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Abstract

Two-way functional data consist of a data matrix whose row and column

domains are both structured, for example, temporally or spatially, as when the

data are time series collected at different locations in space. We extend one-way

functional principal component analysis (PCA) to two-way functional data by

introducing regularization of both left and right singular vectors in the singular

value decomposition (SVD) of the data matrix. We focus on a penalization

approach and solve the non-trivial problem of constructing proper two-way

penalties from one-way regression penalties. We introduce conditional cross-

validated smoothing parameter selection whereby left-singular vectors are cross-

validated conditional on right-singular vectors, and vice versa. The concept can

be realized as part of an alternating optimization algorithm. In addition to the

penalization approach, we briefly consider two-way regularization with basis

expansion. The proposed methods are illustrated with one simulated and two
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real data examples. Supplemental materials available online show that several

“natural” approaches to penalized SVDs are flawed and explain why so.

Keywords: Functional data analysis, penalization, regularization, spatial-temporal

modelling, basis expansion

1 Introduction

From a statistical modeling point of view, the main purpose of the SVD is to provide

Least Squares (LS) fits of product terms or “rank-one approximations”, λuivj, to

suitably centered data matrices xi,j. We can divide the uses of product terms into

two major types, PCA and ANOVA, the first better known than the second, but both

of interest to us:

• PCA: When xi,j is viewed as multivariate data (rows = iid multivariate sam-

ples), product terms are fitted to the column-centered data xi,j−mj. The values

ui are interpreted as one-dimensional projections of the cases or the estimates

of a latent factor/predictor, while the values vj are interpreted as forming the

projection direction or the “loadings” of variable j on the “factor.” The latent

predictor interpretation stems from the “model” xi,j ≈ mj + λuivj, where ui

plays the role of a shared predictor and vj that of a column-specific slope.

• ANOVA: When xi,j is interpreted as a balanced two-way ANOVA table, the

SVD can be used to fit product interactions (Williams, 1952; Mandel, 1971).

The product term is fitted to the residuals of an additive fit, xi,j−m−ai− bj ≈

λuivj. If further analysis reveals ui ≈ f(ai) and vj ≈ g(bj), one has found a

non-linear Tukey one-degree of freedom interaction of the form λf(ai)g(bj).

Extending the first of these two uses, the SVD has also become an important tool

in functional data analysis (FDA, Ramsay and Silverman (2002, 2005)) where each

row of the data matrix is thought of as discretized values of a function evaluated at

2



some common grid points, one function per row. The grid points are elements of a

continuous domain such as space or time. Because the domain is continuous, one

assumes the functions that generate the rows to be smooth, and the goal of FDA is

to incorporate such assumptions. Even before the advent of FDA it was common to

apply plain PCA to functional data, early examples being Rao (1958, 1987).

To impose smoothness on PCA coefficients, Rice and Silverman (1991) and Sil-

verman (1996) introduced regularization through roughness penalties on the eigen-

vectors. Of the two approaches, Silverman (1996)’s is more principled and works

as follows: Given a data matrix X = (xi,j)i∈I,j∈J , one assumes that the domain J

is structured, usually as space or time, with an implied notion of smoothness. The

degree of smoothness of coefficient vectors v = (vj)j∈J can be measured by quadratic

penalties vTΩv (Ω = (Ωj′,j′′)j′,j′′∈J) that may be as simple as sums of squared second

differences, vTΩv =
∑

(2vj − vj−1 − vj+1)
2, in case of a time domain. Assuming

the columns of X centered as needed, plain PCA maximizes the Rayleigh quotient

R0(v) = ‖Xv‖2/‖v‖2. Silverman (1996) proposes regularization by penalizing the

denominator as follows: R(v) = ‖Xv‖2/(‖v‖2 + vTΩv). Hence he maximizes vari-

ance with regard to a regularized reference norm that inflates for non-smooth vectors,

thus favoring smooth vectors for large eigenvalues. Our proposed method specializes

to that of Silverman (1996), and we provide a reformulation of functional PCA using

SVD in Huang et al. (2008).

In this article, we deal with data that are functional in two ways: In X =

(xi,j)i∈I,j∈J both index domains I and J are structured with notions of smoothness.

We thereby leave the strict domain of multivariate analysis where rows are considered

iid samples, and we move closer to a two-way ANOVA interpretation of the data, but

with a non-standard model in mind. This can be motivated with the two real data

examples considered in Section 6:

• Section 6.2 deals with a demographic application where the data matrix records
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mortality rates for different age groups in the United States from 1959 to 1999.

It is reasonable to assume that the mortality rate is a smooth function of both

age and time period.

• Section 6.3 is concerned with the “patience” or willingness to wait of customers

who made calls to a telephone call center. Customer patience is measured using

the logit transformation of the survival function of time-willing-to wait, which

we expect to depend smoothly on both time of day and waiting time.

Both examples exhibit a two-way functional structure where neither way represents

iid samples, thus resembling more an ANOVA situation. To describe the two-way

functional structure, we view the element xij of the data matrix X as evaluation of

an underlying function X(·, ·) on a rectangular grid of sampling points (yi, zj), where

yi (i = 1, . . . , n) are from a domain Y and zj (j = 1, . . . ,m) are from a domain Z.

Because we require a symmetric treatment of the domains, we cannot rely on PCA

and its asymmetric treatment of rows and columns in its eigendecomposition. We are

therefore led to the SVD which offers symmetric treatment. More specifically, we use

the fact that the SVD provides low-rank approximations to the data matrix.

To approximate the two-way functional data using r components of product terms,

a continuous version of a partial SVD model is as follows:

X(y, z) = U1(y)V1(z) + U2(y)V2(z) + · · ·+ Ur(y)Vr(z) + ǫ(y, z) , (1)

where we absorbed the singular value λk into Uk(y) and/or Vk(z), and where the error

is iid white noise. We assume that Uk(y) and Vk(z) are smooth on their respective

domains, and it is this two-fold smoothness requirement that we incorporate in two-

way regularized SVDs. As written, the model should be interpreted as a functional

fixed-effects model where the functions are fixed but unknown. — We consider pri-

marily regularization with roughness penalties, but we will also discuss regularization

with basis expansion (Section 4), all of which we refer to as “regularized SVDs.”
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It is possible to interpret one or both components in each product term of (1)

as random instead of fixed effects and apply time series or spatial models, in par-

ticular when time or space dependence is more naturally interpreted in terms of

auto-correlation. For example, Hyndmann and Booth (2008) considered Vk’s as fixed,

smooth functions and Uk’s as random effects subject to time series modeling. Appar-

ently, the fixed-effects/smoothing and the random-effects/time series views provide

two different modeling frameworks for the same kind of data and each has its own

merit. We shall focus on the fixed effects/smoothing view in this paper. An exception

is the Bayes model outlined in Section 2.4, which can be interpreted as a hierarchical

model whereby nature draws discretized functions from the prior and adds iid noise

before presenting them to the observer.

