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Abstract

It is proved that there are constants c;, ¢o, and c3
such that for any set S of n points in the unit square
and for any minimum-length tour T" of S (1) the sum of
squares of the edge lengths of T is bounded by ¢; log n,
(2) the sum of edge lengths of any subset E of T is
bounded by c;|E['/?, and (3) the number of edges hav-
ing length ¢ or greater in T is at most ¢3/t%2. The sec-
ond and third bounds are independent of the number
of points in S, as well as their locations. Extensions to
dimensions d > 2 are also sketched.

The presence of the logarithmic term in (1) is en-
gaging because such a term is not needed in the case
of the minimum spanning tree and several analogous
problems, and, furthermore, we know that there always
exists some tour of S (which perhaps does not have
minimal length) for which the sum of squared edges is
bounded independently of n.
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1. Introduction

The purpose of this paper is to provide a priori bounds
on quantities related to the edge lengths of an optimal
traveling salesman (minimum-length) tour through n
points in the unit square. By a priori, we mean that the
bounds are independent of the locations of the points.
Studies of a priori bounds were initiated by Verblun-
sky (1951) and Few (1955). Few showed that for any
set S of n points in the unit square, the length of an op-
timal traveling salesman tour of S is at most v/2n+1.75.
Few’s result led to a series of improvements, culminat-
ing in Karloff (1989), where it was shown that Few’s
constant could be reduced to less than v/2. Our results
continue in this tradition by giving a priori inequalities
for three other quantities related to the edge lengths of
an optimal traveling salesman tour.

The interest in and subtlety of our inequalities
comes from the fact that, in contrast to the minimum
spanning tree (MST) problem, optimal solutions to the
traveling salesman problem (TSP) are not invariant
under monotone transformations of the edge weights.
Before giving further details on this connection and
other related work, we state our main results. We let

le] = |z — y| denote the Euclidean length of the edge



e = {z,y} with vertices z and y in JR?, and, in set-
tings where the order of the edges of an optimal tour is
not important, we represent a traveling salesman tour
by the edge set {e;,e2,...,e,}. In what follows, an
“optimal” traveling salesman tour is a tour that is of
minimum length when using Euclidean edge weights.
Our first theorem bounds the sum of squared edge

lengths of any optimal traveling salesman tour.

Theorem 1. There exists a constant 0 < ¢; < oo such
that if T = {61, €a,..

man tour of {z;,z,,..

.,en} is an optimal traveling sales-
. Zn} C[0,1)? and if n > 2, then

n

Z le;|* < ¢y logn.

i=1

(1.1)

Theorem 2 is a bound on the number of edges that

are of length ¢ or greater.

Theorem 2. There exists a constant 0 < ¢o < co such
that, if v(n,t) is the number of e; € T such that |e;| > t,
then for allt > 0 andn > 1,

v(n,t) < coft. (1.2)

Corollary 3 gives a bound on the total length of
any k-edge subset of an optimal TSP tour.

Corollary 3. There exists a constant 0 < c3 < co such
that, if E = {e;,,é€i,,...,€i, } CT, then

Z le:} < esVk.

i€E

(1.3)

It is interesting to compare these results to their
Steele and Sny-
der (1989) proved MST analogues to (1.2) and (1.3),

but these proofs were predicated on a solution to the

minimum spanning tree analogues.

MST problem via a greedy algorithm, hence were not
applicable to the TSP. The best TSP analogue to (1.3)
was thus vrsp(n, 1) < crepy/n/t, for some constant crsp.
The bounds (1.2) and (1.3), however, are independent
of n, the number of points, as well as the locations of
the points. For this reason, we say that the significantly

improved inequalities (1.2) and (1.3) are fully a priori.
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Inequalities like (1.1) are important in simulations
and investigations in which the square root computa-
tions required for Euclidean lengths are deemed to be
too expensive (c.f. the discussion in Steele (1990)). It
was observed in Steele (1990) by an application of the
spacefilling curve heuristic that one could obtain a re-
sult like (1.1) for the MST, but without the logarithmic
factor. Though this result makes the logarithmic term
of (1.1) seem disappointing, the present bound can still
be of service in many applications where a fully a priori

inequality would be used.

