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Given n points {(x;, ¥;)} in the plane we study the problem of calculating the least median of
squares regression line. This involves the study of the function f(a, §) = median(|y; - (« + Bx;)]);
it is piecewise linear and can have a quadratic number of local minima. Several algorithms that
locate a minimizer of f are presented. The best of these has time complexity O(n3) in the worst
case. Our most practical algorithm appears to be one which has worst case behavior of
o’ log(n)), but we provide a probabilistic speed-up of this algorithm which appears to have ex-
pected time complexity of O((n log(n))z).

1. Introduction

Given n points (x;, y;) in the plane our computational objective is to find a line
which is optimal with respect to the criterion of minimizing the median of the
squared residuals. Equivalently, because |¢|* is monotone in |¢|, we wish to find
values a* and £* which minimize the objective function

)] fla, )= median(|y;— (a + Bx))).

We follow Rousseeuw [5] in referring to the line y=a*+ f*x a least median of
squares fit because of the compelling analogy with the familiar term, least (sums of)
squares.

One reason for the interest in the least median of squares regression procedure
is that the method has high breakdown point. Roughly speaking, the breakdown
point of a statistical estimator is the smallest percentage of contamination which
may cause the estimator to take on arbitarily large values. This concept was first
studied explicitly by Hampel [2] who extended an earlier concept of Hodges [3]. It
now appears that breakdown point is emerging as one of the basic criteria for judg-
ing the robustness of an estimator (see e.g. Donoho and Huber {1]). One virtue of
least median of squares regression is that it has a breakdown point of 50%, and this
is obviously the highest possible breakdown point of any reasonable estimator (see
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Rousseeuw [5], which also mentions an algorithm and cites Leroy and Rousseeuw
(4.

In the next section we characterize local minima of f and thus give a necessary
condition for global minimizers. This converts the problem of minimizing f into a
discrete optimization. In the course of studying the geometry of f, we will show that
f can have O(n%) local minima. This high number of local minima makes any ap-
proach with gradient methods (or even naive line search) a risky proposition, but
the characterization of the local minima which we exhibit gives an easy route to ex-
act enumerative minimization.

Two algorithms exploiting our characterization are given. The first of these has
time complexity O(n*) and the second has complexity O(n> log(n)). The reason for
putting forth the second algorithm is that in the last section it is modified to provide
a probabilistic algorithm which may be the most practical one available. On the
basis of modest simulation and a reasonably persuasive heuristic argument, it is con-
jectured to have complexity O({n Iog(n)]z) on the average.

In all the considerations which follow, we suppose that the initial data (x;,y;),
| <i=<n, are in general position. More explicitly, we assume no three points are col-
inear, and no two pairs of points determine parallel lines. We also need to disam-
biguate the notion of median in even sample sizes. If u;<---=u,, our convention,
based on convenience, will be to take u,, as the median, where m=1+|n/2]. This
reduces to the middle value for n odd and to the Aigh median, or larger of the two

middle values, if 7 is even. One consequence of these conventions is that />0 when
n is larger than 3.

2. Structure and algorithms

Given o« and B, the line /, = {(x,»): y=a+px} defines residuals ri(a, )=
¥;— (0 + Bx;). When there is no confusion we will simply write r;. We say that /, 5
‘bisects’ the three distinct points (x;, ;) Jj=1,2,3, if the residuals r; are all the
same size and not all have the same sign. If also x; <x;,<x; and r; = —r,=r;, We
say that [, g equioscillates with respect to the points. It is easy to see that each triple
of points is ‘bisected’ by three lines, one of which equioscillates.

We begin the study of the combinatorics of minimizing f by noting that any line
l,,p partitions {1,...,n} into three sets,

By p={i:|ri(e, B)|>S (e B},
M(z,ﬂ: {l lri(a9 ﬁ)! =f(a’ ﬂ)}:
Sg,p={i:ri(a, P <S(a B)}

of big, median, and small residuals, respectively. When there is no confusion we will

drop the subscripts. The following simple result articulates a necessary and suffi-
cient condition for local optimality.
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Main Lemma. The pair (a*, B*) is a local minimum of f if and only if the following
conditions hold:
(1) |/ a*,ﬁ*l =3,
(i1) ly= v equioscillates with respect to the points indexed by M g
(i) [Bys x| = |Sgn pe 2 1.

