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ABSTRACT

Gibbs models provide a flexible alternative
to traditional methods for specifying statistical
models. Because of the availability of cheap
computation, the Gibbs alternative is now sub-
stantially competitive with traditional methods in
contexts where one can be satisfied with system
simulations, but Gibbs models are at some disad-
vantage in theoretical contexts because their
analytical properties are more difficult to investi-
gate than those of models built from independent
variables.

The first purpose of this talk is to present a
specific Gibbs model concerning random trees
and show how MACSYMA proved of value in
examining its theoretical properties. A second
purpose is to initiate a broader discussion of the
role of MACSYMA in statistical (and other
scientific) research.

1. Introduction to Gibbs Models

Most traditional models in statistics are based on
functions of independent random variables, or more gen-
erally, on variables whose joint distribution is specified by
means of a covariance structure. Although such models
serve us well in many contexts, there are numerous prob-
lems where physical or other phenomena exhibit a qualita-
tive dependency which is not easily expressed by such
techniques. It is in such cases that the flexibility provided
by the method of Gibbs models can be especially useful.

To illustrate the idea of a Gibbs measure in as con-
crete a way as possible we will concentrate on measures on
finite sets §. In the description of Gibbs models it is useful
to employ some evocative language. In particular, the set
§ will be thought of as the set of possible states of a
physical system, and several notions of thermodynamics
will guide our notation. The most essential ingredient of
the method is the function f: S — R which we will call a
potential function. The function f has several interpreta-
tions as either a measure of complexity or of likelihood, but
the bottom line is that we use f to define a measure on S
by the formula

=f syt

() = (1.1)
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Here, of course, the denominator Z(z) is chosen in just the
way needed to make S have total mass one, i.e. KS)y=1
and Z(r) = ¥ e “Y. The choice of r as the indexing

s€S
parameter reflects the historical origins of p,, where ¢ car-

ries the interpretation of temperature. From the perspective
of statistics we should note that the change of variable
8 = 1/¢ brings (1.1) into the form of an exponential family
with natural parameter 6. To benefit from the physical
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intuition behind (1.1), one should note that as 1 — . the
measure |, tends to the uniform distribution on S. This
limit relation captures the notion that at high temperature
any state of § is as likely as any other state. Conversely, as
t =0, the probability measure p, becomes increasingly
concentrated on the set {s: f(s) = minf (')}, the interpre-

tation of which is that at low temperature a few especially
low energy states become extremely likely.

Now, these stories from physics are all well and good
but how do they influence probability models which do not
have direct physical interpretation? The main point of
Steele (1987) is that combinatorial problems can often be
associated with an intuitive Gibbs mode! with a direct com-
binatorial interpretation. In fact, the Gibbs paradigm does
not need much pushing to be seen to be extremely useful in
many situations which are quite removed from the usual
problems of thermodynamics.

While the preceding remarks seem necessary to
motivate our specific problem, the main purpose of the
present discussion is to show how MACSYMA was useful
in the theoretical exploration of a simple Gibbs model from
combinatorics. A second purpose is to review for a statisti-
cal audience some of the literature on the use of symbolic
computation in applied science.

2. Trees of Priifer and Rényi

The specific Gibbs model which concerns us has its
origin in the hunt for a tractable parametric family of ran-
dom trees which can serve to model those trees which one
finds in problems of computer science. To get some per-
spective we will recall some results concerning the uniform
distribution on random trees.

One of the earliest results in the enumerative theory of
combinatorics is the remarkable theorem of Cayley which
says there are exactly n™2 labeled trees on vertices.
When Rényi (1959) took up the modeling of random trees,
it was natural to consider the uniform model where any one
of the Cayley’s n"? labeled trees would have the same
probability of being chosen. The object of main interest to
Rényi was the number of leaves of a random tree, and to
obtain a handle on this problem, Rényi relied on an elegant
code for labeled trees due to Priifer (1918).

Priifer’s simple code is directly applicable to many
questions concerning trees. One builds a one-to-one
correspondence between a labeled tree on n vertices
PyP,...,P, and an (n ~2)-tuple with elements from
{1.2....,n} via the following recipe:

First we find the leaf P; with the highest value of

the index i. We then delete P, from the tree and

record the index j of the unique vertex P; to

which P; was adjacent. This process is repeated




on the pruned tree until n — 2 vertices have been
deleted (and two vertices are left remaining).

Such sequence of recorded adjacency indices is now
called the Priifer code for the tree, and one can show
without great difficulty that the coding provides a bona fide
one-to-one correspondence. As a consequence of Priifer’s
coding, the formula of Cayley for the number of trees on »
vertices becomes obvious; our code has n —2 places and
each place can be held by » values, so n""2 s the cardinal-
ity of the set of labeled trees.