A further subtlety in (1.1) is that we can easily
show there always exists some (not necessarily opti-
mal) tour T* of S = {z,,z2,...,2n} C [0, 1]? for which
Y eer le]> < clogn, where c is a constant. This can
be shown by observing via a pigeonhole argument that
there exist z; and z; € S, where ¢ # j, such that |z; —z;|
is at most a constant times n~/2, then proceeding by
an obvious induction. In fact, it has been known for
some time that one can do considerably better; there
is a constant ¢’ and a tour T’ of S such that, for all
n>2 3 ,.lel” <. This can be obtained via the
spacefilling heuristic as noted in the discussion of the
MST, or it can be obtained by appropriately generaliz-
ing the Pythagorean Theorem (Neumann (1982)).

The sticky issue for the TSP is that, though thereis
some tour T” that makes ), le]? particularly small,
there is no compelling reason to believe that a travel-
ing salesman tour T that minimizes }_ .1 |e] will do
nearly so well. Because of the matroidal properties of
the MST, such issues do not arise in its analysis. Ana-

lyzing the optimal TSP is much more difficult.

At present, we do not know of a way to remove
the logarithmic factor in (1.1), nor do we have a lower
bound that proves the necessity of the logarithmic fac-
tor. In the final section, we will comment further on
this as well as problems concerning points in [0,1]¢ for
dimension d > 2. In Section 2, we prove two technical
results that are applied in Section 3 to prove our main

results.

This extended abstract is an abridged version of



the full paper. Some details have been removed and
the original numberings of equations and figures have

been retained.

2. Edge Lemmas

The second lemma of this section explicates a prop-
erty of non-intersecting edges in an optimal TSP tour
and will be useful in the next section, where we prove
our main results. Our first lemma gives a simple ge-
ometrical bound concerning quadrilaterals that assists
the proof of the second lemma. In the statement of
Lemma 1, the term “diagonal” is used to denote a seg-
ment connecting non-adjacent vertices of a quadrilat-

eral, regardless of whether the quadrilateral is convex.

Lemma 1. Let L; and Ly be two non-intersecting line
segments satisfying r < |L;| < fr, where 8 > 1. Sup-
pose the midpoints of Ly and L, are separated by dis-
tance A. If the endpoints of L, and L, are joined to
form a quadrilateral Q with sides Ly, L3, S1, and S,
then |S;| < 3(8 — 1)r + 3) for i = 1,2. Moreover, the
lengths of the diagonals of Q are bounded by fr + A,

Proof.
The proof of Lemma 1, which relies on relatively
simple geometric observations, is omitted for the ex-

tended abstract. It can be provided on request.

Lemma 2. Let {e;,e,,...,e,} denote the edges of an
optimal traveling salesman tour of {z;,z2,...,2,} C
IR?%. For each e; satisfying r < |e;| < Br, let D; denote
the disk of radius «|e;| centered at the midpoint of e;,
where o = 1/22 and 8 = 3/2. If D;,, D;,, and Dj,
are three disks such that no pair of the edges e;,, ¢€;,,
and e;, has a vertex in common, then, for all r > 0, the

mntersection D;, N D;, N D;, is empty.

Proof.

Without loss, we let i; = j for j = 1,2,3. We
show that if Dy, D, and Dj3 have a point in common,
then it is possible to construct a shorter tour through

{z1,%2,...,2,}. We can assume that e1, with midpoint
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my, is oriented along the z axis, the midpoint my of e5
lies dbove e;, and the midpoint m3 of e3 lies above e,.
We can visualize the e; as illustrated in Figure 2, and
note that there are two distinct cases that need to be

considered.

Figure 2. Three non-intersecting lines of a TSP tour
and their D;. Here, a=1/2.

Since the endpoints of the e;, {a1, az, a3, b1, b2, b3},
are distinct and are on the tour, there is a pair a;, b;
with ¢ # j such that a; and b; are joined by a path that
contains none of the edges ey, e, and e3. The two cases
depend on whether |i — j| = 1 or |i — j| = 2, c.f., the

more schematic Figures 3a and 3b.

In the case of |i — j| = 1, we may assume that i = 3
and j = 2, as shown in Figure 3a. We form a new path
by deleting e» and e3 and adding the edges (a2, az) and
(b2,b3). By Lemma 1, we can estimate the net change

in the path length as

Ay = |az — a3| + |ba — bs| — |ez]| — |es]
< 2[-;—(,6 —1)r + 6afr] — 2r

= (8 -3+ 12a8)r

since |ma — mg| = A < 2afr, for Do N D3 # 0.