Regularization with penalization is widely used in statistics (Wahba, 1990; Green

and Silverman, 1994) and in machine learning (“kernelizing”; Schölkopf and Smola

(2001)). Nevertheless, the application of two-way penalization to SVDs is not a trivial

matter. Section 2.2 derives the proper form of penalization from axiomatic conditions.

Further topics are the reduction of 2-way penalized SVD to an ordinary SVD with

“half-smoothing” (Section 2.3), Bayes priors (Section 2.4), and Reproducing Kernel

Hilbert Space (RKHS) theory that connects penalization on finite-dimensional data

spaces and on function spaces (Section 2.5). The latter two sections are brief but they

point to potentially far-reaching generalizations with Bayes approaches and kerneliz-

ing techniques. Next we approach smoothing parameter selection for the two penalties

in terms of left-right conditional cross-validation (Section 3.1). Conditioning on left

and right singular vectors alternatingly spares us the need to estimate two smooth-

ing parameters simultaneously. Left-right conditional cross-validation can be justified

as leave-one-out operations on the rows and columns of X (Section 3.2). Section 4

discusses the basis expansion approach. Section 5 derives a formal equivalence be-

tween two-way penalized SVDs and penalized canonical correlations (Leurgans et al.,
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1993) using the notion of a “bi-Rayleigh quotient” that generalizes squared canonical

correlations. Section 6 presents a simulation and the two real data examples.

2 The Structure of Penalized SVDs

Our discussion focuses on extracting the first pair of components in (1); subsequent

pairs can be extracted sequentially by removing the effect of preceding pairs.

2.1 Unpenalized LS for rank-one approximation

We write rank-one approximations to a n ×m data matrix X as uvT , where u and

v are n- and m-vectors, respectively. We will not assume that either is normalized,

hence they are determined only up to a scale factor that can be shifted between them:

u 7→ cu , v 7→ v/c (c 6= 0). (2)

Writing ‖M‖2 =
∑

i,j M
2
i,j for the squared Frobenius norm of an arbitrary matrix M,

the unregularized LS criterion for rank-one approximations is

C0(u,v) = ‖X − uvT‖2 = ‖X‖2 − 2uTXv + ‖u‖2‖v‖2. (3)

The problem can be cast as two conditional sets of LS problems whose solutions are

argminu C0(u,v) =
Xv

‖v‖2
and argminv C0(u,v) =

XTu

‖u‖2
. (4)

They express the fact that, for fixed v, the optimal u consists of the set of slopes

of simple linear regressions (without intercept) of each row of X onto v (the shared

single predictor); similarly, for fixed u, the optimal v results from regressing each

column of X onto u. These equations can be used to justify the power algorithm

u← Xv , v← XTu , followed by normalizations, (5)

which — if initialized randomly — converges almost surely to a LS rank-one fit.
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2.2 Penalized LS for rank-one approximation

We introduce domain-specific penalty matrices Ωu (n × n) and Ωv (m × m), both

symmetric and non-negative definite, whose purpose is to balance goodness-of-fit as

measured by C0(u,v) against smoothness as measured by the penalties uTΩuu and

vTΩvv. Penalty matrices are usually endowed with multipliers αu and αv, the smooth-

ing parameters (also referred to as penalty parameters or bandwidths for short); for

now we absorb them into Ωu and Ωv and defer their selection with cross-validation

to Section 3. Associated with the penalties are smoother matrices

Su = (I + Ωu)
−1, Sv = (I + Ωv)

−1

(Hastie and Tibshirani, 1990) which solve, respectively,

Suy = argminu

(

‖y − u‖2 + uTΩuu
)

, Svz = argminv

(

‖z − v‖2 + vTΩvv
)

.

We now pose the problem of finding a penalized criterion for rank-one approximation:

C(u,v) = ‖X − uvT‖2 + P(u,v) , (6)

where the penalty P(u,v) is to be determined. A requirement we impose is that the

minimizing u and v are conditionally smoothed versions of the LS solutions (4):

argminu C(u,v) ∝ SuXv and argminv C(u,v) ∝ SvX
Tu . (7)

These conditions interlock the smoothing of u and v, as becomes clear by considering

the alternating power algorithm similar to (5) which they justify:

u← SuXv , v← SvX
Tu , followed by normalizations. (8)

One may ask about this algorithm a) whether it converges, and, if so, b) whether it

minimizes any criterion at all, and, if so, c) whether this criterion amounts to a form

of penalized least squares of the form (6). All these questions can be answered in

the affirmative, but the solution is not obvious. The following theorem (proof in the

appendix) uniquely characterizes the only two-way penalty P(u,v) that can be said

to simultaneously penalize u according to Ωu and v according to Ωv:
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Theorem 1 Assume P(u,v) has the following properties:

(i) u 7→ P(u,v) is a quadratic for fixed v, and argminu C(u,v) ∝ SuXv.

(ii) v 7→ P(u,v) is a quadratic for fixed u, and argminv C(u,v) ∝ SvX
Tu.

(iii) If Ωu = 0 and Ωv = 0, then P ≡ 0.

Then P(u,v) has the following form:

P(u,v) = uTΩuu · ‖v‖
2 + ‖u‖2 · vTΩvv + uTΩuu · v

TΩvv

For future reference we write the penalty and the criterion in the following forms:

P(u,v) = uT (I + Ωu)u · v
T (I + Ωv)v − ‖u‖

2‖v‖2 (9)

C(u,v) = ‖X− uvT‖2 + uTΩuu ‖v‖
2 + ‖u‖2 vTΩvv + uTΩuu vTΩvv(10)

= ‖X‖2 − 2uTXv + uT (I + Ωu)u · v
T (I + Ωv)v (11)

From (11) we obtain the exact stationary equations for C(u,v) for later use:

argminu C(u,v) =
SuXv

vT (I + Ωv)v
, argminv C(u,v) =

SvX
Tu

uT (I + Ωu)u
. (12)

The criterion C(u,v) has some desirable properties: (i) Scale invariance under

(2): C(cu,v) = C(u, cv); (ii) Equivariance under rescaling of X and the fit uvT :

C(cu,v; cX) = C(u, cv; cX) = c2 C(u,v;X); (iii) For Ωu = 0, the penalty specializes

to the one-way penalty of Silverman (1996); (iv) The stationary equations of C(u,v)

involve smoothing with penalties Ωu and Ωv, not scalar multiples thereof. Several

“natural” approaches to penalizing SVDs do not share some of these properties, see

the supplementary materials. We show these flawed approaches to spare readers

fruitless search in dead ends.