Although it cuts a good story short, it suffices to say
that Rényi used the Priifer code to show that T'(n,k), the
number of labeled trees with & leaves and » vertices, must
satisfy the polynomial identity

TR [n"_k}
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-

This elegant expression permits ore to make many
deductions concerning the number of leaves of a tree
chosen at random from the set of all "2 labeled trees. In
particular, if we let L, denote the number of leaves of a
random tree then one can easily obtain an asymptotic for-
mula for the expected value for the number L, :

n-2

@.n

=X

EL, ~nle. 22

With more effort one can also obtain the variance relation:
L, ~n(e —2)e> (2.3)

Finally, Rényi obtained the central limit theorem for
L, by means of substituting x = 1-irNn into his key
identity (2.1). Several technical problems needed to be
resolved bLy Rényi as he moved from (2.1) to the asymptot-
ics of Ee“™, but his analytical expertise prevailed.

Now the interesting point comes upon us. Rényi’s
detailed analysis pertain to a model which is almost cer-
tainly too limited to apply to any of the empirical situations
of interest! For example, suppose that for your set of
observed trees all of the trees have about n/5 leaves,
instead of n/e leaves. The uniform model would be inap-
plicable, and it seems to offer no place to turn. The ques-
tion becomes, how can we obtain a parametric family of
trees with a natural parameter closely related to the number
of leaves?

The answer is simple using a Gibbs model. We just
let § be the set of all labeled tree on n vertices, and we
define f (s) to be the number of leaves of s € S. If we set
8 = ¢}, we can write (1.1) in the form
ols) = e ~Y 0O (2.4)
where ¢(8) = log(Te "¥®) and ¢'(0) = E(L, is the
expected number of a random tree chosen according to the
probability measure (2.4).

By varying our choice of 6 can make E L, range
through the whole interval [2,n-1), and thus we have a

family of measures on trees which is essentially indexed by
the expected number of leaves.
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This model has a number of benefits. First, it is an
exponential model so many of the nicest results of
mathematical statistics apply to the estimation of 6. Also,
it is a Gibbs model so the method of Metropolis et.al. can
be used to generate random trees which satisfy the given
law. Finally, as shown in Steele (1987), the random
variables L, are asymptotically normal.

The purpose of the next section is to illustrate how
MACSYMA entered into the exploration of this model and
how it helped lead to the resolution of the asymptotic nor-
mality of L, under the Gibbs model.

3. Harper’s Method and Computational Empiricism

The central limit theorem for L, was obtained in
Steele (1987) through the application of a technique which
was introduced by Harper (1967) for the study of Stirling
numbers. Harper’s basic idea is so simple it can be dis-
cussed in a beginning probability course. Still, the method
is quite powerful, and, even when it fails, it often brings a
new analytical insight into the problem.

So, what is this nifty method? Suppose you wish to
study a random variable Y with probability generating
function k(x), and you consider the equation:

h(x)=po+pyx+px’+. . 4px"=0. (1)

Now, suppose for some reason you know that (3.1) has
only real roots, r,, 1 <i <n. Since the p, are non-
negative, the r; are all non-positive, and 4 can then be fac-
tored into the form

h(x)=Tlx+r)/(1+r) = TIpix +4;).

i=l i=1

32)

Now, with this before us virtually all probability questions
about Y are easily resolved, since (3.2) says that ¥ is equal
to the sum of » independent Bernoulli random variables.

Returning to the Gibbs model of random trees, Steele
(1987) showed that only a litle manipulating is required to
establish that (1) Rényi’s CLT (2) a Berry-Essen
refinement of Rényi’s CLT and (3) the CLT for random
trees under the general Gibbs model will all follow easily
once one proves that the equation

n-1
T Tk, nx* =0

k=2

(3.3)

has only real roots.

The handles we have on (3.3) are that T(n,k) can be
expressed in terms of Stirling numbers of the second kind
by

T(n,k)=s(n=2,n—k)n'/k! (3.4)

and the Stirling numbers satisfy the classical recursion

s(n, k) =ks(n-1,k)+s(n-1,k-1).

Once we leam enough about the geometry of zeros of
polynomials, it is not hard to show (3.3) has only real roots;
but before even starting to learn what needs to be known, it
seems to be almost a psychological requirement to find out
whether Harper’s method really has a chance. After all, it




is quite possible that (3.3) does have non-trivial complex
1oots.

Fortunately, one can easily investigate (3.3) using
MACSYMA and the following interactive code should
illustrate the point. (The c¢-lines are entered command and
the d-lines are MACSYMA''s replies. The other notations
should either be intuitive, or at least easily understood after
reading the companion article by Rand (1987).)

