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Abstract

The application of two-way penalization to SVDs is not a trivial matter. In
this note, we show that several “natural” approaches to penalized SVDs do not
work and explain why so. We present these flawed approaches to spare readers
fruitless search in dead ends.

1 Outline

Section 2 presents several approaches to penalized SVD through generalization of
penalized regressions and then discusses their flaws. Sections 3 and 4 provide some
deeper discussion by comparing the criteria in terms of bi-Rayleigh quotients and
alternating optimization algorithms, respectively.

2 Several approaches to penalized SVD

We consider a m× n data matrix X whose indexes both live in structured domains,
and our goal is to find best rank-one approximations of X in a sense that reflects the
domain structure. The calculations generalize to any rank-q approximation.

We write rank-one approximations as uvT , where u and v are n- and m-vectors,
respectively. We will not assume that either is normalized, hence they are unique
only up to a scale factor that can be shifted between them:

u 7→ cu , v 7→ v/c . (1)

It will turn out that these scale transformations play an essential role in the design
of a desirable form of regularized SVD. As a reminder, the criterion for unregularized
standard SVD is

C0(u,v) = ‖X − uvT‖2F , (2)
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where ‖ · ‖2F denote the squared Frobenius norm of a matrix. A plausible approach to
invariance under (1) would be to require normalization, ‖u‖ = ‖v‖ = 1, and introduce
a slope factor s such that C0(u,v) = ‖X− suvT‖2F . We prefer, however, to deal with
invariance directly because normalization requirements result in extraneous difficulties
rather than clarifications.

We will now require u and v to satisfy some domain-specific conditions, typically
a form of smoothness. Specifically, let Ωu and Ωv be n× n and m×m non-negative
definite matrices, respectively, such that smaller values of the quadratic forms uT Ωuu
and vT Ωvv are more desirable than larger ones in terms of the respective index
domain. These quadratic forms will be chosen to be roughness penalties if u and
v are required to be smooth on their domains. For example, if the index set of u
is I = {1, ..., n} corresponding to equi-spaced time points, then a crude roughness
penalty is uT Ωuu =

∑
i(ui+1−2ui +ui−1)

2. For future use we recall that the solution
of the penalized regression problem

‖y − f‖2 + fT Ω f = min
f

(f ,y ∈ IRn)

is f = (I + Ω)−1y, that is, the matrix S = (I + Ω)−1 is the “smoothing matrix”
that corresponds to the hat matrix of linear regression. This, however, is not an
orthogonal projection but a symmetric matrix with eigenvalues between zero and one
(Hastie and Tibshirani, 1990).

The goal is to balance the penalties uT Ωuu and vT Ωvv against goodness-of-fit
as measured by the residual sum of squares ‖X − uvT‖2F . Following practices in
regression, it would be natural to try to achieve such a balance by minimizing the
sum

C1(u,v) = ‖X − uvT‖2F + uT Ωuu + vT Ωvv . (3)

This criterion has, however, the undesirable property that it is not invariant under
scale transformations (1). While the goodness-of-fit criterion ‖X − uvT‖2F remains
unchanged, the penalization terms change to c2uT Ωuu and c−2vT Ωvv, respectively.
It appears therefore that this additive combination of the penalties imposes specific
scales on u and v relative to each other, while the goodness-of-fit criterion has noth-
ing to say about these relative scales. Indeed, we will see in Sections 3 below that
minimization of (3) forces the two penalties to attain identical values.

If the obvious approach is deficient, what would be a desirable way to balance
goodness-of-fit and penalties? A heuristic pointer can be found by expanding the
goodness-of-fit criterion C0 with some trace algebra as follows:

C0(u,v) = ‖X− uvT‖2F = ‖X‖2F − 2 uT Xv + ‖u‖2‖v‖2 . (4)

Of note is that the rightmost term is bi-quadratic. This matters because the penalties
act as modifiers of this term and should be of comparable functional form. It is
therefore natural to search for bi-quadratic forms of combined penalties, and the
simplest form would be the product as opposed to the sum of the penalties:

C2(u,v) = ‖X− uvT‖2F + uT Ωuu · vT Ωvv . (5)
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This criterion, while satisfying invariance under the scale transformations (1), has
another deficiency: it does not specialize to a one-way regularization method in v
when Ωu = 0, say. (This specialization requirement would appear to be satisfied by
C1, but appearances can be misleading, as is the case here; see Section 3).