For the case of ji—j| = 2,7 =1 and j = 3, as shown
in Figure 3b. We now get a shorter tour by deleting
all the e; and adding the edges (by,d3), (as,5;), and

(a1,az). The net change in weight is

Az = b3 — ba| + |b1 — as| + |az — a1] — |e1]| — |e2] — |ea]
< 2[-;—(ﬂ - r+ 6aﬁr] + Br + 2a8r — 3r
= (28 + 14af — 4)r,

where [bs — 2| and |az — a;]| are estimated as before
and we estimate |b; — ag| using the diagonal bound of
Lemma 1 along with the fact that jm; — m3] = A <
2afr, since Dy N D3 # .

o ® ® ),

Figure 3. Rebuilding the az 1o &y puth when
{i-j1=1inLemma 2. The curved arc is a path,
the X'ed edges have been removed, and the
dashed cdges have been added.

g H

Figure 3b. Rebuilding the tour when {7 - ji=2
in Letama 2. The curved arcs are paths, the X'ed
edges bave been removed. and the dashed cdges
have been added.
The choices 8 = 3/2 and « = 1/22 are good enough
to guarantee that A; < 0 and A; < 0.

O

3. A Priori Edge-Length Bounds

It is now easy to prove our main results. We label the
za} C[0,1)?

.,€n, and we assume without loss

edges of an optimal tour T of {z;, 24, ..
in order as e, eq,..
that n is even. We first construct disks D; of radius
ade;| and center at the midpoint of e; foreach 1 < i < n,
where a = 1/22. Let ;(-) denote the indicator function
of D;, i.e., for all z € IR?, ¢;(z) = 1 if x € D;; otherwise
¥i(z) = 0. Let A be the set of all odd ¢ such that
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r < lei] < Br, and let B be the corresponding set of

even i. We claim the following:

Dovi@) + Y tilz) < 4u(z),

i€A i€B

(3.1)

where ¢(-) is the indicator function of the square
[-1,2]2.

To prove the claim, we note that since we have
assumed n is even, pairs of edges with index belonging
to A do not share an endpoint; the same is true for
pairs in B. For 8 = 3/2 and a = 1/22, Lemma 2

tells us that no three disks of A intersect and that no

three disks of B intersect. Hence, the point z € IR?
can belong to at most two disks associated with A and
two disks associated with B. Furthermore, since any
disk with center in [0, 1]? and radius bounded by agr is
contained in [—-afr,1+ afr]? C [-1,2]%, we need only
concern ourselves with z € [~1,2]%. This proves the
claim.

If we now integrate (3.1) over z, we obtain a basic
bound on a subset of the squared edge lengths of an

optimal TSP tour:

Y. lel<e (3.2)
r<lesl<Br
where ¢ = 36a~ 27~ 1. Finally,
n
Z leil> <1+ Z le:]?
=1 n=1/2<|e,|<V?
(3.3)

leilza

m
S1+30 2
k=1 ﬂ""‘n"‘lzsle.ISﬁ“N“‘/z
where m is the least integer k such that g*¥n=1/2 > /2.
It suffices to take m = [logs,,(v/2n)], so applying (3.2).
to (3.3) yields the bound

n

> leil® < cilogn,

i=1

(3.4)

where ¢; is constant as required by Theorem 1.
Returning now to (3.1) and again integrating, we

see that since |e;| > r for all i € A and i € B,

(14] + |B]) ma®+? < 36. (3.5)



where 1(-) is the indicator function of the square
[-1,2)%.

To prove the claim, we note that since we have
assumed n is even, pairs of edges with index belonging
to A do not share an endpoint; the same is true for
pairs in B. For 8 = 3/2 and « 1/22, Lemma 2

tells us that no three disks of A intersect and that no

three disks of B intersect. Hence, the point r € IR?
can belong to at most two disks associated with A and
two disks associated with B. Furthermore, since any
disk with center in [0, 1]? and radius bounded by afr is
contained in [—afr, 1+ afr])® C [~1,2]%, we need only
concern ourselves with z € [—1,2]2. This proves the
claim.

If we now integrate (3.1) over z, we obtain a basic
bound on a subset of the squared edge lengths of an

optimal TSP tour:

Z leilz S c, (32)
rlei|<Br
where ¢ = 36a~ 27!, Finally,
n
Yol <1+ Y el
=1 -1/25' -lsﬁ
" ‘ (3.3)

