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An Introduction to Model Selection

Walter Zucchini

University of Go� ttingen

This paper is an introduction to model selection intended for nonspecialists
who have knowledge of the statistical concepts covered in a typical first
(occasionally second) statistics course. The intention is to explain the ideas
that generate frequentist methodology for model selection, for example the
Akaike information criterion, bootstrap criteria, and cross-validation criteria.
Bayesian methods, including the Bayesian information criterion, are also
mentioned in the context of the framework outlined in the paper. The ideas
are illustrated using an example in which observations are available for the
entire population of interest. This enables us to examine and to measure
effects that are usually invisible, because in practical applications only a
sample from the population is observed. The problem of selection bias, a
hazard of which one needs to be aware in the context of model selection, is
also discussed. � 2000 Academic Press

INTRODUCTION

The objective of this paper is to explain the issues involved in model selection to
nonspecialists. This is an introduction to the subject, not a review of recent develop-
ments and methodology. Apart from the final section on selection bias the material
presented here is an outline of the first four chapters of Linhart and Zucchini (1986)
with the technical details reduced to a minimum. The focus is on frequentist
methods although Bayesian methods are also mentioned to interpret them from the
point of view adopted in this paper.

The examples used to illustrate the ideas are intended to provide simple, even
exaggerated, concrete images to make the (unproved) general statements about
model selection plausible; they are not offered as polished statistical analyses. In
particular the data set on which the examples are based is not typical because
observations are available for the entire population of interest. In practice these are
available only for a sample from the population. This device has the advantage of
enabling us to examine and to measure effects that are usually invisible in practice
because we can, whenever we wish, remove the screen of uncertainty and assess
precisely how well each model or selection method is performing.
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The next section introduces the terminology and covers the basic issues that need
to be considered when selecting a statistical model. I then outline how these ideas
lead to model selection criteria, such as the Akaike information criterion (AIC), the
bootstrap criterion, the cross-validation criterion and the Bayes information
criterion (BIC). The final section explains the problem of selection bias, a serious
hazard associated with model selection and one of which it is necessary to be aware.

THE BASIC IDEAS

A probability model is a useful concept for making sense of observations by
regarding them as realizations of random variables, but the model that we can
think of as having given rise to the observations is usually too complex to be
described in every detail from the information available. The following example will
be used to illustrate this and other model selection concepts. It concerns the ages
and the number of visits to a General practitioner (GP) during 1995 by a well-
defined group of 23,607 inhabitants of the Sydney suburb Ryde1 which we will
regard as the population of interest.

Figure 1 shows a plot of the number of visits against age for a random sample
of 200 inhabitants from this population.2 I will focus, for the moment, on the age
distribution.

Being a simple random sample we can regard the observations as independent
and identical realizations of a random variable having some non-negative-valued
probability density function (pdf), specifically that shown in Fig. 2, which is based
on the entire population. This probability distribution is the model we can regard
as having given rise to the observations, the underlying model, or, as we will call
it here, the operating model, in this case a particular pdf, f (x). In practice the
operating model is unknown because only a sample from the population is observed.
The sample values are insufficient to faithfully reconstruct every detail of f (x) but
they can be used to estimate f (x).

To estimate f (x) we need to specify some approximating family of models, such
as the following two. The first is the family of histograms (normalized so that the
sum of the areas of the rectangles is equal to one) with I=10 equally spaced inter-
vals. This family of models has nine parameters %=(%1 , %2 , ..., %9), because to
specify a particular approximating model in the family it is sufficient to give the
heights of nine of the rectangles; the tenth is determined by the area constraint.
Denote the pdf of these models by g (10)

% (x). The second is the family of histograms
with I=50 equally spaced intervals, having 49 parameters %=(%1 , %2 , ..., %49) and
pdf g (50)

% (x).
Before we can compare the performance of competing models we must decide

what measure we intend to use to assess the fit or lack of fit. We will call a measure
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1 A description of these data is given in Heller (1997). Note, however, that the data used here are not
identical to hers because they were extracted 12 months apart, during which interval the database was
updated. Furthermore, I have truncated the number of visits to a maximum of 100. I thank Dr. Heller
for helping me to obtain these data and Gu� nter Kratz for his help in producing the figures.