The search for criteria that satisfy both requirements lead us to the following
proposal:

C3(u,v) = ‖X− uvT‖2F + uT Ωuu · ‖v‖2 + ‖u‖2 · vT Ωvv . (6)

The idea is to combine smoothing in u (caused by uT Ωuu) with shrinkage in v (caused
by ‖v‖2), and vice versa. The criterion is invariant under (1) and it specializes to a
version of one-way regularized SVD when one of the penalities vanishes (Huang, Shen
and Buja, 2008). We will see, however, that this criterion has a coupling problem
(as do C1 and C2): the natural alternating algorithm that optimizes u and v in turn
amounts to alternating smoothing where the amount of smoothing for u depends on
v, and vice versa (Section 4). While this “defect” may make only a weak heuristic
argument compared to the scale invariance and specialization requirements, it takes
on more weight with hindsight once the conceptually cleanest solution is found.

This solution turns out to be the most complex of all, the sum of both types of
bi-quadratic penalties tried so far:

C4(u,v) = ‖X− uvT‖2F + uT Ω1u · ‖v‖2 + ‖u‖2 · vT Ωvv + uT Ω1u · vT Ωvv . (7)

While this criterion is derived from axiomatic argument in our paper (Huang, Shen
and Buja, 2009), one can get a glimpse of the reason why this succeeds by substituting
the expansion (4) of the goodness-of-fit criterion in (7) and simplifying the algebra:

C4(u,v) = ‖X‖2F − 2 uT Xv + uT (I + Ωu)u · vT (I + Ωv)v . (8)

This kind of factorization is absent from the previous combined penalties. The matri-
ces I+Ωu and I+Ωv are the inverses of the smoother matrices Su and Sv, a fact that
will result in an intuitive alternating algorithm (Section 4). Comparing the expanded
form (4) of C0 with (8), we see that the Euclidean squared norms ‖u‖2 and ‖v‖2 are
replaced by the quadratic forms uT (I+Ωu)u and vT (I+Ωv)v, respectively. This fact
hints that hierarchies of regularized singular vectors based on C4 will be orthogonal
in the sense that uT

1 (I + Ωu)u2 = 0 and vT
1 (I + Ωv)v2 = 0 , as opposed to uT

1 u2 = 0
and vT

1 v2 = 0.

3 Comparison of criteria in terms of bi-Rayleigh

quotients

In this section we compare the penalized LS criteria in terms of scale-invariant ratios
that are a form of bi-Rayleigh quotients, and in the next subsection in terms of
stationary equations that suggests alternating algorithms.
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C0(u,v) = ‖X− uvT‖2F :

mins,t C0(su, tv) = ‖X‖2F −
(uT Xv)2

‖u‖2‖v‖2

u = cv Xv , cv = ‖v‖−2

v = cu XT u , cu = ‖u‖−2

C1(u,v) = ‖X− uvT‖2F + uT Ωuu + vT Ωvv :

mins,t C1(su, tv) = ‖X‖2 −

(
uT Xv− (uT Ωuu·vT Ωvv)

1/2
)2

‖u‖2‖v‖2

u = cv Su(λv) Xv , λv = cv = ‖v‖−2

v = cu Sv(λu) XT u , λu = cu = ‖u‖−2

C2(u,v) = ‖X− uvT‖2F + uT Ωuu · vT Ωvv :

mins,t C2(su, tv) = ‖X‖2 − (uT Xv)2

‖u‖2‖v‖2 + uT Ωuu·vT Ωvv

u = cv Su(λv) Xv , λv = Rv(v) , cv = ‖v‖−2

v = cu Sv(λu) XT u , λu = Ru(u) , cu = ‖u‖−2

C3(u,v) = ‖X− uvT‖2F + uT Ωuu · ‖v‖2 + ‖u‖2 · vT Ωvv :

mins,t C3(su, tv) = ‖X‖2 − (uT Xv)2

‖u‖2‖v‖2 + uT Ωuu·‖v‖2 + ‖u‖2·vT Ωvv

u = cv Su(λv) Xv , λv = (1 +Rv(v))−1, cv = ‖v‖−2 λv

v = cu Sv(λu) XT u , λu = (1 +Ru(u))−1, cu = ‖u‖−2 λv

C4(u,v) = ‖X− uvT‖2F + uT Ω1u · ‖v‖2 + ‖u‖2 · vT Ωvv + uT Ω1u · vT Ωvv :

mins,t C4(su, tv) = ‖X‖2 − (uT Xv)2

uT (I+Ωu)u·vT (I+Ωv)v

u = cv Su(1) Xv , cv = ‖v‖−2(1 +Rv(v))−1

v = cu Sv(1) XT u , cu = ‖u‖−2(1 +Ru(u))−1

Table 1: The five (penalized) LS criteria, their bi-Rayleigh quotients, and the station-
ary equations for alternating algorithms; Su/v are the smoother matrices and Ru/v

the plain Rayleigh quotients of Ωu/v [see (9) and (10)].
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We first show how one arrives at “bi-Rayleigh quotients”, here so called because
they are the analogs of the usual Rayleigh quotients in eigen problems adapted to
singular value problems. One arrives at them by minimizing scalar factors in quadratic
loss functions. We exemplify with unpenalized LS (4) where we introduce two scale
factors, one for u and v each:

C0(su, tv) = ‖X− stuvT‖2F
= ‖X‖2 − 2 stuT Xv + s2t2 ‖u‖2‖v‖2

= ‖X‖2 − 2 r uT Xv + r2 ‖u‖2‖v‖2 ,

where r = st. As a simple quadratic in r of the form C2− 2Br+A2r2, the minimum
is attained at r = B/A2 and the value of the minimum is C2 − B2/A2. In this case,
we obtain

min
s,t
C0(su, tv) = ‖X‖2F −

(uT Xv)2

‖u‖2‖v‖2
,

We call the rightmost term a “bi-Rayleigh quotient” as it is the ratio of two bi-
quadratics, in analogy to the usual Rayleigh quotient which is the ratio of two quadrat-
ics. Maximization of the bi-Rayleigh quotient is equivalent to minimization of the LS
criterion. The stationary solutions of a bi-Rayleigh quotient are the pairs of left- and
right-singular vectors of a singular value problem, just as the stationary solutions of
a plain Rayleigh quotient are the eigenvectors of an eigen problem.

The above exercise of scale optimization can be as easily executed for the penalized
criteria C2, C3 and C4 of Section 2. Their quadratic functions C2 − 2Br + A2r2 only
differ in the coefficient A2 which in each case is the sum of ‖u‖2‖v‖2 and the penalties.
The results are shown on the second line of each box of Table 1.

The naive penalized LS criterion C1(u,v) = ‖X − uvT‖2F + uT Ωuu + vT Ωvv
requires separate treatment as it is the only one that is not scale invariant, so that
the slopes s and t do not coalesce into a product r. Here are the stationary equations:

∂

∂s
C1(su, tv) = − 2tuT Xv + 2st2‖u‖2‖v‖2 + 2suT Ωuu = 0

∂

∂t
C1(su, tv) = − 2suT Xv + 2s2t‖u‖2‖v‖2 + 2tvT Ωvv = 0

Multiplying the first equation with s and the second with t, one recognizes immedi-
ately that

s2 uT Ωuu = t2 vT Ωvv ,

forcing the two penalties to be equal at the minimum. Using this identity, one can
express the combined penalty symmetrically as follows:

s2 uT Ωuu + t2 vT Ωvv = 2st
(
uT Ωuu · vT Ωvv

)1/2
.

Thus after scale minimization the combined penalty becomes invariant under scale
changes (1). Using this fact one obtains the scale-minimized solution without prob-
lem; the result is shown in the second box of Table 1. These calculations show that,
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counter to appearances, C1 does not specialize to a form of one-way regularized SVD
when one of the penalties vanishes.

Comparing the bi-Rayleigh quotients across the penalized criteria, we see that
the naive criterion C1 is somewhat reminiscent of the regularized PCA proposal by
Rice and Silverman (1991) in that it penalizes by subtracting from the numerator
rather than adding to the denominator. Criteria C2, C3 and C4 share the property
that they penalize the denominator, and in this regard they are all reminiscent of
the regularized PCA proposal by Silverman (1996). We also note that only the last,
C4, has a denominator that factors similar to the unpenalized case C0, providing a
heuristic argument in its favor. As a comparison, the numerator of the bi-Rayleigh
quotient for Criterion C1 is not of the simple biquadratic type, and the denominators
for C2 and C3 do not factorize into a simple product of quadratics.

4 Comparison of criteria in terms of alternating

algorithms

Table 1 also shows the stationary equations of the (penalized) LS criteria, solved
for u and v, respectively, cast in terms of smoother matrices and (plain) Rayleigh
coefficients:

Su(λ) = (I + λΩu)−1 , Ru(u) =
uT Ωuu

‖u‖2
, (9)

Sv(λ) = (I + λΩv)−1 , Rv(v) =
vT Ωvv

‖v‖2
; (10)

see the third and fourth lines in each box of Table 1. The bandwidth parameters λ
are necessary to accommodate criteria C1, C2 and C3 whose stationary equations ap-
parently require variable bandwidths whereby the bandwidth for updating u depends
on v, and vice versa. Such coupling of the bandwidths is a heuristic argument against
these criteria. Among the penalized criteria, C4 is the only one in whose stationary
equations the bandwidths are fixed. The stationary equations immediately suggest
alternating algorithms for C4: update u from v, then update v from u.
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