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1. Introduction

The purpose of this report is to show the applicability
of some recent work in computer science to a problem of
current interest in robust regression. In particular, point-
line duality and line-sweep methods are applied to provide
an algorithm for computing least median of squares regres-
sion lines. The algorithm which is obtained has a worst
case time complexity of 0(n’logn) using only 0(n) space.
This report should be thought of as an introduction to the
more detailed papers Steele and Steiger (1986) and
Souvaine and Steele (1986).

First, there is a brief review of some notions of robust
regression and the motivation for regression methods with
high breakdown point. The least median of squares regres-
sion method is introduced, and its computational issues are
reviewed. The third section discusses point-line duality
and its application to the problem of least median of
squares regression. The fourth section develops the key
observations of the sweep line method and sketches an
algorithm for least median of squares regression.

The final section provides information about a second
algorithm which is detailed in Souvaine and Steele (1986).
The second algorithm uses more sophlsncated data struc-
tures, has worst case complexity of only 0(n ), but suffers
from a 0(n?%) space requirement. Additionally, the final sec-
tion reviews some other recent work in computer science
which can be expected to have an impact on work in com-
putational statistics.

2. Notions of Robust Regression and Breakdown Point

The breakdown point of an estimator is (roughly) the
smallest amount of contamination of the data which can
cause the estimator to take on arbitrary large values. The
first extensive discussion of breakdown point is given in
Donoho and Huber (1983), but they trace the concept to the
thesis of F.R. Hample (1968). The discussion of Donoho
and Huber lends much credence to the notion that the crude
notion of breakdown is a very useful measure of robust-
ness, especially as applied in small sample contexts.

Information about the breakdown properties of many
robust regression proposals is provided in the key paper by
Rousseeuw (1984) on Least Median of Squares Regression
(LMS regression), and LMS regression if found to compare
favorably with all current proposals.

Formally, if we have data (x,,y;), 1 <i < n, and we
wish to fit a line y = ax + b, we consider the set of residu-
als r; = y; —ax; —b associated with @ and 5. We then
choose as estimates the 4 and & which minimize the
feature of merit

f(a,b) = median riz.
1Si<a
One point to note is that if median is replaced by mean
then the corresponding feature of merit would lead to a
rephrasing of the procedure of ordinary least squares.

The first considerations of the computation of LMS
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regression are in Rousseeuw (1984) and Leroy and
Rousseeuw (1984), but the first formal study was given in
Steele and Steiger (1986). For (x;,y;) in general position, it
was proved that f (a, B) has at least cn? local minima. One
consequence of this large number of local minima is that
traditional local optimization methods will prove fruitless
for determining 4 and &.

One must confront a combinatorial problem, and
Steele and Steiger (1986) showed that there is a reduction
to a tractable combinatorial procedure which yields an
exact minimization of f via a finite search with worst time
complexity of 0(r°).

Souvaine and Steele (1986) give two faster algorithms
for computing LMS regressions. The first of these depends
upon the technique of point line duality and the sweep-line
method. This algorithm was shown to have worst case
time complexity O(nzlogn) with a space requirement of

0(n). The second algorithm requxred more complex data
structures, needed space of size 0(n ), but was able to pro-
vide worst case time complexity of 0(n?%. For the purpose
of this exposition, perhaps the best objective is to review
just the first of these two methods and suggest how such
technology is used in LMS regression. Suggestions are
also made that might be useful in related work.

3. Point Line Duality and Its Application

The duality which will concern us here is given expli-
citly by the transformation 7 on points and lines which
takes the point (a,b) to the line y = ax +b and which
takes the line y = ax +b to the point (-a, b).

Under this transformation, the point P that is deter-
mined by two lines L, and L, is mapped to the line 7P
which is determined by the two points TZ, and 7L,. Like-
wise the line L determined by two points P and P, is
mapped to the point TL determined by the two lines TP,
and TP,. These relations lie at the base of duality and they
are shared by the classical transformation § of Poncelet
which maps the point (a,b) to the line ax + by +1 = 0 and
maps the line ax+by+1 =0 to the point (a,b). It is
interesting to note that S =1, but T2 # I where / is the
identity mapping. This small loss of mathematical sym-
metry is well compensated by other properties of T which
will be identified shortly.

In statistical work the point/line duality T has been
used most recently in the work of Johnstone and Velleman
(1985) which gives an algorithm for a different robust
regression method, the resistant line. In data analysis and
in simple linear regression, duality has also been used by
Emerson and Hoaglin (1983), Dolby (1960), and Daniels
(1954).