Proof. Fix § and define r/{a) by ri(a) =y, — (¢ + Bx;). Suppose that |M| =1 and that
|rp(e)] is the median-sized residual. If r,(c) is positive, |r,(a)| decreases as & in-
creases; and, if it is negative, as « decreases. As o changes, }rp(a)l remains the me-
dian until that point ¢’ at which another residual, r,, first attains equal size. We
may assume r,(a’)r,(a’)<0. Otherwise, we could change «’ and decrease both
\r,(a")| and |r,(e")|. Hence, at a local optimum we always have two median sized
residuals with opposite signs.

Now we show that (i) is necessary. Suppose (¢, £) is a local optimum, and that
there are points, say p and g, whose residuals from /, 4 are median sized and of op-
posite sign. Note that /,, s contains the point u=[(x,, y,) + (x4, ¥4)1/2. If no other
data point has residual size |r,|, /, ; may be rotated about u so that both |r,| and
|ry| decrease (equally). They w111 remain median sized residuals up to that point
when another residual, say r,, first attains equal size. This proves that (i) is neces-
sary and also that a line defined by a local optimum will ‘bisect’ the points indexed
by M.

In fact if (@, B) is a local optimum, /, ; must equioscillate. If not, it already
passes through the midpoint of two ‘bisected’ points that have opposite sign. By
rotating about this midpoint, a// three median sized residuals may be reduced in size.
Since at least one of these residuals must remain median sized, (ii) is necessary for
a local minimum.

To see that (iii) is necessary, suppose that (¢, §) is a local minimizer of f. Then
(i) and (i) hold, so there are p, g, and t € M with x,<x,<x, and r,= —r,=r,. The
line /, ; may be rotated about the midpoint of (x,, y,) and (x,, y,) so that both 751
and |r,| decrease while |r,| increases. Let (a’, ') denote the parameters of the
rotated line. By the continuity of y;— (& + fx;), if (&', §') is close enough to (¢, §),
[rplar’, B, |rgler’, 7)), and |r,(a’, B")| are smaller than all |r;(a’, )|, i€ B, g and
blgger than all |ri(a’, B")], i€ S, 4. Since f(a, f)<f(a’, ) we must have M, g =1,
Se,p=S4,5U{P q}, and B, 5=B, 5. The sizes of B,z and S, s can differ by at
most 1, because |r,(a, )| is a unique median, and these facts now imply (iii).

Finally, (i)-(iii) are clearly sufficient. Otherwise there would exist (¢, #”) arbitra-

rily close to (a, §) for which f(a', 8")<f(e, ). But this is impossible because /. 4
cannot equioscillate. [

Besides characterizing local minimizers of f, the lemma turns the problem into a
discrete one. Only lines that equioscillate with respect to some triple of data points
need be considered. The following algorithm checks f(e, #) on such a line for each

triple. By the lemma, the equioscillating line with the smallest value of f will deter-
mine (a*, B*).
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Crude Algorithm

e (J¥— co

° (a* %)< (0,0)

e for each distinct triple 7, j, kK
o renumber points so Xx;<Xx; <X
o B (i— Y/ X —x)s a*’[}ﬁ/"ﬁ)’k“ﬁ(xj‘*Xk)}/z
od; e fla, )
oif d ;,<d* d*<d; and (a* B*)—(a, B)
o restore points to original numbering

This may be the first finite, exact algorithm for least median of squares fits. Its
crudeness is reflected in its complexity of O(n*), even if one uses a linear cost
method to obtain median(|y;— (a+ pBx,)|) for each of the n(n—1)(n—2)/6 lines
mentioned. It would not be practical for even as few as 50 points.

This crude algorithm nevertheless contains the germ of a useful method with a
faster running time. The first step is to focus on lines through pairs of points. Let
Bii=0i— ¥;)/(x;—x;). Because equioscillation is necessary, the optimal f* must
equal ; ; for some i#j. So regard 8 in (1) as fixed, and consider the reduced pro-
blem of finding a minimizer of

() g(a) = median(|z;— al)

where z;=y;— Bx;. If the z; are in increasing order, then a little thought convinces
one that the minimum value of g(e) is equal to the length of the smallest interval
that contains half of the z;. The minimizer a*, is then the midpoint of this interval.
Thus, writing m(n) for the median of {1,...,n},
?3) if 2+ iy — Zp = MIN[E 4 mey = Z) S =15 -, m )], then
mln[g(a)] =Zp+mimy ™ Zps oc*=(z,,+m(,,)+zp)/2.