2 For convenience of explanation the sample was drawn with replacement but, as it turned out, no
individual was drawn twice.
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FIG. 1. The number of visits to a GP (in 1995) plotted against age for a simple random sample of
200 residents in Ryde.

of lack of fit a discrepancy and denote it by 2( f, g%). Some general-purpose
discrepancies will be listed later but we are free to choose whatever discrepancy best
suits the objectives of the envisaged statistical analysis. A possible discrepancy in
our example is

2( f, g (I)
% (x))=|

100

0
( f (x)& g (I )

% (x))2 dx ,

where g (I )
% (x) is the pdf of a histogram with I equally spaced intervals. As we

happen to know f (x) we can determine which approximating model within each of the

FIG. 2. The operating model, f (x), for the age distribution of the Ryde population. (The ages in the
database were recorded to the nearest year.)
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FIG. 3. The operating model for the age distribution of the Ryde population (shaded) and the best
approximating models with 9 and with 49 parameters (dark lines).

two approximating families is best; that is, we can compute the parameter values,
denoted by %0 , that minimize the discrepancy. (We simply construct the histograms
using the ages for the entire population.) The models, g (10)

%0
(x) and g (50)

%0
(x), shown

in Fig. 3, provide the best fits that we can ever obtain for models within each of the
two contending families. Clearly the best model in the 49-parameter family provides
a closer fit to f (x) than does the best model in the 9-parameter family. This is to
be expected because the two families are nested��any histogram in the latter family
is also a histogram in the former family. However, even in nonnested families, the
richness or flexibility of a family, manifested in our example as the variety of shapes
it is able to produce, is largely determined by the number of parameters. For example
the 49-parameter family of histograms considered above is more flexible than the
family of normal distributions which has two parameters. The latter can only
produce pdfs that are unimodal, symmetric, and bell-shaped.

We call the discrepancy between the operating model and the best approximating
model the discrepancy due to approximation. It constitutes the lower bound for the
discrepancy for models in the approximating family. In our example it is given by

2( f, g (I)
%0

)=|
100

0
( f (x)& g (I )

%0
(x))2 dx={10_105 for I=10

3_105 for I=50.

In practice f (x) is unknown and so we are not able to identify the best model in
each family. The parameters have to be estimated from the observations. In our
example we can use the sample relative frequencies (standardized so that the area
under the histogram is equal to one); that is, %� i=ni �n I�100 where ni is the number
of observations that fell in the ith interval, i=1, 2, ..., I. The resulting fitted models
for the sample of 200 Ryde residents, denoted by g (10)

%�
(x) and g (50)

%�
(x), are shown

in Fig. 4. They differ from the best models g (10)
%0

(x) and g (50)
%0

(x).
The discrepancy between the fitted model and the best approximating model is

called the discrepancy due to estimation. Here it is given by

2(g (I )
%�

, g (I)
%0

)=|
100

0
(g (I)

%�
(x)& g (I )

%0
(x))2 dx={ 56_105 for I=10

352_105 for I=50.
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FIG. 4. The operating model (shaded) and the fitted models with 9 and with 49 parameters for the
sample of 200 Ryde residents (dark lines).

Clearly the fitted 9-parameter model is much closer to the best model in its family
than is the fitted 49-parameter model to the best model in its family. Note that
whereas the discrepancy due to approximation did not depend on the sample
values, the discrepancy due to estimation does; it would change if we used a
different sample. In other words it is a random variable. The above two numerical
values constitute the realizations of the discrepancy due to estimation for the
sample and for the two families considered.

This example illustrates the general rule that it is necessary to take two things
into account when comparing approximating families of different complexity. The
best model in the more complex family is generally closer to the operating model
than is the best model in the simpler family. However, the fitted model in the more
complex family is likely to end up farther away from the best model than is the case
in the simpler family. One can think of a complex family as having more potential
than a simpler counterpart but that it tends to perform farther below its potential
than the latter. The problem of model selection is that of finding an appropriate
compromise between these two opposing properties, potential and propensity to
underperform.

The overall discrepancy, defined as the discrepancy between the operating model
and the fitted model, takes both the above factors into account. In our example it
is

2( f, g (I )
%�

)=|
100

0
( f (x)& g (I )

%�
(x))2 dx={ 67_105 for I=10

355_105 for I=50.

This overall discrepancy turns out to be the sum of its two component discrepancies,
that due to approximation and that due to estimation. This is not true for all
discrepancies but, even when it is not, the general rule given above remains valid.
The discrepancy due to approximation favors flexible complex families, while that
due to estimation favors rigid simple families. (See also Myung, 2000.)

The above values confirm what was clear from Fig. 4, namely that the nine-
parameter histogram fits f (x) better than does its more flexible but highly under-
achieving competitor with 49 parameters. But the overall discrepancy, depending as
it does on the parameter estimate %� , varies from sample to sample. It is also a
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FIG. 5. The distributions of the overall discrepancies for n=200 and the values of the overall discrepancy
that were realized for the sample. The (entire) criterion, which is explained later in the paper, is also shown.

random variable and each of the above two numerical values constitutes only one
realization from its distribution. A different sample would have led to different
values. For some samples the fitted 49-parameter histogram will be closer to f (x)
than the 9-parameter histogram because, as we saw in Fig. 3, the 49-parameter
family is certainly able to outperform the 9-parameter family.