2.3 Penalized SVDs are generalized SVDs via half-smoothing

The penalized SVD based on C(u,v) is a plain SVD in a non-standard coordinate

system. The new coordinates ũ and ṽ are linked to the original coordinates u and v
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in terms of the “half-smoothers” S
1/2
u = (I + Ωu)

−1/2 and S
1/2
v = (I + Ωv)

−1/2:

S1/2
u ũ = u and S1/2

v ṽ = v . (13)

Let X̃ = S
1/2
u XS

1/2
v be the data matrix X half-smoothed two-ways in rows and

columns. The penalized SVD criterion (11) can then be rewritten as

C(u,v) = ‖X‖2 − 2ũT X̃ṽ + ‖ũ‖2 · ‖ṽ‖2

= ‖X‖2 − ‖X̃‖2 + ‖X̃− ũṽT‖2,

which is equivalent to the unpenalized LS criterion (3) for the plain SVD on the

transformed matrix X̃. This extends Silverman (1996)’s observation from one-way to

two-way regularized SVDs. Thus there is something to the intuition that the data

matrix X can be smoothed directly, but the proper steps are

1. to half-smooth the data matrix according to X̃ = S
1/2
u XS

1/2
v ,

2. to obtain a plain SVD of the half-smoothed data matrix X̃, and

3. to half-smooth the singular vectors according to S
1/2
u ũ = u and S

1/2
v ṽ = v.

As the penalized SVD is an ordinary SVD in non-standard coordinates, the notions

of orthogonality and length are non-standard under penalization. While for ũ and ṽ

the inner products and squared norms are Euclidean, for u and v they are:

〈〈u1,u2〉〉 = ũT
1 ũ2 = uT

1 (I + Ωu)u2 , [[u]]2 = ũT ũ = uT (I + Ωu)u ,

〈〈v1,v2〉〉 = ṽT
1 ṽ2 = vT

1 (I + Ωv)v2 , [[v]]2 = ṽT ṽ = vT (I + Ωv)v ,

extending another of Silverman (1996)’s observations to the two-way case.

The iterative power algorithm (5) is not generally used for calculating the ordinary

SVD. The above discussion suggests application of efficient SVD algorithms (Golub

and van Loan, 1996) for calculating our penalized SVD. However, the conditional view

in the power algorithm is critical for us to identify an appropriate penalized criterion

(Theorem 1, Section 2.2) and to develop a cross-validation criterion for smoothing

parameter selection for the penalized SVD (Section 3).
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2.4 Bayes priors for rank-one approximation

The Bayes interpretation of penalized smoothing stems from the normal likelihood

y|f ∼ N (f , σ2I) and the prior f ∼ N (0, σ2Σ). With Ω = Σ−1 and S = (I + Ω)−1,

the posterior is f |y ∼ N (Sy, σ2S). In the Bayes view the penalty matrix is (up to a

scale factor) the inverse of the prior covariance, and eigendirections of Ω with zero

eigenvalues are interpreted as carrying an improper flat prior. The smooth Sy is the

conditional posterior mean of f given the data y.

The two-way penalty for rank-one approximations proposed here calls for inter-

pretation as a Bayes prior, but the prior for (u,v) implied by (9),

p(u,v) ∝ exp

(

−
1

2σ2

(

uT (I + Ωu)u · v
T (I + Ωv)v − ‖u‖

2‖v‖2
)

)

,

is improper for two reasons: First, it is flat for (u,v) that have Ωuu = 0 and Ωvv = 0,

as it should be. Second, its form is analogous to exp(−1
2
x2y2) which is integrable in

x for y 6= 0 and vice versa, but not jointly integrable. Underlying this second reason

is invariance under the scale transformation (2): u 7→ cu, v 7→ v/c, which the above

density satisfies. This improper prior produces the desired partial posteriors,

u |X,v ∼ N

(

1

vTSvv
SuXv ,

1

vTSvv
Su

)

,

v |X,u ∼ N

(

1

uTSuu
SvX

Tu ,
1

uTSuu
Sv

)

,

which invite Gibbs sampling as an alternative to alternating conditional mean es-

timation with smoothing. Gibbs sampling will be more interesting for models that

involve distributions other than normal, such as general exponential families.

2.5 Functional SVD and RKHS Theory

So far we treated the penalized SVD problem in finite dimensions. For a truly func-

tional view we need to connect the penalty introduced above to a penalty on function

spaces. The standard framework for this purpose is Reproducing Kernel Hilbert
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Space (RKHS) theory. We start by assuming X = (X(yi, zj))i=1,...,n; j=1,...,m to con-

tain the evaluations of a realization of a random field X(y, z) at (yi, zj), where yi

and zj are distinct sampling points in the respective domains Y and Z. We seek

a functional rank-one or product approximation X(y, z) ≃ U(y)V (z). We assume

the index domains Y and Z of U(y) and V (z) are endowed with RKHSs Hu and

Hv to which U(y) and V (z) are confined. The RKHSs carry reproducing kernels

Ku(y1, y2) and Kv(z1, z2), inner products 〈U1, U2〉u and 〈V1, V2〉v, as well as norms

‖U‖u and ‖V ‖v, respectively. A fundamental property of RKHSs is that evalua-

tions U 7→ U(y) are continuous functionals that can be represented by the ker-

nel as follows: 〈Ku(y, ·), U(·)〉u = U(y), and similarly for V (z). According to the

usual representer argument of Kimeldorf and Wahba (1971), there exists for arbitrary

u = (u1, . . . , un)T ∈ IRn a unique U ∈ Hu with ui = U(yi) (i = 1, . . . , n) and minimum

norm ‖U‖u. Furthermore, this function is of the form U(y) =
∑

i=1,...,n ciKu(yi, y),

and ‖U‖2u = uTΩuu, where Ωu = K−1
u and Ku = (Ku(yi′ , yi′′))i′,i′′=1,...,n. (An identi-

cal argument yields V (z) =
∑

j=1,...,m djKv(zj, z) for given v ∈ IRm, and Ωv = K−1
v .)