This formula can also be derived by noting that the graph of g is continuous and
piecewise linear. Each piece has slope * 1, the slopes change sign at each z;, g(z)) =
Zm(my — Z1» and g'<0 for z<z;.

For any B3, let [y« 5 denote the best possible line with slope §. This suggests the
following

Algorithm 1

* (a* p*)<(0,0)

e ¥

e for each distinct pair 7,§
o BB,
o z;+yi—fx;, i=1,...,n
o sort the z;
0 if 2, mn) = Zp =N} 4 m(n) 2> @ Zpamin) = %p
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© a‘_(Zp+,7,(n)+Zp)/2
o if d<d* d*<d and (o* B*) (¢, B)

The complexity within the loop is O(n log(n)) due to the sort, and therefore Algo-
rithm 1 has complexity O(n°> log(n)) overall. This algorithm was used by Leroy and
Rousseeuw [1] for smali # although it was not known to be exact. For larger n they
obtain an approximation to (¢* £*) by modifying Algorithm 1 to apply the loop
to random choices of r and s, rather than to all pairs.

To go beyond Algorithm 1, it is necessary to explicate more of the geometry than
was brought out in the Main Lemma. In condition (ii), let us weaken equioscillation
to the requirement that /, ; only ‘bisect’ points indexed by M. If (¢, f) also satisfies
conditions (i) and (iii), we say it is a ‘possible local minimun’ . The next result iden-
tifies and counts the ‘possibie local minima’.

Little Lemma. There are exactly n(n—1)/2 choices of (&, B) such that I, ; ‘bisects’
the points in M, z and the conditions (i) and (iii) hold.

Proof. Consider the line L; , given by
y=pB;rx—x;)+y;

and which contains points j and k. There are n — 2 nonzero residuals from this line.
Either at least m = | (n—2)/2 | are positive, or m are negative. Assume there are m
positive ones (the negative case can be handled similarly). The first step is to find
p such that r, is the m-th smallest positive residual from L.

Now consider the line Ljfk parallel to L; , and containing (x,, y,). There are three
points on L; , and L}, m—1 points between the lines, and ¢ =n—m -2 points not
between them. Consider the line L, which passes halfway between L;, and L,
The construction assures that it ‘bisects’ points J, k, and p, that j, k, p are in M, and
that (i) and (iii) hold. O

It is natural to ask how many of the ‘possible local minima’ are in fact, local
minima. The answer depends on the particular configuration of data points. In fact
for the ‘bisecting’ line L, to equioscillate, all that is required is that x,, lie between
x; and x,. Using this observation, we exhibit a configuration where f has a qua-
dratic number of local minima.

Let A denote the | n/4 ] points with the smallest x-coordinates and B, the | n/4 |
points with the largest x-coordinates. The remaining points have ‘middle half” x-
coordinates. They will be assigned y-coordinates larger than those of any of the
points in A or B. Now, if point j€ 4 and point k € B are used to define L, as in
the proof of the little lemma, the point p will not be in 4 or B. The line Ljff‘k will
equioscillate and therefore define a local minimum of f. There are n*/16 such
lines, one for each pair j,k in A and B, respectively. This proves the interesting
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Corollary. f can have O(n*) local minima.

The proof of the little lemma suggests another algorithm. Given j and k, compute
the line L given by

y=8x+ Wity =B+ x,)1/2.

The number p corresponds to the m-th least positive (or negative) residual from the
line through points j and k, and may be obtained in linear time. For some pair j, k,
one of these lines will define the minimizer in (1). It may be found in time o).

Algorithm 2
* (a* f*)<(0,0)
e (J*+—co
e m | (n—2)/2]
e for each pair r,s
o deoo
© BB
° ;= Yi—Y,—Blxi—x,), i=1,...,n
o [T-{i:z;>0}, N«—{i:z;<0}
o z,+ either m-th smallest z;, ie Il or m-th largest z;, I€N,
according to the smaller absolute value )
e a(__[yr'{"yp—'ﬁ(xr'*'xp)]/z
o if |z,|<d*, d*«<|z,| and (a* f*) < (o, B)
This algorithm checks all ‘possible local minima’. In contrast, Algorithm 1 checks
a sequence of lines, each of which is optimal amongst all lines with the same slope.

In the next short section we will improve Algorithm 1, both deterministically and
on the average.