To investigate how things turn out for different samples I generated 5000 random
samples of size 200 from the population and, for each of them, computed the over-
all discrepancy for the resulting 9- and 49-parameter histograms. The resulting
distributions of overall discrepancies, one for each family, are shown in Fig. 5. We
see that it was no accident that, for the original sample, the 9-parameter histogram
fitted f (x) better than that with 49-parameters because the same is true for the vast
majority of samples of size 200 from this population.

The above computations were only possible because we happened to know the
operating model, which is not available in practice. (If it were then we would not
bother to take a sample to estimate it.) In practice we are not in a position to
compute any of the above discrepancies. They exist of course and will behave as
outlined above but we cannot compute them.

Accepting that we cannot compute the overall discrepancy for our particular
sample it would be of some help in deciding which family to select if we could
compute its average value for samples of the given size, that is the expected (overall)
discrepancy, E2( f, g%� ). (See Fig. 5.) Unfortunately we cannot compute that either
without knowing the operating model, but we can estimate it. An estimator of the
expected discrepancy is called a (model selection) criterion.

In our example the expected discrepancy is given by (Linhart and Zucchini, 1986,
p. 13):

E2( f, g (I)
%�

)=|
100

0
f (x)2 dx+

1
100n \1&(n+1) :

I

i=1

?2
i + ,
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where ?i=�100i�I
100(i&1)�I f (x) dx, i=1, 2, ..., I. The first term is the same for both

approximating families and therefore can be ignored for the purposes of comparing
the two families; the second term is the essential one.

An unbiased estimator of the second term (which is also referred to as a criterion
even though it does not estimate the entire expected discrepancy, only its essential
part) is given by

Criterion=
I

100n _1&
n+1
n&1 \ :

I

i=1

n2
i

n
&1+&={&1149_105 for I=10

&1063_105 for I=50.

Note that the criteria shown in Fig. 5 do include the (otherwise inessential) first
term so that we can see where these criteria landed relative to the quantities they
are attempting to estimate, namely their respective expected discrepancies. The
criterion for the 9-parameter family is smaller and would have led us to select (what
we know to be) the better model. Unfortunately this is not always the case.
The expected discrepancy is a complex quantity that depends on several things:
the operating model, the approximating family, the method used to estimate the
parameters of the fitted model, and the sample size. It is therefore not surprising
that in many situations even unbiased criteria are rather imprecise and do not
always identify the best family.

To illustrate the importance of the sample size in model selection we now
investigate how the mean number of GP visits, +(a), varied with age, a. The operating
model now is the bivariate distribution of the two quantities, age and number of
visits, for all individuals in the Ryde population. To estimate the operating mean,
+(a), I will use a p-parameter polynomial as approximating mean,

& ( p)
% (a)=%1+%2a+%3a2+ } } } +%pa p&1,

and the discrepancy

2( f, g%)= :
90

a=1

(+(a)&& ( p)
% (a))2.

Note that this discrepancy depends only on the means of the operating and
approximating models. I have restricted the discrepancy to the age range 1 to 90
for convenience of illustration.3 Figure 6 shows the operating mean and the best
approximating polynomials for p=2, 3, 4, 8 parameters. Again, as the number of
parameters increases, so the fit improves and the discrepancy due to approximation
decreases.

Figure 7 shows the fitted means, & ( p)
%�

(a), for the original sample and for 20
additional random samples of size 200 from the population. The method of
ordinary least squares was used to fit the polynomials.

47INTRODUCTION TO MODEL SELECTION

3 This makes the graphs clearer. I also took the liberty of rejuvenating the single individual in the
sample aged over 90 from 95 to 90.
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FIG. 6. Operating mean number of GP visits by age (irregular line) and the best approximating
polynomial with p parameters (smooth lines).

FIG. 7. Operating mean number of GP visits by age (irregular line), the mean fitted to the original
sample (dark smooth line) and to 20 additional random samples (faint lines) using approximating
polynomials with p parameters.
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It can be seen that the estimates become less stable as p increases. That is because
the discrepancy due to estimation increases. The degree of instability depends
on the sample size. This is illustrated in Fig. 8 which summarizes the situation for
samples of size n=200, 500, 1000, and 5000. The expected overall discrepancies
(and expected discrepancies due to estimation) in that figure were approximated
using 100 samples of size n.

Figures 6, 7, and 8 illustrate a number of general points. First, the degree of
model complexity that is appropriate depends substantially on the sample size. For
n=200 the best fit is expected with p=3 parameters but for n=5000 it is expected
for p=7. In general only simple families are stable when the sample size is small.
As the sample size increases it becomes feasible to use more complex approximating
families which are able to reflect smaller details of the operating model. (See Fig. 6.)
Such details can be meaningfully estimated when the sample size is large because
the model parameters can be estimated accurately.

