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sup
0≤t≤T

|gn(ω, t) − g(ω, t)| ≤ sup
s,t:|s−t|≤1/n

|g(ω, s) − g(ω, t)| ≡ µn(ω).

By the uniform continuity of t 7→ g(ω, t) on [0, T ], one has for each ω that
µn(ω) → 0 as n → ∞. Two applications of the DCT then show that gn → g
in L2(dP × dt).

Chapter 7

Solution for Problem 7.1. We argue by contradiction. If the limit were
not infinite, then since τM (ω) is nondecreasing we would have

lim
M→∞

τM (ω) = t∗ <∞.

The continuity of f then implies f(t∗) = ∞, but this contradicts the continuity
of f . The corollary is then immediate since f(Bt) is continuous on a set of
probability one.

Solution for Problem 7.2. Consider the nondecreasing stopping timesLook out for known
bug re: such stop-
ping times.

defined by setting νn(ω) = inf{t : |Xt| ≥ n, or t ≥ T }. For each ω, the
mapping t 7→ Xt(ω) is bounded on [0, T ] so for each ω there is an N(ω) such
that νn(ω) = T for all n ≥ N(ω). Also, by Doob’s stopping time theorem,
Xt∧νn

is a martingale, so by Jensen’s inequality φ(Xt∧νn
) is a submartingale.

This says that Yt∧νn
is a submartingale. Thus, {νn} has both of the qualities

needed to show that Yt is a local submartingale. Finally, taking Xt = Bt

and φ(x) = ex2

shows that Yt need not be an honest submartingale; in this
example Yt = φ(Bt) is not even integrable.

Solution for Problem 7.3. By following the argument of Proposition 7.10
(page 136) through equation (7.24) we find in the present case that

Xs∧τk
≤ E(Xt∧τk

| Fs) for all 0 ≤ s ≤ t ≤ T. (15.53)

Since τk → T as k → ∞, continuity gives us Xs∧τk
→ Xs and Xt∧τk

→ Xt.
Finally, |Xt∧τk

| ≤ X∗ ∈ L1(dP ) so the bound (15.53) and the DCT give us
the submartingale condition for {Xt}.
Solution for Problem 7.4. There are stopping times νn such that νn → ∞
with probability one and such that t 7→Mt∧νn

is a martingale for each n. We
then have E(Mt∧νn

) = 0, and Mt∧νn
≥ 0 so P (Mt∧νn

= 0) = 1. Now let
n→ ∞.

Solution for Problem 7.5. Since Mt is a local martingale with M0 = 0
there is a sequence of nondecreasing sequence of stopping times {τn} such
that τn → ∞ with probability one and such that t 7→ Mt∧τn

is a martingale
for each n. By Doob’s stopping time theorem Mt∧τn∧τ is also a martingale for
each n, so we have E(Mt∧τn∧τ ) = 0. By continuity Mt∧τn∧τ → 0 as n → ∞
so by the hypothesis on X and the DCT we have E(Mt∧τ ) = 0 as required.
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Solution for Problem 7.6. For these processes to be equivalent it is nec-
essary that Var(Xt) = Var(Yt), but we have

Var(Xt) =

∫ t

0

e2s ds =
1

2
e2t and Var(Yt) = τt,

so we define τt by setting τt = e2t/2. Since Xt and Yt both have independent
increments, this definition implies that

Cov(Xs, Xt) = min(e2s/2, e2t/2) and Cov(Ys, Yt) = min(e2s/2, e2t/2).

Since Xt and Yt are both Gaussian process, the equality of the covariances for
all 0 ≤ s ≤ t < ∞ implies that the processes are equivalent. Finally, since Yt

is Gaussian with mean zero and variance e2t/2 we have

E(X4
t ) = E(Y 4

t ) = 3(e2t/2)2 = (3/4)e4t and

P (Xt ≤ 1) = P (Yt ≤ 1) = Φ(2
1
2 e−t).

Solution for Problem 7.7. It is immediate that Fτ contains the empty set
and that Fτ is closed under countable unions, so it remains only to consider
complements. For A ∈ Fτ we have A ∩ {τ ≤ t} ∈ Ft for each t, so we also
have Ac ∪ {τ > t} ∈ Ft since Ft is closed under complements. We also have
{τ ≤ t} ∈ Ft since τ is a stopping time, and Ft is closed under intersection so

(
Ac ∪ {τ > t}

)
∩ {τ ≤ t} =

(
Ac ∩ {τ ≤ t}

)
∪
(
{τ > t} ∩ {τ ≤ t}

)

=
(
Ac ∩ {τ ≤ t}

)
∪ ∅ = Ac ∩ {τ ≤ t}

is in Ft for each t. By Definition 7.3, this confirms that Ac ∈ Fτ .

