,

Nonlinearity EO : E[ β̂j |X]− βj =
〈Xj•̂,η〉
‖Xj•̂‖2

.

(32)

Asymptotic normality can also be expressed for each β̂j separately using population adjustment:

Corollary:
N1/2(β̂j − βj)

D−→ N

(
0,
E[m2( ~X)Xj•

2]

E[Xj•
2]2

)
= N

(
0,
E[ δ2Xj•

2]

E[Xj•
2]2

)

N1/2(β̂j −E[ β̂j |X])
D−→ N

(
0,
E[σ2( ~X)Xj•

2]

E[Xj•
2]2

)

N1/2(E[ β̂j |X]− βj)
D−→ N

(
0,
E[ η2( ~X)Xj•

2]

E[Xj•
2]2

)
(33)

10 Asymptotic Variances — Proper and Improper

10.1 Proper and Improper Asymptotic Variances Expressed with Adjusted Predictors

The following prepares the ground for an asymptotic comparison of linear models standard errors with correct

assumption-lean standard errors. We know the former to be potentially incorrect, hence a natural question is this:

by how much can linear models standard errors deviate from valid assumption-lean standard errors? We look for

an answer in the asymptotic limit, which frees us from issues related to how the standard errors are estimated.

Here is generic notation that can be used to describe the proper asymptotic variance of β̂j as well as its

decomposition into components due to error and due to nonlinearity:

Definition: AV
(j)
lean(f2( ~X)) :=

E[ f2( ~X)Xj•
2]

E[Xj•
2]2

(34)

The proper asymptotic variance of β̂j and its decomposition is therefore according to (33)

AV
(j)
lean(m2( ~X)) = AV

(j)
lean(σ2( ~X)) + AV

(j)
lean(η2( ~X))

E[m2( ~X)Xj•
2]

E[Xj•
2]2

=
E[σ2( ~X)Xj•

2]

E[Xj•
2]2

+
E[ η2( ~X)Xj•

2]

E[Xj•
2]2

(35)

The next step is to derive an asymptotic form for the conventional standard error estimate in the assumption-

lean framework. This asymptotic form will have the appearance of an asymptotic variance but it is valid only
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in the assumption-loaded framework of first and second order well-specification. This “improper” standard error

depends on an estimate σ̂2 of the error variance, usually σ̂2 = ‖Y − Xβ̂‖2/(N−p−1). In an assumption-lean

context, with both heteroskedastic error variance and nonlinearity, σ̂2 has the following limit:

σ̂2
N→∞−→ E[m2( ~X) ] = E[σ2( ~X) ] +E[ η2( ~X) ]

Standard error estimates are therefore given by

V̂ lin[ β̂ ] = σ̂2 (XTX)−1, ŜE
2
lin[ β̂j ] =

σ̂2

‖Xj•̂‖2
. (36)

Their scaled limits are (a.s.) under usual assumptions as follows:

N V̂ lin[ β̂ ]
N→∞−→ E[m2( ~X) ] E[ ~X ~X

T
]−1, N ŜE

2
lin[ β̂j ]

N→∞−→ E[m2( ~X) ]

E[X2
j• ]

. (37)

These are the asymptotic expressions that describe the limiting behavior of linear models standard errors in an

assumption-lean context. Even though they are not proper asymptotic variances except in an assumption-loaded

context, they are intended and used as such. We introduce the following generic notation for improper asymptotic

variance where f2( ~X) is again a placeholder for any one among m2( ~X), σ2( ~X) and η2( ~X):

Definition: AV
(j)
lin (f2( ~X)) :=

E[ f2( ~X)]

E[Xj•
2]

(38)

Here is the improper asymptotic variance of β̂j and its decomposition into components due to error and nonlinearity:

AV
(j)
lin (m2( ~X)) = AV

(j)
lin (σ2( ~X)) + AV

(j)
lin (η2( ~X))

E[m2( ~X)]

E[Xj•
2]

=
E[σ2( ~X)]

E[Xj•
2]

+
E[ η2( ~X)]

E[Xj•
2]

(39)

We examine next the discrepancies between proper and improper asymptotic variances.