The second point is that the family that is best on average (has the smallest
expected discrepancy) is not necessarily much better than the second best, third
best, and so on. This is illustrated in Fig. 8, especially for n=1000, a case in which

FIG. 8. The discrepancy due to approximation (solid thin line) does not depend on the sample size
and so it is the same in all four graphs. The average (over 100 replications) discrepancy due to estimation
(broken line) does depend on sample size and, for fixed p, decreases as the sample size increases. The
expected overall discrepancy (thick line) decreases at first and then increases as a function of p.
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the expected discrepancy is almost constant for 3�p�9. In other words the corre-
sponding polynomials are effectively equally accurate, or inaccurate, on average.

Third, we must consider that the expected discrepancy is not available in
practice; it can only be estimated using a criterion. Since the approximating family
that minimizes the criterion is not necessarily that which minimizes the expected
discrepancy, it makes sense to examine the behavior of the criterion over the whole
range of contending families and not just to automatically select the family that
minimizes it.

GENERAL-PURPOSE DISCREPANCIES AND CRITERIA

In what follows the distribution function of the operating model is denoted by F
and its pdf (or probability function in the case of discrete distributions) by f. The
corresponding functions for an approximating family with parameter vector % are
denoted by G% and g% , respectively. Finally, Fn is used to denote the empirical
distribution function, that is

Fn(x)=(Number of observations in the sample�x)�n .

Discrepancies can be, indeed should be, selected to match the objectives of the
analysis. If, when estimating +(a) for the Ryde population, we wished to emphasize
the fit in a particular age group, say 40�a�60, we could do this by changing the
discrepancy to

2( f, g%)= :
90

a=1

w(a)( +(a)&& ( p)
% (a))2,

with, for example, the weights w(a)=2 for 40�a�60 and w(a)=1 for the remaining
ages. It would then be consistent with the above objective to use the method of
weighted (rather than ordinary) least squares, with these weights, to estimate
the parameters because that would also emphasize the fit in the age range of
interest.

This illustrates the point that a natural estimator to use in conjunction with a
particular discrepancy is the minimum discrepancy estimator or, as it is usually
called in the literature, the minimum distance estimator. (See Parr, 1981.) In
our context this is the estimator, %� , that minimizes what we call the empirical
discrepancy (Linhart and Zucchini, 1986, p. 12). In most cases of interest to us here
this is simply the discrepancy between the approximating model and the model
obtained if one regards the sample as if it were the population. In other words it
is the discrepancy between the approximating model and the empirical distribution
function, Fn(x), namely 2(Fn , G%), or briefly 2n(%). An example of an empirical
discrepancy will be given later.

The method of maximum likelihood, an important general-purpose method of
estimation, is the natural partner (minimum discrepancy estimator) for:
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The Kullback�Leibler discrepancy,

2K�L( f, g%)=&EF log g% (x)=&| log g% (x) f (x) dx,

where for discrete distributions the integral is replaced by a sum. This discrepancy
focuses on the expected log-likelihood when the approximating model g% is used;
the higher the expected log-likelihood, the better the model. Roughly speaking this
discrepancy deems an approximating model good if, on average, that model assigns
a high probability to sample observations. A good model makes the data seem
likely; a bad model makes them seem unlikely. As we will see later it is the
discrepancy associated with the AIC.

The Pearson chi-squared discrepancy,

2P( f, g%)=:
x

( f (x)& g%(x))2�g% (x), g% (x){0,

is a useful general-purpose discrepancy for discrete data or grouped data. We note
that it would be (logically) consistent to use minimum chi-squared estimation to
estimate the parameter % in conjunction with this discrepancy but this is not essential.
One can, for example, use the method of maximum likelihood to estimate the
parameters and the above discrepancy to assess the fit.

The Gauss discrepancy is given by

2G( f, g%)=:
x

( f (x)& g% (x))2,

where for continuous distributions one replaces the sum by an integral and the
probability functions by densities, as we did when selecting a histogram for the age
distribution. Additional examples of general- and specific-purpose discrepancies are
discussed in Linhart and Zucchini (1986).

Having decided which approximating families will be considered, which method
will be used to estimate the parameters, and which discrepancy will be used
to assess the fit, the next step is to find a criterion, an estimator of the expected
discrepancy that we can use to rank the contending models. The derivation of
criteria is a technical issue beyond the scope of this paper. I will confine myself to
some general remarks.

In some contexts, including regression, analysis of variance, and covariance,
criteria are available that are unbiased for finite samples. The well-known Cp and
Sp variable selection criteria are examples of this type; another example is the
criterion used earlier to select a histogram for the age distribution. Where such
criteria are not available three approaches are currently available (apart from
Bayesian methods), namely asymptotic methods, bootstrap methods, and cross-
validation methods.
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Asymptotic Methods

One can go about obtaining a criterion by first deriving a formula for the expected
discrepancy and then finding a way to estimate it. In many contexts it is not
possible to obtain a useful expression for the exact expected discrepancy (which
makes it rather difficult to invent some way of estimating it). Examples of this
type arise when one is selecting families of models for univariate probability
distributions, contingency tables, and time series. However, in many such cases it
possible to derive an expression for the asymptotic value of expected discrepancy,
that is, its limiting value as the sample increases indefinitely, and also to find an
(asymptotically) unbiased estimator of that value, called an asymptotic criterion.