The translation of the criterion C(u,v) (10) to RKHSs is (by abuse of notation):

C(U, V ) = ‖X− uvT‖2

+ ‖U‖2u ‖v‖
2 + ‖u‖2 ‖V ‖2v + ‖U‖2u ‖V ‖

2
v ,

(14)

where u = (U(y1), . . . , U(yn))T and v = (V (z1), . . . , V (zm))T . The representer argu-

ment shows that the finite-dimensional minimizers u and v of C(u,v) translate to

RKHS minimizers U and V of C(U, V ). For special cases, such as cubic smoothing

splines on finite intervals with ‖U‖2u =
∫

{U(y)′′}2dy, see standard references such as

Green and Silverman (1994).
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3 Cross-validation

3.1 Conditional bandwidth selection with GCV

So far we have dealt with the “fixed bandwidth” problem, that is, fixed penalty

matrices. We now discuss adaptive bandwidth selection for the criterion C(u,v). We

make bandwidths explicit as αu and αv in C(u,v),

C(u,v;αu, αv) = ‖X− uvT‖2 + uT (αuΩu)u · ‖v‖
2

+ ‖u‖2 · vT (αvΩv)v + uT (αuΩu)u · v
T (αvΩv)v ,

(15)

but we will drop the arguments αu and αv if the context allows. We will denote the

smoothers associated with αuΩu and αvΩv by, respectively,

Su(αu) = (I + αuΩu)
−1, Sv(αv) = (I + αvΩv)

−1.

Among methods for adaptive bandwidth choice we will focus on generalized cross-

validation (GCV) and, for heuristics, on leave-one-out cross-validation (LOO-CV).

[For a discussion, see for example Hastie and Tibshirani (1990), Section 3.4.] For a

linear smoother S(α) such that ŷ = S(α)y, the GCV score is defined as

GCV(α) =
1
n
‖ŷ − y‖2

{1− 1
n

trS(α)}2
=

1
n
‖{I− S(α)}y‖2

{1− 1
n

trS(α)}2
. (16)

We discuss below how to define the GCV in our setting by making a connection of

penalized SVD to linear smoothers.

To avoid simultaneous minimization of two bandwidth parameters, we nest band-

width selection inside the alternating algorithm that optimizes u for fixed v and v

for fixed u. The steps involve smoothing with Su(αu) and Sv(αv), respectively, with

adaptively selected bandwidths αu and αv.

A point to keep in mind is that all procedures, updates as well as bandwidth

selections, should be kept invariant under scale changes (2). The penalized LS cri-

terion C(u,v) will be minimized by a uniquely scaled rank-one matrix uvT , but the

directions u and v will be identifiable only up to a factor: (cu)(v/c)T = uvT . Thus
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alternating minimization will converge to a correctly sized solution uvT where the

relative sizes of the two factors depend on the initialization. The alternating updates,

with proper relative scale, are obtained from the stationary equations (12):

u =
Su(αu)Xv

vT (I + αvΩv)v
=

Su(αu)

1 + αvRv(v)

Xv

‖v‖2
, (17)

v =
Sv(αv)X

Tu

uT (I + αuΩu)u
=

Sv(αv)

1 + αuRu(u)

XTu

‖u‖2
, (18)

where Ru(u) = uTΩuu/‖u‖2 and Rv(v) = vTΩvv/‖v‖2 are the plain Rayleigh quo-

tients of Ωu and Ωv, and αuRu(u) and αvRv(v) those of αuΩu and αvΩv, respectively.

A comparison of (17) and (18) with the updates (5) of the unpenalized LS problem,

u =
Xv

‖v‖2
, v =

XTu

‖u‖2
,

shows that the action in each iteration is not just smoothing but also shrinking

that depends on the amount of penalization of the input component. Thus it is

Su(αu)/(1 +αvRv(v)) and Sv(αv)/(1 +αuRu(u)), not Su(αu) and Sv(αv), that must

be used when forming cross-validation criteria similar to (16) for selecting αu and αv:

GCVu(αu;αv) =

1
n

∥

∥

{

I− Su(αu)
1+αvRv(v)

}

Xv

‖v‖2

∥

∥

2

{

1− 1
n

tr Su(αu)
1+αvRv(v)

}2 , (19)

GCVv(αv;αu) =

1
m

∥

∥

{

I− Sv(αv)
1+αuRu(u)

}

XT u

‖u‖2

∥

∥

2

{

1− 1
m

tr Sv(αv)
1+αuRu(u)

}2 . (20)

If, according to the update formulas (17) and (18), we set u = Su(αu)Xv/vT (I +

αvΩv)v in (19) and v = Sv(αv)X
Tu/uT (I+αuΩu)u in (20), where v is seen as input

and u as output in the first equation, and vice versa in the second, we get

GCVu(αu;αv) =

1
n

∥

∥

Xv

‖v‖2 − u
∥

∥

2

{

1− 1
n

trSu(αu)
1+αvRv(v)

}2 , GCVv(αv;αu) =

1
m

∥

∥

XT u

‖u‖2 − v
∥

∥

2

{

1− 1
m

trSv(αv)
1+αuRu(u)

}2 . (21)

A curious aspect of the nested approach to bandwidth selection is that the GCV

scores are based on residuals not from the data matrix X, but from its projections Xv

and XTu. Such indirect and conditional bandwidth selection may not be implausible
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because a vector v that is smooth on its index domain may still result in a projection

Xv that is rough on the index domain of u, and vice versa; smoothness on both index

domains needs to be enforced separately. Yet, it is natural to ask whether there exists

a GCV method that works off the data matrix X. In the next subsection, we work

out cross-validation by deleting a column or row from the original data matrix and, to

our surprise, we arrive at the same GCV scores given above. The derivation provides

a formal justification of (21) that has so far been obtained heuristically.
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Figure 1: Residuals and corresponding ACFs for the two conditional regressions in

extracting the first pair of components in a two product term model.

Remark. It is well known that cross-validation does not work well in smoothing

problems with correlated errors, as the omitted point is not independent of the data

used to fit the model. There is no correlated error problem in our fixed effect model,

however. The residuals in the conditional regressions underlying the numerators
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of GCVs (21), Xv/‖v‖2 − u and XTu/‖u‖2 − v, do not have auto-correlations.

This is true even when there are multiple product terms in (1). As an illustration,

Figure 1 shows the residuals and the corresponding auto-correlation functions (ACF)

for the two conditional regressions in extracting the first pair of components for a

data set simulated from a two product term model of Section 6.1. To gain further

understanding, note that (1) is a fixed effects model with white noise errors. When

there is only one product term, absence of error correlation follows from the model

assumption. When there are multiple product terms, because of orthogonality within

the U components and within the V components, the conditional regressions with the

U or V components fixed have approximate orthogonal design matrices and therefore

boil down to a collection of simple regressions with uncorrelated errors.