10.2 Comparison of Proper and Improper Asymptotic Variances

It will be shown that the conventional asymptotic variances can be too small or too large to unlimited degrees

compared to the proper marginal asymptotic variances. A comparison of asymptotic variances can be done

separately for σ2( ~X), η2( ~X) and m2( ~X). To this end we form the ratios RAVj(...) as follows:

Definition and Lemma: Ratios of Proper and Improper Asymptotic Variances

RAVj(m
2( ~X)) :=

AV
(j)
lean(m2( ~X))

AV
(j)
lin (m2( ~X))

=
E[m2( ~X)Xj•

2]

E[m2( ~X)]E[Xj•
2]

RAVj(σ
2( ~X)) :=

AV
(j)
lean(σ2( ~X))

AV
(j)
lin (σ2( ~X))

=
E[σ2( ~X)Xj•

2]

E[σ2( ~X)]E[Xj•
2]

RAVj(η
2( ~X)) :=

AV
(j)
lean(η2( ~X))

AV
(j)
lin (η2( ~X))

=
E[η2( ~X)Xj•

2]

E[η2( ~X)]E[Xj•
2]

(40)

17



The second equality on each line follows from (39) and (35). The ratios in (40) express by how much the improper

conventional asymptotic variances need to multiplied to match the proper asymptotic variances. Among the three

ratios the relevant one for the overall comparison of improper conventional and proper inference is RAVj(m
2( ~X)).

For example, if RAVj(m
2( ~X)) = 4, say, then, for large sample sizes, the correct marginal standard error of β̂j is

about twice as large as the incorrect conventional standard error. In general RAVj expresses the following:

• If RAVj(m
2( ~X)) = 1, the conventional standard error for β̂j is asymptotically correct;

• if RAVj(m
2( ~X)) > 1, the conventional standard error for βj is asymptotically too small/optimistic;

• if RAVj(m
2( ~X)) < 1, the conventional standard error for βj is asymptotically too large/pessimistic.

The ratios RAVj(σ
2( ~X)) and RAVj(η

2( ~X)) express the degrees to which heteroskedasticity and/or nonlinearity

contribute asymptotically to the defects of conventional standard errors. Note, however, that if RAVj(m
2( ~X)) = 1

and if hence the conventional standard error is asymptotically correct, it does not imply that the model is well-

specified in any sense. For example, heteroskedasticity and nonlinearity can in principle conspire to make m2( ~X) =

σ2( ~X)+η2( ~X) = m2
0 constant while neither σ2( ~X) nor η2( ~X) are constant. In this case the conventional standard

error is asymptotically correct yet the model is “misspecified.” Well-specification with σ2(X) = σ20 constant and

η = 0 is a sufficient but not necessary condition for asymptotic validity of the conventional standard error.

10.3 Meaning and Range of the RAV

The three RAVs are inner products between the normalized squared quantities

m2( ~X)

E[m2( ~X)]
,

σ2( ~X)

E[σ2( ~X)]
,

η2( ~X)

E[η2( ~X)]

on the one hand, and the normalized squared adjusted predictor

Xj•
2

E[Xj•
2]

on the other hand. These inner products, however, are not correlations, and they are not bounded by +1; their

natural bounds are rather 0 and ∞, and both can generally be approached to any degree when allowing σ2( ~X),

η( ~X), and hence m2( ~X) to vary. We continue with generic notation f2( ~X) to mean either of σ2( ~X), η2( ~X)

and m2( ~X):

Observations:

(a) If Xj• has unbounded support on at least one side, that is, if P [Xj•
2 > t] > 0 ∀t > 0, then

sup
f
RAVj(f

2( ~X)) =∞ . (41)

(b) If the closure of the support of the distribution of Xj• contains zero but there is no pointmass at zero, that is,

if P [Xj•
2 < t] > 0 ∀t > 0 but P [Xj•

2 = 0] = 0, then

inf
f
RAVj(f

2( ~X)) = 0 . (42)
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For a proof see Appendix A.6. To reach the limits 0 and +∞ it is sufficient to consider sequences of functions

of Xj• only: f( ~X) = f(Xj•). This is obvious from the following fact which shows that one can further reduce the

problem to functions of Xj•
2, which, however, we continue to write as f(Xj•):

RAVj(f
2( ~X)) =

E[f2j (Xj•)Xj•
2]

E[f2j (Xj•]E[Xj•
2]

for f2j (Xj•) = E[f2( ~X) |Xj•
2]. (43)

The problem then boils down to a single predictor situation in X = Xj• which conveniently lends itself to graphical

illustration: Figure 5 shows a family of functions f2(x) that interpolates the range of RAV values from 0 to ∞.

Even though the RAV is not a correlation, it is nevertheless a measure of association between f2( ~X) and Xj•
2.