Very briefly and under a long list of so-called regularity conditions (Linhart and
Zucchini, 1986, Appendix A1) as the sample size, n, increases so the expected
discrepancy approaches the form:

E2( f, g%� )=2(%0)+K�2n.

The first term is the discrepancy due to approximation and K, which is called the
trace term (because it happens to be the trace of the product of two matrices)
represents a rather complicated expression for which, however, it is sometimes
possible to provide an (asymptotically) unbiased estimator, K� . If so, the asymptotic
criterion is given by

C=E� 2( f, g%� )=2n(%� )+K� �n.

The first term is the empirical discrepancy evaluated for the fitted model (and note
that the 2 has disappeared).

Clearly, the practical usefulness of asymptotic criteria is determined by how well
they estimate the expected discrepancy for the finite sample size that is available;
that they are asymptotically unbiased does not make them unbiased for finite
samples. A second point is their standard error can be quite large. Finally their
performance can only be assessed using tedious Monte Carlo simulations for
specific models.

At this stage the reader might be forgiven for concluding that the situation is
unsatisfactory but, fortunately, a simple alternative is available for some discrepancies,
including the important cases of the Kullback�Leibler and the Pearson chi-squared.
It can be shown (Linhart and Zucchini, 1986, Appendix A1) that if the operating
model belongs to the approximating family then the term K reduces to a simple
function of the number of parameters, p, in the approximating family and so the
criterion simplifies enormously. We then refer to it as the simple (asymptotic)

criterion. In the case of the Kullback�Leibler discrepancy K reduces to p and so K�
can be replaced by p which leads to the simple criterion

C*K�L=2n(%� )+ p�n.
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(The subscript K�L stands for Kullback�Leibler and the * is used to indicate
that this is the simple criterion.) This is a somewhat disguised, but strictly equiv-
alent, form of the well-known Akaike information criterion (Akaike, 1973). In
fact

C*K�L=AIC�2n, where AIC=&2 log(L)+2p

and where L refers to the likelihood under the fitted model.
To derive C*K�L we made an unrealistic assumption, namely that the operating model

belongs to the approximating family. Consider, for example, the 9-parameter-histogram
approximating family that we looked at earlier to model the age distribution in the
Ryde population. Even if we did not happen to know the operating model (that is,
the age of everyone in the Ryde population) the assumption that f (x) is precisely
such a histogram would be more than a little far-fetched. Nevertheless, it does not
necessarily follow from this that the resulting criterion, however it might have been
derived, is a bad one. Indeed, the simple criterion, C*K�L , often outperforms the
more complex alternative, CK�L , that avoids the offending assumption, so long as
the discrepancy due to approximation is not excessively large, that is unless the best
model in the approximating family differs grossly from the operating model.

The reason why C*K�L often outperforms CK�L is that although p might be a
biased estimator of K, whereas K� is (asymptotically) unbiased, the latter has a high
standard error, whereas p (a constant) has zero standard error. Hurvich and Tsai
(1989) derived a refinement, AICc=AIC+2p( p+1)�(n& p&1), to reduce the
small-sample bias of the AIC for regression and time series models.

The AIC is of the same general form as the Schwarz criterion (Schwarz, 1978) or,
as it is also called, the Bayesian information criterion:

BIC=&2 log(L)+ p log(n).

Note that the BIC differs from the AIC only in the second term which now depends
on the sample size n. Clearly, as n increases, the BIC favors simpler approximating
families (that is families with a smaller number of parameters p) than does the AIC.
But despite the superficial similarity between the AIC and BIC the latter is derived
in a very different way and within a Bayesian framework. The following brief
description (see, e.g., Raftery (1995) or Wasserman (2000) for substantial accounts)
is intended to provide an interpretation of the BIC in the framework outlined in
this paper.

Suppose that we have two competing families, G1 and G2 . (In the Ryde example
G1 could represent the family of histograms with 10 intervals and G2 that with 50
intervals.) Denote the sample information (the data) by D. One begins by assigning
prior probabilities, P(Gi), i=1, 2, to the event that family i is correct or, in our
terminology, the event that family i contains the operating model. One also assigns
prior distributions to the model parameters in each family. This enables one to
compute the integrated likelihood, P(D | Gi), which can be interpreted as the

53INTRODUCTION TO MODEL SELECTION



likelihood of the observed values if family Gi is correct. The next step is to apply
Bayes' theorem to compute P(Gi | D), the posterior probability that family i is
correct given the observed values. A measure of the extent to which the data
support family G2 over G1 is given by the posterior odds:

P(G2 | D)
P(G1 | D)

=
P(D | G2)
P(D | G1)

P(G2)
P(G1)

.