Chapter 8

Solution for Problem 8.1. The pattern used to prove Theorem 8.1 needs
no real changes, but a truly committed student may also want to justify the
remainder bound (8.12). Since we only assume f ∈ C1,2(R+×R) rather than
f ∈ C2,2(R+×R), the traditional textbook versions of the multivariate Taylor
expansion do not directly apply.

Solution for Problem 8.2. We apply Itô’s formula to f(t, x) = xh(t) and
note fx = h(t), fxx = 0, and ft = xh′(t).

Solution for Problem 8.3. By Itô’s formula applied to f(t, x) = tx we get

tBt =

∫ t

0

s dBs +

∫ t

0

Bs ds.

The first integral is a martingale, so we have E(τBτ ) = E(I) and consequently

E(I) =
1

3
AB(A−B) by equation (8.16).
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Solution for Problem 8.4. By Itô’s formula we have

X4
t = 4

∫ t

0

X3
sσ(ω, s) dBs + 6

∫ t

0

X2
sσ

2(ω, s) ds. (15.54)

The Itô isometry gives us E(X2
s ) ≤ s, but it is not a priori clear that

the integrand X3
sσ(ω, s) is in H2 so we cannot immediately say that the

expectation of the first integral is zero. Thus, we introduce the localizer
νN = min{u : |Xu| ≥ N, or u ≥ T }. This makes the first integral a mar-
tingale, and we get the bound

E(X4
t∧νN

) ≤ 6E

(∫ t∧νN

0

X2
sσ

2(ω, s) ds

)
≤ 6

∫ t

0

s ds = 3t2.

The inequality (8.58) now follows by letting N → ∞ and applying Fatou’s
lemma. An analogous argument gives one E(X2k

t ) ≤ 1 ·3 ·5 · · · (2k−1)tk, and,
with this in hand, Itô’s formula and induction can be used to show that all of
the odd moments of Xt vanish. Thus, as one might have guessed, all moments
of Xt are dominated by the corresponding moments of Bt.

Solution for Problem 8.5. By Itô’s formula applied to f(t,x) = t−|x|2/d
we find that Mt = t− |Bt|2/d is a local martingale. After checking that Mt is
an honest martingale, we find by the familiar DCT and Doob stopping time
arguments that E(M0) = E(Mτ ) = E(τ) − d−1E(|Bτ |2). Since |Bτ | = R and
M0 = −|x0|/d, we then get our target formula (8.59).

Solution for Problem 8.6. For part (a) differentiate the first of the
Cauchy–Riemann equations with respect to x and the second with respect
to y. By equality of the crossed partial derivatives we see the sum of the re-
sulting equations is zero. This proves that u is harmonic. Symmetry implies
the same is true for v.

Taking the hint for (b), we note that Mt = X2
t − Y 2

t is a martingale.
The DCT and Doob stopping time arguments give us E(M0) = E(Mτ ) where
τ is the first time that Bt hits either H(1) or H(5). We have M0 = 4 and
E(Mτ ) = p · 1 + (1 − p) · 5 so p = 1/4.

Solution for Problem 8.7. For 0 ≤ s ≤ t we have martingale identity
E(Mt|Fs) = Ms. If we replace Mt and Ms by their series representations
(8.61) and if we then interchange expectations and summations, then we find

∞∑

k=0

αkE
(
Hk(t, Bt)|Fs

)
=

∞∑

k=0

αkE
(
Hk(s,Bs)

)
. (15.55)

For the equality (15.55) to hold for all α in a neighborhood of zero, we have to
have equality of the coefficients, and this will give us the martingale identity
for each of the processes t 7→ Hk(t, Bt). For a truly complete proof, one should
also justify the interchange operation that leads one to the identity (15.55).
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Alternative, one can argue directly that the series representation (8.61) implies
that ∂Hk/∂t + (1/2)∂2Hk/∂

2x = 0, Xt = Hk(t, Bt) is a local martingale.
Doob’s maximal inequality will then show that sup0≤t≤T |Xt| is integrable, so
Xt is seen to be an honest martingale.

Solution for Problem 8.8. If we take Mt = H4(t, Bt) = B4
t − 6tB2

t + 3t2

and apply the usual DCT and Doob stopping time arguments, we find

0 = E(Mτ ) = E(B4
τ ) − 6E(τB2

τ ) + 3E(τ2).

Since we know E(τ) = A2 and since we have |Bτ | ≡ A, we therefore find that
E(τ2) = (5/3)A4 and Var(τ) = (2/3)A4. Incidentally, this calculation may
seem a bit easier than the the method used in Exercise 4.9, page 76, but, at
heart, the methods are the same.