It exists for constant but nonzero f( ~X)2, in which case RAV = 1. It indicates a positive association between

f2( ~X) and Xj•
2 for RAV > 1 and a negative association for RAV < 1. This is borne out by the figures: large

values RAV > 1 are obtained when f2(Xj•) is large for Xj• far from zero, and small values RAV < 1 are obtained

when f2(Xj•) is large for Xj• near zero.

These examples allow us to train our intuitions about the types of heteroskedasticities and nonlinearities that

drive the RAV :

• Heteroskedasticities σ2( ~X) with large average variance E[σ2( ~X) |Xj•
2] in the tail of Xj•

2 imply an upward

contribution to the overall RAVj(m
2( ~X)); heteroskedasticities with large average variance concentrated near

Xj•
2 = 0 imply a downward contribution to the overall RAVj(m

2( ~X)).

• Nonlinearities η2( ~X) with large average values E[η2( ~X) |Xj•
2] in the tail of Xj•

2 imply an upward contribu-

tion to the overall RAVj(m
2( ~X)); nonlinearities with large average values concentrated near Xj•

2 = 0 imply

a downward contribution to the overall RAVj(m
2( ~X)).

These facts are illustrated in Figures 6 and 7. To the authors these facts also suggest the following: large values

RAVj > 1 are generally more likely than small values RAVj < 1 because both large conditional variances and

nonlinearities are often more pronounced in the extremes of predictor distributions. This seems particularly natural

for nonlinearities which in the simplest cases will be convex or concave. None of this is more than practical common

sense, however, and the occasional exception exists as indicated by the data example of Section 2.

10.4 Combining the RAV s from Heteroskedasticity and Nonlinearity

In the end it is m2( ~X) = σ2( ~X) + η2( ~X) that determines the discrepancy between inferences from assumption-

loaded linear models theory and assumption-lean approaches based on pairs bootstrap or sandwich estimators. The

following observation can be used to examine the behavior ofRAVj(m
2( ~X)) based on its componentsRAVj(σ

2( ~X))

and RAVj(η
2( ~X)):

Observation: Define weights

wσ =
E[σ2( ~X)]

E[m2( ~X)]
, wη =

E[η2( ~X)]

E[m2( ~X)]
, (44)

so that wσ + wη = 1. Then

RAVj(m
2( ~X)) = wσRAVj(σ

2( ~X)) + wηRAVj(η
2( ~X)) . (45)
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Corollary: If m2
t (
~X) = σ2t (

~X) + η2t (
~X) is a one-parameter family of scenarios, and if wσt = wσ > 0 and

wηt = wη > 0 from (44) are fixed and strictly positive, then we have

limtRAVj(m
2
t (
~X)) =∞ if limtRAVj(σ

2
t (
~X)) =∞ or limtRAVj(η

2
t (
~X)) =∞;

limtRAVj(m
2
t (
~X)) = 0 if limtRAVj(σ

2
t (
~X)) = 0 and limtRAVj(η

2
t (
~X)) = 0.

Thus heteroscedasticity σ2( ~X) or nonlinearity η2( ~X) can each individually cause RAVj(m
2( ~X)) to explode, and

each can provide a floor that preventsRAVj(m
2( ~X)) from dropping to 0. The corollary therefore adds evidence that

large valuesRAVj(m
2( ~X))� 1 seem more easily possible than small valuesRAVj(m

2( ~X))� 1, hence conventional

linear models inferences seem more likely to be too optimistic/liberal than too pessimistic/conservative.

11 The Sandwich Estimator in Adjusted Form

The adjustment versions (33) of the CLTs can be used to rewrite the sandwich estimator of asymptotic variance

by replacing expectations E[...] with means Ê[...], the population parameter β with its estimate β̂, and population

adjustment Xj• with sample adjustment Xj•̂:

ÂV
(j)
sand =

Ê[ (Y − ~X
T
β̂)2Xj•̂

2]

Ê[Xj•̂
2]2

= N
〈(Y −Xβ̂)2,Xj•̂

2〉
‖Xj•̂‖4

(46)

The squaring of N -vectors is meant to be coordinate-wise. The formula (46) is not a new estimator of asymptotic

variance; rather, it is an algebraically equivalent re-expression of the diagonal elements of ÂVsand in (25) above:

ÂV
(j)
sand = (ÂVsand)j,j . The sandwich standard error estimate (26) can therefore be written as follows:

ŜEsand(β̂j) =
〈(Y −Xβ̂)2,Xj•̂

2〉1/2

‖Xj•̂‖2
. (47)

For comparison the usual standard error estimate from linear models theory is (36):

ŜElin(β̂j) =
σ̂

‖Xj•̂‖
, (48)

where as usual σ̂2 = ‖Y −Xβ̂‖2/(N−p−1).