The first quotient on the right-hand side is called the Bayes factor and the second
the prior odds. The Bayes factor can be interpreted as a measure of the extent to
which the data support G2 over G1 when the prior odds are equal to one. The prior
odds are equal to one if, prior to examining the data, the families G1 and G2 are
regarded as equally plausible, that is equally likely to contain the operating model.
The BIC can be shown to be a large sample approximation to the logarithm of the
Bayes factor.

One of the reasons for using the BIC rather than the Bayes factor itself is that
the computations needed to evaluate the latter can be enormous, especially as it is
necessary to specify prior distributions for the parameters in each of the (often
numerous) competing families. However, this obstacle is being overcome (e.g.,
DiCiccio, Kass, Raftery, and Wasserman, 1997) and there is a growing literature on
interesting applications in which Bayes factors are used for model selection (e.g.,
Kass and Raftery, 1995; Albert and Chib, 1997).

In the terminology of this paper the computation of Bayes factors requires one
to assign a prior probability to each model in each approximating family, although
in the Bayesian framework these are not regarded as approximating families but as
families that potentially contain the operating model. To each individual model one
must assign a (subjective) probability that it is strictly correct. In the Ryde age-
distribution example this amounts to assigning a prior probability to each possible
histogram with 10 intervals so that it is identical to the operating model (and to
those with 50 intervals). In this example, even if one did not know the operating
model, it must surely be regarded hopelessly unlikely that any of these histograms
might be precisely identical to the operating model. Indeed it is difficult to imagine
any family that one might normally consider and to which one could assign a priori
probability other than zero to the event that it contains an operating model such as
that given in Fig. 2.

Thus if one takes the view that operating models are generally vastly more
complex than any model one is likely to consider fitting to them in practice, then,
strictly speaking, the Bayesian approach to model selection is not applicable. On
the other hand, as we saw earlier, the AIC is also derived under the assumption
that the operating model belongs to the approximating family. The main point is
to recognize how these two approaches to model selection differ. The frequentist
approach accepts up-front that the approximating models are not necessarily the
real thing and attempts to identify the family that leads to the best fit, on average.
The Bayesian approach regards every contending model as potentially constituting
the real thing and then estimates, for each model, the probability of it being that.
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Bootstrap Methods

Bootstrap methods, introduced by Efron (1979), provide a simple means of
circumventing the type of technical difficulties mentioned above. Recall that in the
age distribution example we were able to compute all the discrepancies of interest
because we knew the operating model. For example, by drawing repeated random
samples from the population we were even able to approximate the distributions of
the two overall discrepancies (given in Fig. 5). The point here is that if we know the
operating model we can always compute the expected discrepancy by using a
formula, if this is available, or by resorting to Monte Carlo methods if it is not.
Now if we regard the sample as a population then the operating model for this mini-
population is known and so we can compute the corresponding expected discrepancy.
The expected discrepancy for the mini-population is an estimator of the expected
discrepancy for the real population and is called the bootstrap criterion. Chung, Lee,
and Koo (1996) have shown that the bootstrap criterion has a downward bias and
recommend a simple adjustment which, in our notation, amounts to adding of p�n.

Cross-Validation Methods

The idea here is to split the sample data into two subsamples, a calibration sample
of size n&m and a validation sample of size m; the first is used to fit the model
and the second to estimate the expected discrepancy. Such an estimator is called a
cross-validation criterion.

There is a problem in deciding how to select m, the number of observations
allocated to the validation sample. For example, if we select m=n�2 then only n�2
observations are available to fit the model and so (in the validation step) we would be
judging the model by its performance for a sample size of n�2. As we saw in Fig. 8 the
sample size is an important factor in determining which approximating family is best, on
average, and our objective is to find the best family for a sample of size n (the number
of observations we in fact have) not for a sample of size n�2. We could reduce m
but that would leave fewer observations for the validation sample and thereby
erode the accuracy with which we can estimate the expected discrepancy.

The following idea is used to circumvent the above problem (see, e.g., Stone,
1974): One uses a small m, even m=1 (referred to as one-item-out cross-validation)
but one repeats the following steps for all possible calibration samples of size n&m:

Step 1: Fit the model to the calibration sample.

Step 2: Estimate the expected discrepancy for the fitted model using the valida-
tion sample.

The cross-validation criterion is the average, over these repetitions, of the
estimates obtained of step 2. For a more comprehensive account of cross-validation
methods see Browne (2000).

An Example

We now illustrate the above methods using the Kullback�Leibler discrepancy to
select a model for the (marginal) distribution of the number of GP visits for the
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FIG. 9. The graph on the left shows the operating model (shaded) and empirical model, that is the
observed relative frequencies (thin dark lines). The graph on the right shows the operating model and
the fitted Poisson and negative binomial distributions.