3.2 Derivation of GCV from leaving out rows and columns

The criterion C(u,v), when holding u fixed, can be viewed as an LS criterion with a

generalized ridge penalty, where u determines a predictor matrix X̄, the data matrix

X is strung out to form a response vector ȳ, the vector v contains the regression

coefficients, and the penalty P(u,v) determines the ridge penalty matrix Ωv|u:

ȳ =



















x1

x2

...

xm



















, X̄ =



















u 0 ... 0

0 u ... 0

... ... ... ...

0 0 ... u



















,

Ωv|u = (uTΩuu) I + ‖u‖2 Ωv + (uTΩuu)Ωv ,

where xj is the j-th column of X, and where ȳ is of sizemn×1 and X̄ is of sizemn×m.

Both the design matrix X̄ and the ridge penalty depend on u. It is immediate that

C(u,v) = ‖ ȳ − X̄v ‖2 + vT Ωv|u v , (22)

which is a penalized LS criterion for v. The associated penalized covariance is

X̄T X̄ + Ωv|u = (uT (I + Ωu)u) (I + Ωv) ,
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and its inverse is

(X̄T X̄ + Ωv|u)
−1 =

1

uT (I + Ωu)u
Sv .

Thus the hat matrix of the ridge regression is

H = X̄ (X̄T X̄ + Ωv|u)
−1 X̄T =

1

uT (I + Ωu)u
X̄Sv X̄T .

Consider now cross-validation that leaves out one column of X at a time. Let v̂ =

(v̂1, . . . , v̂m)T be the v that minimizes (22), and v̂(−j) = (v̂
(−j)
1 , . . . , v̂

(−j)
m )T be the

same when the j-th block of ȳ and the corresponding rows of X̄ are removed. Then:

Lemma 1 The j-th leave-out-one-column cross-validated error sum of squares is

‖uv̂(−j)
j − xj‖

2 = xT
j xj −

(xT
j u)2

‖u‖2
+ ‖u‖2

(

v̂j − uTxj/‖u‖
2
)2

{1− (Sv)jj/(1 +Ru(u))}2
. (23)

Because we are holding u fixed, the first two terms in (23) are irrelevant. Averaging

the last term in (23) over j and ignoring the factor ‖u‖2, and re-introducing the

weighted penalties αuΩu and αvΩv, the cross-validation criterion for αv is as follows:

CVv(αv;αu) =
1

m

m
∑

j=1

(v̂j − xT
j u/‖u‖2)2

{1− [Sv(αv)]jj/(1 + αuRu(u))}2
.

Replacing [Sv(αv)]jj by its average over j, which is trSv(αv)/m, we obtain the gen-

eralized cross-validation criterion:

GCVv(αv;αu) =

1
m

∥

∥v̂ − XT u

‖u‖2

∥

∥

2

{

1− 1
m

trSv(αv)
1+αuRu(u)

}2 .

A dual result holds for CVu(αu;αv), which completes the derivation of (21).

4 Basis expansion

Crellin (1996) considered regularized SVD through basis expansions by minimizing

‖X− uvT‖2 subject to u = Buφ, v = Bvψ, (24)

where Bu = (bu1, . . . ,buk) (n×k), Bv = (bv1, . . . ,bvl) (m×l), φ = (φ1, . . . , φk)
T (k×

1) and ψ = (ψ1, . . . , ψl)
T (l× 1), Regularization is achieved by restricting u and v to
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low dimensional subspaces Vu = span(bu1,bu2, ...,buk) and Vv = span(bv1,bv2, ...,bvl),

respectively. Subspace restrictions can be interpreted as limiting cases of penalizations

by using squared distances from the subspaces Vu and Vv as penalties: αu ‖(I−Pu)u‖2

and αv ‖(I−Pv)v‖2, where Pu = Bu(B
T
uBu)

−1BT
u and Pv = Bv(B

T
v Bv)

−1BT
v are the

orthogonal projections onto Vu and Vv, respectively. Up to scalar factors, the as-

sociated penalty matrices are the residual operators, Ωu = αu (I − Pu) and Ωv =

αv(I − Pv), respectively, where αu, αv → ∞. Less stringent penalty parameters

αu <∞ and αv <∞ can be used to shrink the solution toward these subspaces.

Computations for minimizing (24) are trivial if one orthonormalizes the bases of Vu

and Vv. By abuse of notation we denote the orthonormalized bases again bu1, ...,buk

and bv1, ...,bvl, so that the matrices satisfy BT
uBu = I and BT

v Bv = I, and the

orthogonal projections are Pu = BuB
T
u and Pv = BvB

T
v . With these prerequisites,

the problem (24) boils down to a plain SVD on the projected data X̃ = BT
uXBv

(k × l):

C(φ,ψ) = ‖X‖2 − 2φTBT
uXBvψ + ‖φ‖2 ‖ψ‖2 ,

which, modulo the irrelevant constant ‖X‖2, is the same as C0 of (3) with X replaced

by BT
uXBv, u by φ, and v by ψ. Plain rank-one approximations φψT of X̃ translate

to regularized rank-one approximations uvT of X by u = Buφ and v = Bvψ. Ap-

plying plain SVD to the projected data matrix has formal similarity to constrained

canonical correlation analysis (Takane et al., 2006), where subspace restrictions are

used to incorporate constraints on both rows and columns of a data matrix in canon-

ical correlation analysis.

The advantage of the basis expansion approach is its simplicity and less com-

putational cost for large data sets. In general, however, basis expansion provides

less flexible regularization than penalization. Computational cost of the penaliza-

tion method can be reduced by truncating the full basis, as in pseudosplines (Hastie,

1996), or by applying penalization to the coefficients in a rich basis expansion, as
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in penalized splines (Eilers and Marx, 1996; Ruppert et al., 2003). It is important

to point out that our penalization framework allows powerful generalizations of the

SVD through kernelization (Schölkopf and Smola, 2001), which the basis approach

does not.