In order to translate the RAVj = RAV j(m
2( ~X)) from a theoretical quantity to a practically useful diagnostic,

an obvious first cut would be forming the square of the ratio ŜEsand(β̂j)/ŜElin(β̂j). However, ŜElin(β̂j) has been

corrected for fitted degrees of freedom, whereas ŜEsand(β̂j) has not. For greater comparability one would either

correct the sandwich estimator with a factor (N/(N−p−1))1/2 (MacKinnon and White 1985) or else “uncorrect”

ŜElin(β̂j) by replacing N−p−1 with N in the variance estimate σ̂2. Either way, the natural ratio and estimate of

RAVj is

ˆRAVj := N
〈(Y −Xβ̂)2,Xj•̂

2〉
‖Y −Xβ̂‖2 ‖Xj•̂‖2

. (49)

This diagnostic quantity can be leveraged as a test statistic because under the assumption of linearity and ho-

moskedasticity a centered and scaled version has an asymptotic null distribution as follows:

N1/2 ( ˆRAVj − 1)
D−→ N (0, 1) (N →∞) . (50)
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The resulting test could be interpreted as a “per predictor misspecification test,” but more pragmatically it could

provide guidance as to which standard error estimate to use: (47) in case of rejection and (48) in case of retention

of the null hypothesis of linearity and homoskedasticity. This has been suggested by White (1980??) for another

form of a misspecification test, but the statistical performance of such pre-test procedures is not known.

12 Justification of Conditioning on the Predictors — and its Failure

The facts as layed out in the preceding sections amount to an argument against conditioning on predictors in

regression, a practice that is pervasive in statistics. The justification for conditioning derives from an ancillarity

argument according to which the predictors, if random, form an ancillary statistic for the linear model parameters

β and σ2, hence conditioning on X produces valid frequentist inference for these parameters (Cox and Hinkley

1974, Example 2.27). Indeed, with a suitably general definition of ancillarity, it can be shown that in any regression

model the predictors form an ancillary. To see this we need an extended definition of ancillarity that includes

nuisance parameters. The ingredients and conditions are as follows:

(1) θ = (ψ,λ) : the parameters, where ψ is of interest and λ is nuisance;

(2) S = (T ,A) : a sufficient statistic with values (t,a);

(3) p(t,a; ψ,λ) = p(t |a; ψ) p(a; λ) : the condition that makes A an ancillary.

We say that the statistic A is ancillary for the parameter of interest, ψ, in the presence of the nuisance parameter,

λ. Condition (3) can be interpreted as saying that the distribution of T is a mixture with mixing distribution

p(a|λ). More importantly, for a fixed but unknown value λ and two values ψ1, ψ0, the likelihood ratio

p(t,a; ψ1,λ)

p(t,a; ψ0,λ)
=

p(t |a; ψ1)

p(t |a; ψ0)

has the nuisance parameter λ eliminated, justifying the conditionality principle according to which valid inference

for ψ can be obtained by conditioning on A.

When applied to regression, the principle implies that in any regression model the predictors, when random,

are ancillary and hence can be conditioned on:

p(y,X; θ) = p(y |X; θ) pX(X),

where X acts as the ancillary A and pX as the mixing distribution p(a |λ) with a “nonparametric” nuisance

parameter that allows largely arbitrary distributions for the predictors. (The predictor distribution should grant

identifiability of θ in general, and non-collinearity in linear models in particular.) The literature does not seem to

be rich in crisp definitions of ancillarity, but see, for example, Cox and Hinkley (1974, p. 32-33). For the interesting

history of ancillarity see the articles by Stigler (1986) and Aldrich (2005).

The problem with the ancillarity argument is that it holds only when the regression model is correct. In

practice, whether models are correct is never known, yet statisticians fit them just the same and interpret them

with statistical inference that assumes the truth of the models. As we have seen such inference can be faulty due

to the presence of nonlinearities and heteroskedasticities. The most egregious violation of the ancillarity concept

is caused by nonlinearity (“first order misspecification”) which requires the estimated parameter to be interpreted

as a statistical functional β = β(P ) that depends on the predictor distribution (Section 3). Nonlinearity therefore

creates a link between parameters β(P ) and predictor distributions P ~X
, violating the postulate of ancillarity in

a surprising direction: It is not the case that the predictor distribution is dependent on the parameter β, rather,

the parameter β is a function of the predictor distribution, β = β(P ), as illustrated in Figure 2.
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13 The Meaning of Regression Slopes in the Presence of Nonlinearity