Ryde sample shown in Fig. 1. The operating model (that is the relative frequencies
of GP visits for all residents of Ryde) and the empirical model (the relative frequencies
for the sample of 200 residents) are shown in Fig. 9. Also shown are two competing
models that were fitted to the sample data using the method of maximum likelihood,
namely the Poisson (which fits poorly) and the negative binomial (which fits
better).

Again, as we are in possession of the operating model, it is possible to compute
the distributions of the overall discrepancy for each of the two approximating
families. I used 1000 samples of size 200 to compute those shown in Fig. 10.

The probability function for the Poisson distribution with parameter * and that
for the negative binomial distribution with parameters : and ; are, respectively,

g*(x)=*xe&*�x!,

g:, ;(x)=1(x+;)(1&:); :x�(1(;) 1(x+1)), x=0, 1, 2, ... .

Asymptotically unbiased estimators, K� , of the trace term are available for both of
these distributions (Linhart and Zucchini, 1986, p. 46), but that for the negative
binomial is rather complicated and will not be given here. For the Poisson distribution
K� =m2 �m$1 , where m2 is the sample variance and m$1 is the sample mean. The
asymptotic criterion for the Poisson is thus given by

CK�L(Poisson)=2n(*� )+m2 �m$1 n, where 2n(*� )=& :
n

i=1

log g*� (xi)�n,

and *� =m$1 is the maximum likelihood estimator of *.
The simple criterion (equivalent to the AIC) simply uses K� =1 for the one-

parameter Poisson model and K� =2 for the 2-parameter negative binomial. The
latter reduces to

C*K�L(neg. binomial)=2n(:̂, ;� )+2�n, where 2n(:̂, ;� )=& :
n

i=1

log g:̂, ;� (xi)�n,
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FIG. 10. The distributions of the overall discrepancies (shaded) for the two approximating families
and the bootstrap estimates of these two distributions (thin lines). Also shown are the expected
discrepancies and criteria. (All the criteria given in Table 1 coincide on this graph.)

where :̂ and ;� are the maximum likelihood estimators of : and ;. (See, e.g., Linhart
and Zucchini, 1986, p. 46.)

To compute the bootstrap criterion we repeat the following two steps a large
number of times (Fig. 10 is based on 1000 replications):

1. Take a random sample of size n with replacement from the sample. This is
called a bootstrap sample.

2. Compute the maximum likelihood estimators (*� * for the Poisson; :̂* and
;� * for the negative binomial) using the values in the bootstrap sample. For the
Poisson model compute 2n(*� *) and for the negative binomial 2n(:̂*, ;� *).

The values of the 1000 pairs of discrepancies computed in step 2 were used to
obtain the estimates of the two distributions of the overall discrepancy that are
shown in Fig. 10. In this example these bootstrap distributions are quite close to the
distributions they are intended to estimate. In part this is because we are fitting
families with very few parameters. For families which have more parameters the
agreement tends to be less precise. The average of the 2n(*� *) and that of the
2n(:̂n*, ;� n*) values computed in step 2 are the bootstrap criteria for the respective
families and are given in Table 1.

Finally, the cross-validation discrepancy can be computed as follows (though it
can be done more efficiently). We repeat the following two steps for i=1, 2, ..., n:

1. Assemble the i th calibration sample by taking the original sample and
removing the i th observation, xi .

2. Compute the maximum likelihood estimates (*� (i) for the Poisson; :̂ (i) and
;� (i) for the negative binomial) using the values in the i th calibration sample. For
the Poisson model compute CVi (Poisson)=&log g*� (i)(xi) and for the negative
binomial model CVi (neg. binomial)=&log g:̂(i), ;� (i)(xi).
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TABLE 1

The Criteria and the Expected Discrepancy

Criterion Poisson Negative binomial

Asymptotic 4.25 2.92
Simple asymptotic (AIC�2n) 4.23 2.92
Bootstrap 4.23 2.91
Cross-validation 4.22 2.93
BIC�2n 4.23 2.94

Expected discrepancy 4.45 2.91

Note. Values of the criteria and the expected discrepancy for the Poisson and
negative binomial distributions. As indicated in the text the BIC was not specifically
designed to estimate the expected discrepancy. The AIC and BIC criteria have been
divided by 2n to make them comparable to the others.

The cross-validation criterion for the Poisson is the average of the n values
CVi (Poisson) computed in step 2 and that for the negative binomial model is the
average of the n values CV i (neg. binomial), i=1, 2, ..., n.

All the above criteria (given in Table 1) are practically equal within each of the
two models and they cannot be distinguished at the resolution displayed in Fig. 10.
That is because the two families considered have very few parameters and so the
overall discrepancy is dominated by the discrepancy due to approximation. The
criteria all indicate that the negative binomial is the better of the two distributions
for these data.