5 A connection with canonical correlation analysis

There exists a formal connection between two-way penalized SVDs and functional

canonical correlation analysis (CCA) as introduced by Leurgans et al. (1993). The

gist is that two-way penalized SVDs work the same way on data matrices as penalized

CCA on sphered covariance matrices. To see this, we need to optimize the scale of

the rank-one approximation uvT :

min
s,t
C(su, tv) = min

r

(

‖X‖2 − 2 r uTXv + r2 uT (I + Ωu)u · v
T (I + Ωv)v

)

(25)

= ‖X‖2 −
(uTXv)2

uT (I + Ωu)u · vT (I + Ωv)v
. (26)

We call the last term a “bi-Rayleigh quotient” as it is a Rayleigh quotient (ratio of

quadratics) in u conditional on v, and vice versa:

R(u,v) =
(uTXv)2

uT (I + Ωu)u · vT (I + Ωv)v
. (27)

Specializing to Ωu = 0 and Ωv = 0, we obtain the unpenalized bi-Rayleigh quotient

R0(u,v) = (uTXv)2/(u2v2) corresponding to C0(u,v) in (3) above. Maximization

of R(u,v) is equivalent to minimization of C(u,v) up to an undetermined slope

factor. The stationary solutions (u,v) of R(u,v) are pairs of singular vectors, and

R(u,v) evaluated at singular vectors is the squared singular value (just as an ordinary

Rayleigh quotient evaluated at an eigenvector is the eigenvalue).

The formal link to functional CCA is as follows: Given two variable blocks X and

Y of sizes n×mX and n×mY , respectively, form the covariance matrices CX,X , CY,Y

and CX,Y . Plain CCA is then obtained from the stationary solutions of the squared
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correlation (= bi-Rayleigh quotient) (uTCX,Y v)2/(uTCX,Xu·vTCY,Y v), whose values

at the stationary solutions are the squared canonical correlations. Penalized CCA

(Leurgans et al. (1993), their equation (5)) is obtained from the stationary solutions

of the penalized squared correlation (= another bi-Rayleigh quotient)

(uTCX,Y v)2

uT (CX,X + Ωu)u · vT (CY,Y + Ωv)v
=

(ũT C̃X,Y ṽ)2

ũT (I + Ω̃u)ũ · ṽT (I + Ω̃v)ṽ
(28)

where the right hand side derives from the sphering transformations ũ = C
1/2
X,Xu,

ṽ = C
1/2
Y,Y v, C̃X,Y = C

−1/2
X,X CX,Y C

−1/2
Y,Y , Ω̃u = C

−1/2
X,X ΩuC

−1/2
X,X , Ω̃v = C

−1/2
Y,Y ΩvC

−1/2
Y,Y .

The correspondence between (27) and the r.h.s. of (28) shows that two-way penalized

SVDs and penalized CCA use the same formalism applied to different input matrices.

6 Data Examples

6.1 A Simulated Example

We illustrate regularized SVDs with simulated data sets generated from a model with

two pairs of smooth components. These are specified as follows:

U ∗
1 (s) = sin(2πs) , V ∗

1 (t) = − 3 + 8 exp(−4(t− 0.25)2) ,

U ∗
2 (s) = sin(2π(s− 0.25)) , V ∗

2 (t) = − 3 + 8 exp(−4(t− 0.75)2) .

If si and tj are each 201 equi-spaced points in [0, 1], the signal on the 2012 grid is

x∗ij = U ∗
1 (si)V

∗
1 (tj) + U ∗

2 (si)V
∗
2 (tj) .

Noisy data are generated by xij = x∗ij + eij , where eij are independent Gaussian

N (0, σ2). The data matrix X = (xij) was simulated 100 times. — The defining

decomposition of x∗ij is not in SVD form because the components are not orthogonal.

To create a reasonable target for gauging the performance of the regularized SVD, we

obtained a plain SVD of the noise-free matrix X∗ = (x∗ij), resulting in a decomposition

x∗ij = d1U1(si)V1(tj) + d2U2(si)V2(tj) , (29)
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where uj = (Uj(s1), . . . , Uj(s201))
T , vj = (Vj(t1), . . . , Vj(t201))

T , uT
1 u2 = vT

1 v2 = 0,

‖uj‖2 = ‖vj‖2 = 1. If successful, the regularized SVD will recover u1, u2, v1 and v2.

To recover the “true” components u1, u2, v1, v2 from (29), we apply to the

simulated data matrices both plain and penalized SVDs, for which sums of squared

second differences are used as the roughness penalty and the GCV criterion given

in Section 3 is used to select the penalty parameters. Both methods produce ap-

proximately unbiased estimates (not shown here). However, the regularized SVD has

much less variance as evident in Figure 2 which shows that regularized SVDs lead to

uniformly smaller variance compared to plain SVDs, and the reduction in variance

is quite substantial (55% on average). When examining individual simulations, the

plain SVD yields quite noisy component estimates, while the regularized SVD does a

good job at denoising and recovering smooth components without adding substantial

bias; the scree plot, obtained for GCV-optimized bandwidths, suggests that there are

two pairs of underlying components, while the GCV curves illustrate that the penalty

parameter selection is quite sharp.

We also apply to the simulated data matrices several variants of SVD that yield

smooth components. One such variant smoothes the components obtained from the

plain SVD using the smoothing spline smoother with a GCV selected smoothing pa-

rameter. The other two variants are our penalized SVDs with restriction to one-way

regularization. They are essentially Silverman (1996)’s penalized PCA procedures

(see Huang et al., 2008). We also consider the SVD regularized with basis expan-

sion/subspace restriction onto quadratic B-splines.

For each simulated data set, extracted components from various methods are

compared with the corresponding “true” components, and the integrated squared

errors (ISE) are calculated; the ratio of the ISE for a method and the ISE for the

penalized SVD is then computed. The averages of ratios from 100 simulated data sets

are reported in Table 1. From the results, the benefits of smoothing in general and of
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Figure 2: Pointwise variance comparison of components extracted with plain and

penalized SVDs. The singular vectors are standardized to norm 1. Noise level σ = 3.

our approach become quite clear: none of the values is below one, that is, none of the

other approaches beats ours. The naive method of smoothing the noisy components

from plain SVD is inferior to our more principled regularization approach, especially

when the noise level is high. When only u (or v) components are regularized, the v

(or u) components are badly recovered and even with smoothing, the recovery of the

u (or v) components deteriorates. The SVD regularized with basis expansion gives

results similar but slightly inferior to the SVD regularized with penalization.

In the two real data examples below we shall focus on penalized SVDs. We form

the penalty matrices as in smoothing splines (Green and Silverman, 1994) and use

the GCV criteria in Section 3.1 to select the penalty parameters.