An objection against using linear fits in the presence of nonlinearities is that slopes lose their common interpre-

tation: no longer is βj the average difference in Y associated with a unit difference in Xj at fixed levels of all

other Xk. Yet, there exists a simple alternative interpretation that is valid and intuitive even in the presence of

nonlinearities, both for the parameters of the population and their estimates from samples: slopes are weighted

averages of case-wise slopes or pairwise slopes. This holds for simple linear regression and also for multiple linear

regression for each predictor after linearly adjusting it for all other predictors. This is made precise as follows:

• Sample estimates: In a multiple regression based on a sample of size N , consider the LS estimate β̂j : this

is the empirical simple regression slope through the origin with regard to the empirically adjusted predictor

Xj•̂ (for j 6= 0 as we only consider actual slopes, not the intercept, but assume the presence of an intercept).

We write (x1, ..., xN )T for Xj•̂, as well as (y1, ..., yN )T for the response vector Y and β̂ for the LS estimate

β̂j . Then the representation of β̂ as a weighted average of case-wise slopes is

β̂ =
∑
i

wi bi , where bi :=
yi
xi

and wi :=
x2i∑
i′ x

2
i′

(51)

are case-wise slopes and weights, respectively.

The representation of β̂ as a weighted average of pairwise slopes is

β̂ =
∑
ik

wik bik , where bik :=
yi − yk
xi − xk

and wik :=
(xi − xk)2∑
i′k′ (xi′ − xk′)2

(52)

are pairwise slopes and weights, respectively. The summations can be over i 6= k or i < k. See Figure 8 for

an illustration.

• Population parameters: In a population multiple regression, consider the slope parameter βj of the

predictor variable Xj . It is also the simple regression slope through the origin with regard to the population-

adjusted predictor Xj•, where again we consider only actual slopes, j 6= 0, but assume the presence of an

intercept. We now write X instead of Xj• and β instead of βj . The population regression is thus reduced to

a simple regression through the origin.

The representation of β as a weighted average of case-wise slopes is

β = E[W B ], where B :=
Y

X
and W :=

X2

E[X2 ]

are case-wise slopes and case-wise weights, respectively.

For the representation of β as a weighted average of pairwise slopes we need two independent copies (X,Y )

and (X ′, Y ′) of the predictor and response:

β = E[W B ] where B :=
Y − Y ′

X −X ′
and W :=

(X −X ′)2

E[ (X −X ′)2 ]

are pairwise slopes and weights, respectively.

These formulas provide intuitive interpretations of regression slopes that are valid without the first order

assumption of linearity of the response as a function of the predictors. They support the intuition that, even in
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the presence of a nonlinearity, a linear fit can be used to infer the overall direction of the association between the

response and the predictors.

The above formulas were used and modified to produce alternative slope estimates by Gelman and Park (2008),

also with the “Goal of Expressing Regressions as Comparisons that can be Understood by the General Reader”

(see their Sections 1.2 and 2.2). Earlier, Wu (1986) used generalizations from pairs to tuples of size r ≥ p+ 1 for

the analysis of jackknife and bootstrap procedures (see his Section 3, Theorem 1). The formulas have a history in

which Stigler (2001) includes Edgeworth, while Berman (1988) traces it back to a 1841 article by Jacobi written

in Latin.

14 Conclusions

•

•

•

•

•
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A Proofs

A.1 Proofs of “Observations” in Section 3

Observation (0): Assuming constancy of the conditional distribution we obtain independence as follows:

E[f(ε)g( ~X)] = E[E[f(ε)| ~X]g( ~X)] = E[E[f(ε)]g( ~X)] = E[f(ε)]E[g( ~X)]

Conversely, if the conditional distribution is not constant, there exists f(ε) such that E[f(ε)| ~X] > E[f(ε)] for
~X ∈ A for some A with P [A] > 0. Let g( ~X) = 1A( ~X), and it follows E[f(ε)g( ~X)] > E[f(ε)]E[g( ~X)].

Observation (1): This follows immediately from (5).

Observation (2): The linear case is trivial: if µ0( ~X) is linear, that is, µ0(~x) = βT ~x for some β, then β(P ) = β

irrespective of P (d~x) according to (5). The nonlinear case is proved as follows: For any set of points ~x1, ...~xp+1 ∈
IRp+1 in general position and with 1 in the first coordinate, there exists a unique linear function βT ~x through

the values of µ0(~xi). Define P (d~x) by putting mass 1/(p + 1) on each point; define the conditional distribution

P (dy | ~xi) as a point mass at y = µo(~xi); this defines P such that β(P ) = β. Now, if µ0() is nonlinear, there exist

two such sets of points with differing linear functions βT1 ~x and βT2 ~x to match the values of µ0() on these two sets;

by following the preceding construction we obtain P 1 and P 2 such that β(P 1) = β1 6= β2 = β(P 2).