SELECTION BIAS

The objectivity of formal model selection procedures and the ease with which
they can be applied with increasingly powerful computers on increasingly complex
problems has tended to obscure the fact that too much selection can do more harm
than good. An overdose of selection manifests itself in a problem called selection
bias which occurs when one uses the same data to select a model and also to carry
out statistical inference, for example to compute a confidence interval on the basis
of the selected model. The purpose of this section is to explain the problem; the
solution is still being invented. A more comprehensive account of selection bias is
given in Chatfield (1995) and the discussions that follow that paper.

The expected discrepancy associated with each approximating family depends on
two things that we know (the sample size and the method used to estimate the
parameters) and one thing that we do not know (the operating model) and so we
cannot compute it. If we could compute it we could arrange the contending families
in order of increasing expected discrepancy, that is from best to worst, on average.
This ideal list, List A, is not available but we can compute estimates of each expected
discrepancy, the criteria, and use those to compile a List B in which the contending
families are arranged in order of increasing criterion, that is from apparently best to
apparently worst.
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In general the rankings in List B will differ from those in List A. For some
families the criterion will be higher than the expected discrepancy and for others it
will be lower, depending on the details of the particular sample that was drawn,
that is depending on the luck of the draw.

Those families whose criteria happen to have underestimated the expected
discrepancy will tend to be rated higher on List B than on List A and vice versa
for families whose criteria happen to have overestimated their expected discrepancy.
In Fig. 5 the expected discrepancy of the 9-parameter family is smaller than that of
the 49-parameter family and so the former is ranked higher on List A. The criterion
for the 9-parameter family landed above (on the unlucky side of) its expectation and
that for the 49-parameter family fell below (on the lucky side of) its expectation, but
this did not matter because the criteria did rank the families correctly. Thus, List
B and List A are the same for this sample and so the top family in List B is indeed
the best family.

However, in general, we cannot be certain that the top family in List B is indeed
the best. It might be the second best that was moderately lucky, or it might be the
73rd best that was very lucky. The top position in List B is biased in favor of
families that were lucky or, more precisely, families whose criteria underestimated
the expected discrepancy for the available sample. This bias is especially relevant
when the number of approximating families considered for selection is large, and in
practice that number can get very large.

That, in turn, gives rise to a second problem, referred to as selection bias: The top
model in List B will, in general, appear to perform better than it really does.

We consider how the above two problems are manifested in the context of
variable selection in multiple linear regression with a large number of predictors.
The usual objective here is to identify that subset of the predictors that minimizes
some expected discrepancy, such as the mean squared error of prediction.

The standard all-subsets variable selection procedure in multiple linear regression
with 15 potential predictors examines 215=32,768 approximating families��even
more if one is also investigating transformations of the predictors, such as their
logarithms, squares, or cross-products. Thus the equivalent of Fig. 5 will have
32,768, or more, distributions instead of two and furthermore many of them would
overlap more substantially than the two unusually well-separated distributions
shown in Fig. 5. Consequently some of the variables that appear in the selected sub-
set (the one that is ranked first in List B) are there by good luck rather than by
merit. (For more details and examples see Miller (1990) and the papers referenced
in Chatfield (1995, Section 2.3.)) Furthermore, in the absence of additional
evidence, it is not possible to determine which of the selected variables should be
taken seriously, that is how to separate the wheat from the chaff.

The second problem is that the selected family will, on average, give an optimistic
impression of how well it fits. In the context of multiple regression this is manifested
in a substantial (or even gross) underestimate of the residual variance. The selected
predictors will appear to be more accurate than they turn out to be when predicting
future values of the dependent variable.

The first of the two problems is insoluble; it is not possible to identify with
certainty which approximating family is the top of List A on the basis of List B. In
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many situations one would be content to be confident that the top-ranking family
in List B is, if not the best, then at least not a bad one that was lucky. The risk
that a bad approximating family will make it to the top of List B can be reduced
by restricting selection to a small number of well-considered families. The risk
becomes substantial if one casts a large selection net intended to cover every effect
and complication that could conceivably be relevant.

Progress has been made toward solving the problem of selection bias. It is an
advantage of the Bayesian approach (see, e.g., Raftery, 1995) that the methodology
exists to address this issue, even if it is computationally demanding. Briefly, one
does not restrict one's attention to a single selected family; one works instead with
all the models that were considered, weighting the contribution of each (via the
posterior probability that is the correct model) to adjust for model uncertainty.

A frequentist approach for incorporating model uncertainty into statistical
inference has been suggested by Buckland, Burnham, and Augustin (1997). They
also base inference on a suitably weighted linear combination of estimates from all
the contending models. Ye (1998) has introduced the concept of generalized degrees
of freedom to correct for selection bias.

Note added in proof. Some important publications have appeared subsequent to the preparation of
this article. In particular the book by K. P. Burnham and D. R. Anderson, ``Model Selection and
Inference: A Practical Information�Theoretic Approach,'' Springer (1998) provides an excellent account
of frequentist methods.
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