The benefit of the transformation T is that, in addition
to the basic duality properties, it has some important order
invariance properties. The first of these ordering properties
is that the transformation T preserves the relationship of




"above" and "below" for points and lines. That is, if P is
above L then TP is above TL. Secondly, the transforma-
tion T preserves the vertical distance berween points and
lines; TL is above TP by exactly the same distance that L
is above P, erc. Understandably, this property is crucial in
a problem where a median residual is to be minimized over
a selection of lines. One simply has to have some form of
isometric invariance in the duality if it is to prove at all
useful.

The final important order invariance property of T is
that if the slope of L is larger than the slope of L', then the
x-coordinate of TL is smaller than the x-coordinate of TL'.
This relation is trivial from the definition, but it is still very
useful in practical applications.

In order to phrase LMS regression as a finite problem
which can be precisely dualized, it is worthwhile to intro-
duce some terminology relevant to its local structure. First,
for any o and B, the line /g = {(x,y): y = o + B} defines
residuals r;(o, ) which are functions of o and B. We can
typically write r;(e, ) as r; without fear of confusion. We
say the line I, bisects three distinct points
(xii,yij) Jj = 1,2,3 if all of the r;, are of the same .magni-
tude r but not all have the same sign. If x; <x;, <x; and
ri, =, =1, wWe say 1, o equioscillates with respect to
the points.

It was proved in Steele and Steiger (1986) that the
LMS regression line must be an equioscillating line. Since

there are at most such lines, a naive algorithm would

n
3
be to examine them all. Obviously, any algorithm faster
than 0(n ) must work differently.

Given an equioscillating line 1, p there are two related
lines with slope a; the line L, determined by the points
Py=(x,y;) and Py = &y ) and the line L, which goes
through the point P, = (x;,y;). A key property of the
LMS regression line I, 5 is that the number K of points
between L and L, must satisfy

(n —4)2 neven
K =
(n ~5)2 nodd

provided n >3 (cf. Steele and Steiger (1986), Main
Lemma).

One simple method of determining the LMS regres-
sion line can now be given. For each triple of data points
P ,P,, and P, which are ordered by x-coordinate, we first
determine lines L, and L, as above. Next we find such a
triple with exactly X data points between L, and L, and
such that the vertical distance between L, and L, is minim-
ized. The LMS regression line is the line which goes
exactly between L and L,.

We can now see the rephrasing of our problem
obtained by applying T to the data points and the lines they
determine. The condition that there are K points between
the lines L and L, becomes the condition that there are X
lines between the points 7L, and TL,. Further, TL, is the
point determined by the two lines 7P, and TP 4; TL, is the
point on the line TP, which has the same x-coordinate as
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the point TL .

Our algorithmic problem in dual can now be
expressed as follows:

Given » lines L;, 1 £ i < n, in general posi-

tion in the plane with intersection points

Py, 1 S i<j < n,find that line L* and inter-
section point P* such that among all line-point
pairs (L, P) which have exactly K of the L, cut-

ting the vertical segment S joining L and P, the

pair (L*, P¥) has the smallest vertical distance.

The sweep-line technique for solving this dualized
problem will be given in the next section.

4. Sweep-Line Algorithm and Space Efficiency

The sweep-line technique "sweeps” the plane by com-
binatorially moving a vertical "sweep-line” from the left to
the right. Souvaine and Steele (1986) provide what is
probably the first application of this technique in the area
of regression, but Shamos and Hoey (1976) and Bentley
and Ottman (1979) have shown that sweep-line techniques
are applicable to a variety of problems in computational
geometry.

The sweep-line algorithm requires two off-the-shelf
data structures. The first of these (to be called) LIST will
maintain our set of » lines in a geometrically meaningful
order. LIST can be implemented as a simple linked list but
we will want to augment it with some additional pointers
which will help LIST interact with the second data struc-
ture.

Our second structure will be used to store a certain
subset of n—1 out of the set of n(n—1)/2 intersection points
P;. The structure we create will permit us to access the
"smallest” element in time 0(1) and permits the insertion or
deletion in time O(log n). The ordering we will use to give
meaning to "smallest” is that P; « P, provided the x-
coordinate of P;; is smaller than the x-coordinate of P,,.
To implement this second structure we can use a heap (see
e.g. Aho, Hopcroft, and Ullman (1974)). We will refer to
our particular structure as HEAP.