A.2 Conditional Expectation of RSS

The conditional expectation of the RSS allowing for nonlinearity and heteroskedasticity:

E[‖r‖2|X] = E[Y T (I −H)Y |X] (53)

= E[(Xβ + η + ε)′(I −H)(Xβ + η + ε)|X] (54)

= E[(η + ε)T (I −H)(η + ε)|X] (55)

= tr(E[(I −H)(η + ε)(η + ε)T |X]) (56)

= tr((I −H)(ηηT +E[εεT |X]) (57)

= tr((I −H)(ηηT +Dσ2) (58)

= |(I −H)η|2 + tr((I −H)Dσ2) (59)

A.3 Limit of Squared Adjusted Predictors

The asymptotic limit of ‖Xj•̂‖2:

1

N
‖Xj•̂‖2 =

1

N
XT

j (I −H−j)Xj

=
1

N

(
XT

j Xj −XT
jH−jXj

)
=

1

N
X2
i,j −

(
1

N

∑
Xi,j

~X
T

i,−j

)(∑
i

~Xi,−j
~X
T

i,−j

)−1(∑
i

~Xi,−jXi,j

)
P−→ E[X2

j ] − E[Xj
~X−j ]E[ ~X−j ~X

T

−j ]
−1E[ ~X−jXj ]

= E[Xj•
2]
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A.4 Conventional SE

We will use the notations Σ ~X
= E[ ~X ~X

T
] and Σ

η( ~X) ~X
= E[η( ~X)2 ~X ~X

T
], and we will also need a p-dimensional

normal random vector Z for the following limit in distribution:

1
N1/2

N∑
i=1

η( ~Xi) ~X
T

i
D−→ Z ∼ N

(
0,Σ

η( ~X) ~X

)
.

The following are the ingredients for the limiting behaviors of ‖η‖2 and ‖Hη‖2:

N (XTX)−1 =

(
1

N

N∑
i=1

~Xi
~X
T

i

)−1
P−→ Σ−1~X

1
N ‖η‖

2 = 1
N

N∑
i=1

η( ~Xi)
2

P−→ E[η( ~X)2] = V [η( ~X)]

‖Hη‖2 = ηTX(XTX)−1XTη

=

(
1

N1/2

N∑
i=1

η( ~Xi) ~X
T

i

)(
1
N

N∑
i=1

~Xi
~X
T

i

)−1(
1

N1/2

N∑
i=1

η( ~Xi) ~Xi

)
D−→ ZTΣ−1~X

Z

1
N ‖Hη‖

2 P−→ 0

For large N and fixed p, as N/(N − p− 1)→ 1 we have

N

1
N−p−1‖(I −H)η‖2

‖Xj•‖2
P−→ E[η( ~X)2]

E[Xj•
2]

. (60)

A.5 Asymptotic Normality in Terms of Adjustment

We gave the asymptotic limit of the conditional bias in vectorized form after (20)-(22). Here we derive the

equivalent element-wise limit using adjustment to show (??)-(??). The variance of the conditional bias is the
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marginal inflator of SE.

N1/2(E[β̂j |X]− βj) = N1/2 〈Xj•,η〉
‖Xj•‖2

=
1

N1/2X
T
j η − 1

N1/2X
T
jH−jη

1
N ‖Xj•‖2

1

N1/2
XT

jH−jη =
1

N1/2
XT

j X−j(X
T
−jX−j)

−1XT
−jη

=

(
1

N

∑
i

Xi,j
~X
T

i,−j

)(
1

N

∑
i

~Xi,−j
~X
T

i,−j

)−1(
1

N1/2

∑
i

~Xi,−jη( ~Xi)

)
D
≈ E[Xj

~X−j ]E[ ~X−j ~X
T

−j ]

(
1

N1/2

∑
i

~Xi,−jη( ~Xi)

)

= βTj·

(
1

N1/2

∑
i

~Xi,−jη( ~Xi)

)

=
1

N1/2

∑
i

(βTj·
~Xi,−j)η( ~Xi)

1

N1/2

(
XT

j η −XT
jH−jη

) D
≈ 1

N1/2

∑
i

(
Xi,j − βTj· ~Xi,−j

)
η( ~Xi)

D−→ N
(

0,V [(Xj − βTj· ~X−j)η( ~X)]
)

= N
(

0,V [Xj•η( ~X)]
)

N1/2(E[β̂j |X]− βj)
D−→ N

(
0,
V [Xj•η( ~X)]

E[Xj•
2]2

)

A.6 A Family of Nonlinearities with Extreme RAV

An important difference between η2( ~X) and σ2( ~X) is that nonlinearities are constrained by orthogonalities to the

predictors, whereas conditional error variances are not.