3. Deterministic and random improvements

One can improve the practical performance of Algorithm 1 by applying what we
call the wedge trick. Algorithm 1 loops over all pairs r and s but, as we shall see,
the cost of many of these loops can be reduced from 7 log(n) to log(n). On the basis
of our experience, this reduction is possible often enough to make a big difference
in practice.

When examining r, s in the inner loop of Algorithm 1, we find the optimal inter-
cept for lines of slope B, . This defines a* satisfying

“4) fla* B)=f(e p), all .

Equation (3) implies that |M|=2 and that there are p,q € M such that r,r,<0. If
I, p doesn’t satisfy (ii) of the Main Lemma, it may be rotated clockwise about
u=((xy,¥p) + (x4, ¥4))/2 until a point, say s, first satisfies |r,| =|r,|. Let the slope
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of this line be ;. Now rotate /.. 5 counter-clockwise about g until a point, say 7,
first satisfies |r,| =|r,| and denote the slope of this line by B, This defnes a wedge
of lines through g with slopes in the interval W=[g,, ;] for which both p and g
remain in M. Therefore for any e W, the optimal line with slope £ is in the wedge.
This observation allows one to eliminate from further consideration those 7,5 for
which £, ;e W.

The modification to Algorithm 1 (call it Algorithm W) is to compute
W=1[8,, 6,1, take (&, ) to be the parameters of the better of the two lines defining
the wedge (e.g., if |r;|<|r,|, B+ B;), and then eliminate all r, s for which §, ;€ W.
The wedge may be computed in linear time simply by solving n — 2 simple equations
that require |r;| to be equal to |r,|, i different from p or g. To facilitate the
elimination of some B, ;, a preprocessing step could compute all the B, s and sort
then in time O(n*log(n)). Then, given W, those 3, ;€ W may be obtained (say by
binary search) in time O(log(n)) and eliminated from further consideration. In the
sorted list of f,,, we could maintain flags for those slopes which have been
eliminated. Given r and s, a search requiring log(n) time reveals whether f,  is
flagged. If not, we must process this slope. The optimal intercept for §, ; and the
wedge generated by /5, 8, ; may be obtained in time O(n log(n)). Therefore the total
cost of Algorithm W is

K O(nlog(n)) + (n* — K)log(n) + O(n* log(n)),

where K denotes the total number of r, s pairs that needed actual processing.

Monte-Carlo studies of Algorithm W were performed for various models govern-
ing random distributions of points and for various values of » ranging from 10 to
125, each combination replicated several times. A rough exploratory analysis of
these experiments seems to suggest that O(nlog(n)) is a typical value for K.
Although there is not thoroughly defensible model for a ‘random’ fitting problem,
we make the following concrete statement.

Conjecture 1. If (X, Y)), 1 i<n, are independent observations from any bivariate
distribution with continuous density, then Algorithm W has expected time com-
plexity O((n log(m))?).

The probability theory involved in this conjecture appears to be nontrivial. On
the practical side, two points are in order:

¢ Algorithm W has space complexity of O(n?). This means that examples of size
1000 become unrealistic without use of external storage.

e Our experience with data sets of size less than 120 shows that (a* g*) can be
computed rapidly. John Tukey suggested that a useful approximation to the least
median of squares fit for 1000 points could be defined by averaging fits obtained
on random subsets of size ~100.

The final algorithm, Algorithm R, randomizes the wedge trick. In preprocessing,
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slopes f3, ; are computed and sorted. Then, instead of checking the g, s in order,
one is selected at random. If it has not been eliminated already, the wedge
W=1[p,, Bu] generated by f, ; is computed. Then all f€ W are eliminated and the
process repeated until all £, ; have been eliminated or checked.

Algorithm R appears to perform well. We have no proveable complexity results
to assert, e.g., that is superior to Algorithm 1. However we have put together several
heuristic arguments that can be construed as support for the following statement.

Conjecture 2. For Algorithm R, the expected value of K is O(nlog(n)).

We know much less about the general problem. If the (x;, ¥;) are now n points in
R**1 the MM?*R objective function is

median(] y; — (og+ o x; + -+ + X))

Local minimizers must be the normal vectors to hyperplanes that bisect k+ 2 points
with median sized residuals, a conjecture Jeff Salowe established by induction

on k and using the main Lemma. An analogue of Algorithm 1 has complexity
O(n**og(n)).
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