21



Methods noise level σ u1 u2 v1 v2

3 7.48 (0.89) 7.69 (0.81) 12.31 (2.76) 9.50 (1.18)SVD
6 8.08 (0.94) 9.26 (1.04) 15.33 (3.07) 11.94 (1.57)

3 1.09 (0.03) 1.07 (0.03) 1.06 (0.04) 1.10 (0.04)sSVD
6 1.38 (0.14) 1.38 (0.14) 1.64 (0.28) 1.56 (0.22)

3 1.07 (0.03) 1.06 (0.02) 12.17 (2.70) 9.39 (1.17)uSVD
6 1.22 (0.06) 1.19 (0.05) 14.49 (2.84) 11.29 (1.45)

3 7.37 (0.88) 7.57 (0.80) 1.03 (0.03) 1.02 (0.03)vSVD
6 7.65 (0.89) 8.74 (1.00) 1.30 (0.16) 1.24 (0.12)

3 1.05 (0.01) 1.08 (0.02) 1.10 (0.03) 1.10 (0.02)rSVD-basis
6 1.08 (0.05) 1.14 (0.05) 1.22 (0.09) 1.19 (0.06)

Table 1: Comparison of several methods with penalized SVD. Numbers reported are

the means (SEs) of the ratios between the ISEs for a specified method and the ISEs

for the penalized SVD, based on 100 simulation runs. The methods are plain SVD

(SVD), plain SVD followed by smoothing (sSVD), penalized SVD that regularized u

only (uSVD), penalized SVD that regularized v only (vSVD), and regularized SVD

using quadratic spline basis expansion (rSVD-basis).

6.2 Example: US Mortality Rate Data

There is a literature on mortality forecasting based on the Lee-Carter method and

its extensions (Lee and Carter, 1992; Hyndmann and Booth, 2008), where the SVD

is combined with time series modeling. Now we use our regularized SVD to model

mortality rates from a smoothing perspective. While our method is not intended for

prediction, it does help reveal some interesting phenomena of mortality transition.

We use the US mortality rate data from the Berkeley Human Mortality Database

(http://www.mortality.org/). These data, previously analyzed in Yang et al. (2004),

contain mortality rates in the United States for ages 0 to 95 from 1959 to 1999. We

will focus on female mortality rates. The data matrix X is of size 41× 96, each row
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corresponding to a one-year period and each column to an age group. Prior to their

analysis, Yang et al. (2004) aggregated the mortality rates into 5-year Age groups

and 5-year Period groups. We will replace such data aggregation with the smoothing

implicit in regularized SVDs and hence work with the un-aggregated data.

We assume the observed data matrix X to be a discretization of an underlying

two-way smooth function X(Period,Age). The regularized SVD fits the following

model for explaining the mortality rate in terms of Period and Age:

X(Period,Age) = d1U1(Period)V1(Age) + . . .+ dqUq(Period)Vq(Age) + ǫ(Period,Age) ,

where Ui(·) and Vj(·) are smooth functions of Period and Age, respectively. Note that

the fitted U1(·) and V1(·) should not be interpreted as mean functions, and Uk(·) and

Vk(·) not as the (k−1)th principal components. They are just the components in the

best fitting model with product terms.

We apply plain and regularized SVDs to the data for the age groups up to 95.

For the plain SVD, the first pair, (u1,v1), explains about 99.87% of the total energy,

while the second pair (u2,v2) explains 83.11% of the remaining energy. Panel (a) of

Figure 3 shows the proportion of remaining energy explained by components k ≤ 10.

We decided to use the first two pairs of components to summarize the data because

they clearly separate from the rest of pairs. These components are plotted in panels

(c)-(f) of the same figure, with a zoom of the plot of V1 in panel (b) to show greater

detail for Age≤ 15.

The curve V1 shows the well-known pattern of mortality age curves (Wilmoth,

1990): declining sharply between age 0 and age 2, slowly dropping to a minimum

around 12, rising to a local mild peak in the late teens, leveling off for the next

decade before increasing exponentially after age 30. The curve U1 exhibits the smooth

average time trend across periods, suggesting the following period-mortality pattern:

a persistent decline between 1959 and 1982, a flat pattern afterwards until 1987, then

a continuous drop until 1993 and finally a slight increase.
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The second component focuses mainly on the early and late ages where it corrects

for patterns that the first component was unable to cover. The curve V2 takes a

positive value at low ages and between ages 70 and 90. The curve U2 shows a gradual

decrease from positive to negative in the time period under consideration, capturing

mostly a contrast between the 1960s and the 1990s. The combined message is that,

for ages under two and between 70 and 90, the mortality rate is higher in the 1960s

and lower in the 1990s than what can be explained by the one component model.

6.3 Example: Israeli Call Center Customer Patience Data

We apply the regularized SVD to the Israeli call center data analyzed in Brown

et al. (2005). Call centers have become a primary communication channel between

companies and their customers in modern business. Various aspects of call center

operations were first subjected to a thorough statistical analysis by Brown et al.

(2005) who analyzed for example arrival processes, service durations, and customer

patience.

To illustrate regularized SVDs, we study customer patience as a function of both

time of day and waiting time. Customer patience is an issue (as we all know) because

customers wait in a virtual telephone queue before receiving service. Eventually, a

customer either gets served or hangs up if patience runs out. Brown et al. (2005)

emphasize the importance of understanding customer patience for efficient system

design and call routing. They propose the time a customer is willing to wait before

hanging up as an ancillary measure for patience. Denote this time by W ; it is observed

only if the customer does in fact hang up; if the customer is served, W is right-

censored.

The data we analyze focus on all the agent-seeking customer calls that got con-

nected to the center between 07:00 and midnight during every weekday in November

and December of 1999. In particular, for each customer, the data record the arrival

time of the call, the waiting time, and whether the customer gets served or hangs up.
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Figure 3: US Female Mortality Rate: Panel (a) shows a renormalized scree plot after

removal of the dominant first component. Panel (b) shows a zoom of the bottom left

corner of panel (d).
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Figure 4: Israeli Customer Patience: Comparison of the First Components

Following common practice, we first group all the calls into 68 quarter hours from

07:00 to midnight. For each interval, we apply the Kaplan-Meier estimator (Kaplan

and Meier, 1958) to obtain the survival function of time-willing-to-waitW , with which

we then calculate the log-odds function of patience log{P (W > w)/P (W ≤ w)}.

One reason for considering log-odds is that they are interval scale (use the whole real

line), which renders them more appropriate for an SVD-based analysis. The final

data matrix X consists — for each quarter hour interval — of the evaluations of the

log-odds function at the seconds 11, 12, . . . , 200 for the waiting times. Hence the size

of X is 68× 190, where the rows are indexed by 15-minute time-of-day intervals, and

the columns are indexed by waiting times in seconds for all seconds from 11 to 200.