Consider first nonlinearities η( ~X): We construct a one-parameter family of nonlinearities ηt( ~X) for which

suptRAVj(η
2
t ) = ∞ and inftRAVj(η

2
t ) = 0. Generally in the construction of examples, it must be kept in mind

that nonlinearities are orthogonal to (adjusted for) all other predictors: E[η( ~X) ~X] = 0. To avoid uninsightful

complications arising from adjustment due to complex dependencies among the predictors, we construct an example

for simple linear regression with a single predictor X1 = X and an intercept X0 = 1. W.l.o.g. we will further

assume that X1 is centered (population adjusted for X0, so that X1• = X1) and standardized. In what follows we

write X instead of X1, and the assumptions are E[X] = 0 and E[X2] = 1. To make the example as simple as

possible we adopt some additional assumptions on the distribution of X:

Proposition: Define a one-parameter family of nonlinearities as follows:

ηt(X) =
1[|X|>t] − p(t)√
p(t)(1− p(t))

, where p(t) = P [|X| > t] , (61)
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and we assume that p(t) > 0 and 1 − p(t) > 0 ∀t > 0. Assume further that the distribution of X is symmetric

about 0, so that E[ηt(X)X] = 0. Then we have:

lim t↑∞RAV (η2t ) =∞;

lim t↓0RAV (η2t ) = 0 if the distribution of X has no atom at the origin: P [X = 0] = 0.

By construction these nonlinearities are centered and standardized, E[ηt(X)] = 0 and E[ηt(X)2] = 1. They

are also orthogonal to X, E[ηt(X)X] = 0, due to the assumed symmetry of the distribution of X, P [X > t] =

P [X < −t], and the symmetry of the nonlinearities, ηt(−X) = ηt(X).

Consider next heteroskedastic error variances σ2( ~X): The above construction for nonlinearities can be re-used.

As with nonlinearities, for RAV (σ2t (X)) to rise with no bound, the conditional error variance σ2t (X) needs to place

its large values in the unbounded tail of the distribution of X. For RAV (σ2t (X)) to reach down to zero, σ2t (X)

needs to place its large values in the center of the distribution of X.

Proposition: Define a one-parameter family of heteroskedastic error variances as follows:

σ2t (X) =
(1[|X|>t] − p(t))2

p(t)(1− p(t))
, where p(t) = P [|X| > t] , (62)

and we assume that p(t) > 0 and 1− p(t) > 0 ∀t>0. Then we have:

lim t↑∞RAV (σ2t ) =∞;

lim t↓0RAV (σ2t ) = 0 if the distribution of X has no atom at the origin: P [X = 0] = 0.

We abbreviate p̄(t) = 1− p(t) in what follows.

RAV (ηt) = E
[
ηt(X)2X2

]
=

1

p(t)p̄(t)
E
[(

1[|X|>t] − p(t)
)2
X2
]

=
1

p(t)p̄(t)
E
[(

1[|X|>t] − 2 · 1[|X|>t] p(t) + p(t)2
)
X2
]

=
1

p(t)p̄(t)
E
[(

1[|X|>t](1− 2 p(t)) + p(t)2
)
X2
]

=
1

p(t)p̄(t)

(
E
[
1[|X|>t]X

2
]

(1− 2 p(t)) + p(t)2
)

≥ 1

p(t)p̄(t)

(
p(t) t2 (1− 2 p(t)) + p(t)2

)
for p(t) ≤ 1

2

=
1

p̄(t)

(
t2 (1− 2 p(t)) + p(t)

)
≥ t2 (1− 2 p(t)) + p(t)

∼ t2 as t ↑ ∞.
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For the following we note 1[|X|>t] − p(t) = −1[|X|≤t] + p̄(t):

RAV (ηt) = E
[
ηt(X)2X2

]
=

1

p(t)p̄(t)
E
[(

1[|X|≤t] − p̄(t)
)2
X2
]

=
1

p(t)p̄(t)
E
[(

1[|X|≤t] − 2 · 1[|X|≤t] p̄(t) + p̄(t)2
)
X2
]