(1) s{n,k}:=s[n—1,k1* +s{n-1k~1};
@1) 5, 4 =8y pk + 5,105

(c2) for n:1 through 50 do (s [, 1}:1);
(d2) done

(c3) for a:1 through 50 do (s [, n]:1);
(d3) done

(€5) tin, k) =5[n-2,n—k}/factorial (k );

Sn-2p-k
@)ty =
{Technical Remark: One should note that 1, ; differ
from the values T(n.k) of (3.3) only by a factor of n!,

a factor not impacting the location of roots. }
(c6) pln)x) =sum(x *¢[n,j1.j, 2, n-1);
d6) p,(x) = sum(xjx”,j,z,n—-l);

(c7) p[5)x);
).'4 X 3 12
d7) —+—+—;
24 2 2
{Technical Remark: This differs from the probability

generating function for L, by a factor of n!/n"™?
which for n = 5 is a reassuring 24/25.}

(c8) all roots (%);

(d8) [x = 0.0, x =00, x = —1.101020514433644,
x = ~10.89897948556636];

(c9) p(8Xx);

All roots again can do its job and find that the roots
are, to more places than we care to record,
{0, 0, <0.27, ~0.99, ~3.23, =-14.20,~198.28}. In the same
way, we find for n =15 the roots of p[i5)x) are
{0, 0, -0.065, ,...,—56488.80}, and again we find that all
of the roots are indeed real.

Before leaving this example, or embarking upon any
summary observations about symbolic computation, some
points should be made concerning zero locations and their
role in Gibbs models. First, we should note that proof of
the fact that (3.3) has only real roots is given in Stecle
(1987), where a key lemma is provided by a result due to
Polya and Schur (1914) which exhibits a polynomial to
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polynomial transformation which preserves the property of
having only real roots. The interplay between Gibbs
models and zero location are amusing in the combinatorial
context but there are also far more serious contributions
with a similar flavor. Kac (1974) tells a charming story
how a result on zeros due to Polya (1926) was instrumental
in the work of C.N. Yang and T.D. Lee in the theory of
phase transition of a lattice gas.

4. MACSYMA in Applications

The use of MACSYMA reported here has several pro-
perties which seem typical of cases where MACSYMA
proves to be of real service in mathematical research. First,

“the assistance provided by MACSYMA came in the form

of encouragement rather than proof. Second, MACSYMA
became engaged with the problem through the exploration
of a significant example, rather than by frontal assault on
the general problem. Third, MACSYMA provided a con-
venient interactive environment for performing a calcula-
tion which could have been performed with far humbler
tools.

There is no reason to apologize for any of these pro-
perties, and in fact, there is some power in embracing these
features as the honest path of MACSYMA application.
The problem considered here was amenable to a very
straight forward application of MACSYMA as a tool of
exploratory mathematics. Still, even in modest explora-
tion, MACSYMA sometimes will buckle under the weight
of a seemingly reasonable request. Fortunately, calcula-
tions in MACSYMA can be guided toward a problem along
many different paths and sometimes such guidance makes
a big difference. For a study of such a case and its happy
resolution, one should read the discussion provided in
Campbell and Gardin (1982) conceming some symbolic
determinants.

This report has emphasized the easy uses of
MACSYMA, but MACSYMA can indeed support exten-
sive development. The possibilities of such development
are well brought out by Watanabe (1984) which reports on
the successes and failures of a 1400 line MACSYMA ODE
solver as applied to the 542 equations solved in Kamke
(1959).

In addition to personal exploration, the best place to
learn the capabilities of MACSYMA is Rand’s Computer
Algebra in Applied Mathematics: An Introduction to
MACSYMA. The examples in that volume guide one
through a useful exploration of MACSYMA's facilities,
but its principle benefit is that the focus is kept on the use
of MACSYMA in scientific work, in contrast to profes-
sional involvement with symbolic computation. There are
numerous surveys of the application of MACSYMA in sci-
ence and engineering, and one can get a good feeling for
the scope of MACSYMA applications from Engeler and
Mider (1985), Fitch (1979), and Pavelle (1985).

Finally, some comment should be made which ack-
nowledges that MACSYMA is but one of many symbolic
computational environments. Loos (1982) mentions that
there are at least 60 computer algebra systems. Besides
MACSYMA, the best known are probably muMATH,
REDUCE, and SCRATCHPAD, and each of these has its




own virtues. One possibly historic development in sym-
bolic computation took place this month with the introduc-
tion of the Hewlett-Packard 28C, the first hand-held calcu-
lator to do symbolic algebra and symbolic calculus. If his-
tory serves as a reliable guide, symbolic algebra will soon
be as available as there are people with a desire to partici-
pate in its benefits.
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