‘eilzv

<14y 2

k=1 ﬁk~1n~1/25‘e"sﬁkn.—-1/2

where m is the least integer k such that f¥n=1/2 > /2.
It suffices to take m = [logs,,(v/2n)], so applying (3.2)
to (3.3) yields the bound

n

Z le:f* < e1logn,

$=1

(3.4)

where ¢; is constant as required by Theorem 1.
Returning now to (3.1) and again integrating, we

see that since |e;| > r for alli € 4 and i € B,

(14| + |B|) ma®r? < 36. (3.5)
But, [A]+ [B| = |[{i:r < |ei] < Br}l, so
Hiir<le < Br}| <er 2 (3.6)
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If we now write v(n,t) as

v(n,t) = |{i:|es| >t}

M1 3.7
< Y[ AR < Je] < BRI, @D

k=0
where m; = minj{ﬁjt > \/5}, we can use (3.6) to bound
v(n,t) as

mg-l

v(n,t) <c Y (BH)?
k=0

oo
< ct-? Zﬂ..zk (3.8)
k=0
[
=2
1-p8-2" 7

which is Theorem 2, with ¢2 = ¢8%/(8% - 1).
Corollary 3 now results from (3.8) by first noting
that n — v(n,z) is the number of edges in E of length

z or less, then writing

Dolel= Y lesl+ D lei

icE e, €E e, €EE
lei] >t jesf<t (3 9)
[} V2
< t—2+/ zd(n —v(n,z)).
t

Integrating the right most term of (3.9) by parts then
applying (3.8), we obtain

vz
/z zd(n — v(n,z)) = V2(n — v(n,V2))
V2
+t(v(n,1) — n) — n(t — V2) + /t v{n,z)dz

< / v(n,z)dr
!

< coft.
(3.10)
Inserting (3.10) into (3.9) and setting t = |E|~1/2 yields

Corollary 3, with ¢35 = ¢,.

5. Concluding Remarks

This paper investigates features of an optimal TSP tour
that can be explicated without any knowledge of the lo-

cations of the points, and, in some cases, even without



*

knowledge of the number of points. It is surprising that
relatively tight bounds can be obtained under these con-
ditions. Two of our main results bring bounds to the
TSP that have been known for some time for the mini-
mum spa.nning-tree, but have been elusive for the TSP
due to its NP-completeness. Our results also create a
new open problem: Can the logarithmic term in Theo-
rem 1 be removed?

The preceding arguments can be generalized to
d > 2, but, because of uncertainty concerning the loga-
rithmic factor of Theorem 1, it seems inappropriate to
give more than a sketch of a generalization to higher di-
mensions. The key idea is that in Lemma 2, we showed
that if three of the D; associated with disjoint edges
had a point in common, then we could find three dis-
joint edges e, es, and ez that were close together and
nearly parallel. The existence of these edges then per-
mitted us to construct a shorter tour. We used the fact
that the e; did not cross to help provide bounds on the
cost of modified paths; of course, such arguments are
not available when d > 2.

Still, if we consider the possibility that a large num-
ber N(d) of d-spheres D; = D(m;,ale;|) C IR? intersect
and that the surface of any sphere in JR? can be covered
with a finite number M (¢) of spherical caps with polar
angle ¢, we can again show that we either have a bound
like (3.1), with 4 replaced by a constant depending on
d and ¢, or else we will have three edges that are suffi-
ciently parallel to permit an argument like that used to

prove Lemma 2. In summary, one can prove

Theorem 3. There exist positive constants ¢4 and

¢y such that for any traveling salesman tour T of

{z1,22,...,2,} C[0,1]¢ and for alln > 2,
Z le]® < cqlogn, (4.1)
e€T
and
va(t)=|{e € T : le| > t}] </t (4.2)

Just as in dimension two, there is a serious possibil-

ity that the logarithmic factor in (4.1) can be removed,
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but such an improvement does not seem to be obtain-
able by the present method.

We note that the methods of this paper are by no
means restricted to the TSP; it is likely that they can
be used to yield a priori inequalities for other problems,

as well.

References

Few, L. (1955). “The shortest path and the longest road

through n points in a region,” Mathematika 2,
141-144.

Karloff, H.J. (1989). “How long can a Euclidean trav-

eling salesman tour be?” SIAM J. Disc. Math.
2, 91-99.

Neumann, D.J. (1982). A Problem Seminar, Springer-
Verlag, New York, NY.

Steele, J.M. (1990). “Probabilistic and worst-case anal-

yses of classical problems of combinatorial opti-
mization in Euclidean space,” Mathematics of
Operations Research 15, 749-770.

Steele, J.M. and Snyder, T.L. (1989). “Worst-case
growth rates of some problems from combina-

torial optimization,” SIAM J. Computing 18,
278-287.

Verblunsky, S. (1951). “On the shortest path through a

number of points,” Proc. Amer. Math. Soc. 2,
904-913.