The regularized SVD yields the following model of the log-odds as a function of

time-of-day t and time-willing-to-wait w,

X(t, w) = d1U1(t)V1(w) + . . . + dqUq(t)Vq(w) + ǫ(t, w) , (30)

where Ui(·) and Vi(·) are smooth in time-of-day and time-willing-to-wait, respectively.

Figure 4 compares the first pair of components between plain and regularized

SVDs. In Panel (a) the regularized singular curve reveals an interesting double-dip

pattern of log-odds as a function of time-of-day. The function decreases from the
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early morning, reaches the first valley around 10:00, increases afterwards until 13:00,

decreases again until the second valley around 15:00, before increasing until midnight.

According to this plot, customers are the least patient around 10:00 and 15:00, which

happen to be the peak hours with the most call arrivals (Brown et al., 2005). This

suggests that customers are more likely to hang up while there are more customers.

This observation seems intuitive and complements the findings in Brown et al. It

certainly deserves further investigation because of its obvious interest to call centers.

For the plain SVD, the first pair, (u1,v1), explains about 98.93% of the total en-

ergy, which suggests that the first pair summarizes the dominating mode of variation

in the data. We stop at the first pair because a plot similar to Figure 3(a) does

not separate the second pair from the rest in explaining the remaining energy (not

shown). Model (30) with one SVD component is essentially a proportional log-odds

model, where V1(w) captures the baseline pattern and d1U1(t) provides the time-of-

day specific scale adjustment. This model suggests that customers seem to have the

same aggregate behavior in terms of time-willing-to-wait at different times of day.

Appendix: Proofs of Theorem 1 and Lemma 1

Proof of Theorem 1: The penalty P(u,v) is assumed to be a quadratic in both

arguments, but the quadratics may depend on the other argument, hence P(u,v) =

uTA(v)u = vTB(u)v, where A(v) and B(u) are symmetric and of suitable sizes.

The criterion can therefore be written in two ways:

C(u,v) = ‖X‖2 − 2uTXv + uT (‖v‖2I + A(v))u (31)

= ‖X‖2 − 2uTXv + vT (‖u‖2I + B(u))v . (32)

The stationarity condition for u given a fixed v is

∂

∂u
C(u,v) = − 2(Xv + (‖v‖2I + A(v))u ) = 0 .
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The stationary solution u is therefore u = (‖v‖2I + A(v))−1Xv. Next we use

the argmin assumption which implies that the stationary solution is of the form

SuXv/g(v), where g(v) is a scalar function and the reciprocal is chosen for subse-

quent convenience. It follows (‖v‖2I+A(v))−1 = Su/g(v), and hence ‖v‖2I+A(v) =

(I + Ωu)g(v). Substituting in (31) shows

C(u,v) = ‖X‖2 − 2uTXv + uT (I + Ωu)u · g(v) .

The dual result with the roles of u and v exchanged is

C(u,v) = ‖X‖2 − 2uTXv + f(u) · vT (I + Ωv)v .

Equating the last summand of each we find that

f(u)

uT (I + Ωu)u
=

g(v)

vT (I + Ωv)v
= λ

must be constant. Therefore,

C(u,v) = ‖X‖2 − 2uTXv + λuT (I + Ωu)u · v
T (I + Ωv)v (33)

For Ωu = 0 and Ωv = 0, this specializes to C(u,v) = ‖X‖2−2uTXv+λ ‖u‖2 ·‖v‖2 ,

which, in view of (3), reduces to C0(u,v) = ‖X− uvT‖2 only for λ = 1. �

Proof of Lemma 1: Deleting one column of X corresponds to deleting a block of

size n from ȳ in the ridge regression (22). Partition the hat matrix H into m ×m

equal-sized blocks where each block corresponds to a column of X. Note that v̂(−j)

also solves the ridge regression (22) when the j-th block of ȳ is replaced by uv̂
(−j)
j .

The j-th block of the fitted equation ˆ̄y = Hȳ of this latter ridge regression reads as

uv̂
(−j)
j =

∑

k 6=j

Hjkxk + Hjj{uv̂
(−j)
j }.

Subtracting xj on both sides of the above identity and observing that
∑

k Hjkxk =

uv̂j, we obtain

uv̂
(−j)
j − xj =

∑

k

Hjkxk − xj + Hjj{uv̂
(−j)
j − xj}

= uv̂j − xj + Hjj{uv̂
(−j)
j − xj}.
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Therefore, the cross-validated residual for deleting the j-th column of X is

uv̂
(−j)
j − xj = (I−Hjj)

−1(uv̂j − xj),

where

Hjj =
(Sv)jj

uT (I + Ωu)u
uuT , γjuuT

and γj‖u‖2 = (Sv)jj/(1 + αuRu) with Ru = uTΩuu/u
Tu. Denote w = uv̂j − xj. Its

squared norm is

‖w‖2 = xT
j xj − 2xT

j uv̂j + ‖u‖2v̂2
j

= xT
j xj −

(xT
j u)2

‖u‖2
+

(

‖u‖v̂j −
uTxj

‖u‖

)2

.
(34)

Since uTw = ‖u‖2(v̂j − uTxj/‖u‖
2), we have that

(uTw)2

‖u‖2
=

(

‖u‖v̂j −
uTxj

‖u‖

)2

. (35)

Using the identity

(I− γjuuT )−1 = I +
γj

1− γj‖u‖2
uuT ,

we can write the cross-validated residual uv̂
(−j)
j − xj as

(I−Hjj)
−1(uv̂j − xj) =

(

I +
γj

1− γj‖u‖2
uuT

)

w

= w +
γj

1− γj‖u‖2
(uTw)u.

Thus the squared norm of uv̂
(−j)
j − xj is

‖w‖2 +
2γj

1− γj‖u‖2
(uTw)2 +

γ2
j

(1− γj‖u‖2)2
(uTw)2‖u‖2

= ‖w‖2 +
(uTw)2

‖u‖2

{

2γj‖u‖2

(1− γj‖u‖2)
+

γ2
j ‖u‖

4

(1− γj‖u‖2)2

}

= ‖w‖2 +
(uTw)2

‖u‖2

{

1

(1− γj‖u‖2)2
− 1

}

.

Combining this result with (34) and (35) we obtain (23). �
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Supplemental Materials

Several Flawed Approaches to Penalized SVDs: In this note, we show that

several “natural” approaches to penalized SVDs do not work and explain why

so. (pdf file)
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