Solution for Problem 8.9. Part (a) is routine, but it is still nice to note
that once you find fxx = (−x2 + y2 + z2)/(x2 + y2 + z2)5/2, then you get
∆f = 0 just by symmetry. For part (b), we note that the identity (8.62) and
Jensen’s inequality imply E(Mt) ≤ 1/

√
t. Since E(M1) = C > 0 and since

the mean is constant for a martingale, we see that Mt cannot be one.

Solution for Problem 8.10. By the PDE condition for f(t, Bt) to be a
local martingale (page 149) we find for f(t, x) = e−λtφ(x) that we need

0 =
∂f

∂t
+

1

2

∂2f

∂x2
= −λe−λtφ(x) +

1

2
e−λtφ′′(x),

or φ′′(x)−2λφ(x) = 0. By solving this equation, we see that for any φ(x) of the
form c0 exp(x

√
2λ)+c1 exp(−x

√
2λ) the process f(t, Bt) is a local martingale.

One then directly checks that these are in fact honest martingales.
From the martingales e−λt exp(−Bt

√
2λ) and eλt exp(−Bt

√
2λ) and the

familiar Doob stopping time argument (say as used to prove (4.13), page 66)
we then have the twin identities

1 = E
(
e−λτ exp(−Bτ

√
2λ)
)

and 1 = E
(
eλτ exp(−Bτ

√
2λ)
)
.

Therefore, if we introduce the related expectations x = E
(
e−λτ I(Bτ = A)

)

and y=E
(
e−λτ I(Bτ = −B)

)
, we get the two relations

1 = eA
√

2λx+ e−B
√

2λy and 1 = e−A
√

2λx+ eB
√

2λy

which we may solve to find

x =
sinh(B

√
2λ)

sinh((A+B)
√

2λ)
and y =

sinh(A
√

2λ)

sinh((A +B)
√

2λ)
.

Finally we just sum these terms to get the elegant formula
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E(e−λτ ) = x+ y =
sinh(A

√
2λ) + sinh(B

√
2λ)

sinh((A+B)
√

2λ)
.

This morsel deserves to be savored. For example, one should note that when
B → ∞ it converges to exp(−A

√
2λ), and thus it recaptures the formula

(4.12), page 65, for the Laplace transform of the hitting time of a line. Also,
with a little arithmetic, one can also recapture the (rather different looking!)
formula for the symmetric problem A = B of Exercise 4.9, page 76. Finally,
when this martingale derivation is compared with the much older discrete
derivation of Skorohod (1962, pp. 163–166) one gets a clear sense of the power
that the Itô calculus can provide.

Chapter 9

Solution for Problem 9.1. The drift of the SDE (9.37) is linear in Xt and
has a deterministic dBt coefficient, so it is a candidate for coefficient matching
with a product process (9.7), page 178. Here coefficient matching requires

a′(t)/a(t) = t and a(t)b(t) = ex2/2.

The first equation and a(0) = 1 gives us a(t) = et2/2 so b(t) = 1. The repre-

sentation (9.7) then gives Xt = et2/2{1+Bt}. One can check by Itô’s formula
that this does solve the SDE (9.37).

Solution for Problem 9.2. For the same reasons noted in the solution
of Problem 9.1, this is a candidate for coefficient matching with the product
process (9.7). We need a′(t)/a(t) = −2/(1 − t) and a(t)b(t) = {2t(1 − t)}1/2,
and these give us a(t) = (1 − t)2 and b(t) = (2t)1/2(1 − t)3/2, so

Xt = (1 − t)2
∫ t

0

(2u)1/2(1 − u)3/2 dBu, 0 ≤ t ≤ 1.

From the Itô isometry we find for s < t that Cov(Xs, Xt) = s2(1− t)2, which
is the square of the covariance function for the Brownian bridge.

Solution for Problem 9.3. If we substitute Xt = f(Bt), then coefficient
matching versus Itô’s formula requires the two relations

f ′(Bt) =
√

1 + f2(Bt) and
1

2
f ′′(Bt) =

1

2
f(Bt). (15.56)

For the second ODE to hold for all ω we need f ′′(x) = f(x) for all x, so we
must have f(x) = Aex +Be−x. Squaring the first ODE then gives us

(Aex −Be−x)2 = 1 + (Aex +Be−x)2 or 4AB = −1.

The boundary condition f(0) = 0 requires us to have A + B = 0, so we find
A = −B = ±1/2. This gives us f(x) = ± sinh(x), but the first condition of