=
1

p(t)p̄(t)
E
[(

1[|X|≤t](1− 2 p̄(t)) + p̄(t)2
)
X2
]

=
1

p(t)p̄(t)

(
E
[
1[|X|≤t]X

2(1− 2 p̄(t))
]

+ p̄(t)2
)

≤ 1

p(t)p̄(t)

(
p̄(t) t2 (1− 2 p̄(t)) + p̄(t)2

)
for p̄(t) ≤ 1

2

=
1

p(t)

(
t2 (1− 2 p̄(t)) + p̄(t)

)
∼ t2 + p̄(t) as t ↓ 0,

assuming p̄(0) = P [X = 0] = 0.

A.7 Details for the heteroskedasticity and nonlinearity examples

We write X instead of Xj• and assume it has a standard normal distribution, X ∼ N(0, 1), whose density will be

denoted by φ(x). In Figure 5 the base function is, up to scale, as follows:

f(x) = exp

(
− t

2

x2

2

)
, t > −1.

These functions are normal densities up to normalization for t > 0, constant 1 for t = 0, and convex for t < 0.

Conveniently, f(x)φ(x) and f2(x)φ(x) are both normal densities (up to normalization) for t > −1:

f(x)φ(x) = s1 φs1(x), s1 = (1 + t/2)−1/2,

f2(x)φ(x) = s2 φs2(x), s2 = (1 + t)−1/2.

Accordingly we obtain the following moments:

E[f(X)] = s1E[ 1 |N(0, s1
2)] = s1 = (1 + t/2)−1/2,

E[f(X)X2] = s1E[X2|N(0, s1
2)] = s1

3 = (1 + t/2)−3/2,

E[f2(X)] = s2E[ 1 |N(0, s2
2)] = s2 = (1 + t)−1/2,

E[f2(X)X2] = s2E[X2|N(0, s2
2)] = s2

3 = (1 + t)−3/2,

and hence

RAV (f2(X)) =
E[f2(X)X2]

E[f2(X)]E[X2]
= s2

2 = (1 + t)−1

Figure 5 shows the functions as follows: f(x)2/E[f2(X)] = f(x)2/s2.
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Figure 5: A family of functions f2t (x) that can be interpreted as heteroskedasticities σ2(Xj•), squared nonlinearities

η2(Xj•), or conditional MSEs m2(Xj•): The family interpolates RAV from 0 to ∞ for Xj• ∼ N(0, 1).

RAV =∞ is approached as f2t (x) bends ever more strongly in the tails of the x-distribution.

RAV = 0 is approached by an ever stronger spike in the center of the x-distribution.

(See Appendix A.7 for details.)
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Figure 6: The effect of heteroskedasticity on the sampling variability of slope estimates: The question is how the

misinterpretation of the heteroskedasticities as homoskedastic affects statistical inference.

Left: High error variance in the tails of the predictor distribution elevates the true sampling variability of the slope

estimate above the classical standard error (RAV (σ2(X)) > 1).

Center: High error variance near the center of the predictor distribution lowers the true sampling variability of

the slope estimate below the classical standard error (RAV (σ2(X)) < 1).

Right: The error variance oscillates in such a way that the classical standard error is coincidentally correct

(RAV (σ2(X)) = 1).
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Figure 7: The effect of nonlinearities on the sampling variability of slope estimates: The three plots show three

different error-free nonlinearities; each plot shows for one nonlinearity 20 overplotted datasets of size N = 10 and

their fitted lines through the origin. The question is how the misinterpretation of the nonlinearities as homoskedas-

tic random errors affects statistical inference.

Left: Strong nonlinearity in the tails of the predictor distribution elevates the true sampling variability of the slope

estimate above the classical standard error (RAV (η2(X)) > 1).

Center: Strong nonlinearity near the center of the predictor distribution lowers the true sampling variability of the

slope estimate below the classical standard error (RAV (η2(X)) < 1).

Right: An oscillating nonlinearity mimics homoskedastic random error to make the classical standard error coin-

cidentally correct (RAV (η2(X)) = 1).
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Figure 8: Case-wise and pairwise average weighted slopes illustrated: Both plots show the same six points (the

“cases”) as well as the LS line fitted to them (fat gray). The left hand plot shows the case-wise slopes from the

mean point (open circle) to the six cases, while the right hand plot shows the pairwise slopes between all 15 pairs of

cases. The LS slope is a weighted average of the case-wise slopes on the left according to (51), and of the pairwise

slopes on the right according to (52).
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