The initialization of these structures will show how
they will be used and will help make the algorithm tran-
sparent. We begin by computing a value A such that all of
the intersection points lie to the right of aline L : x = A.
This would be trivial to do this task in time 0(n“) by com-
puting the values P;; successively and retaining only the
left-most. It is instructive (and illustrative of a basic tech-
nique) to see how this can be done in time 0(n logn).

To find A fast, we first note that to the left of all of the
intersection points the lines are themselves ordered by
slope, i.e. the line with lowest slope is above all of the
other lines, erc. This observation implies that if we first
sort the lines L;, 1 £ i $ =, by slope then the left-most
intersection point P;; must be an intersection of two lines
which are adjacent in the list of lines sorted by slope.
Thus, to find the left-most intersection point we can succes-
sively compute the intersection points of adjacent elements
of the slope-sorted list of lines, keep only the left-most P
and proceed down the list. This computation requires




0 logn) time because of the preliminary sorting of the
lines by slope. We did not have to dig out a clever way of
executing this step, but doing so sets up a similar idea
which will be crucial for our overall time complexity.

We next introduce another vertical line L which we
call the sweep-line and we initialize L to L,. The line L is
not essential to the algorithm but it helps articulate a pro-
gram invariant which helps make verification of the algo-
rithm clearer.

We initialize LIST by placing the L; into the list in
decreasing order of L, -intercept. We will also augment the
structure holding the L, by storing along with each of the L;
a set of four pointers Upl, UpK, Downl, and DownK which
will point to the lines which are 1 above L;, K above L,
and so forth in the ordering which is given by LIST. Since
lines too near the top or bottom will not have lines satisfy-
ing the required conditions we set the pointers to the null
value to flag this situation.

A key geometric observation parallel to the idea used
to compute L, is that from the whole set of n(n—1y2 inter-
section points Py, 1 Si<j < n, the one which is
nearest to the sweep-line L must be determined by a pair of
lines {Li,Lj} which are adjacent in an ordered list which
was initialized by L,-intercept. This observation permits
us to keep a set of candidates for the "next point to explore"
which is at most of cardinality n~1,

Formally, we pass through LIST and for each adjacent
pair L; and L; in LIST we install P;; in HEAP. We do this
while respecting the ordering of the P; by x-coordinate
and we end up with a heap of size n—1 with the left-most
of the P; installed at the root. As an important adjunct to
the heap building process we make a double set of pointers
which associate the elements of HEAP and the elements of
LIST. Specifically, for each adjacent pair L; and L; in
LIST (and each corresponding intersection point Py in
HEAP) we create pointers from L; and L; to P, and
pointers from PjtoL;and L.

This step completes our preprocessing and initializa-
tion phase, so we should make a preliminary tally of
fesources consumed. First, because of the sorting, LIST
requires time Oz logn) to build and space 0(n) to store.
Since HEAP is also of size O(n), it can be created in time
0(n) and space O(n) using well-known methods.

The algorithm for computing the LMS regression line
is now almost trivial using the data structures we have
built. The picture to keep in mind is that of sweeping the
vertical line L from L until it has passed through all of the
points. What we will do is manage LIST and HEAP in
such a way that (1) LIST always provides the ordering of
L; according to decreasing order of L-intercept, (2) the
pointers stored in LIST remain consistent with their initial
definition, and (3) HEAP always stores as its minimal ele-
ment the intersection point P, which has smallest x-
coordinate of any intersection point to the right of L.

5. Final Remarks

The sweep-line method which was just discussed is
easy to implement and has substantial generality. Still, it is
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worth understanding that there are more sophisticated
methods for the systematic search of an arrangement and
there may be instances where the associated overheads
(both computational and intellectual) are justified.

There is one particularly relevant data structure due to
Chazelle (1984) called a Hammock and which is used in
Souvaine and Steele (1986) to provide a 0(n?) time 0%
space algorithm for LMS regression. Moreover, there are
data structures for searching higher dimensional arrange-
ments due to Edelsbrunner er.ql. (1983) which should be
very useful in the study of LMS methods for multivariate
regression (at least as a theoretical tool).

Finally, the technique of line sweep has been
extended recently by Edelsbrunner and Guibas (1986) to
what they call "topological sweeping of an arrangement."
This is an extremely promising technology which will be
sure to have an impact on computational statistics.

References

Aho, AV, Hopcroft, J.E., and Ullman, 1.D. (1974).
The Design and Analysis  of Algorithms ,
Adison-Wesley, Reading, MA.

Bentley, J.1. and Ottman, T.A. (1979). "Algorithms
for reporting and counting geometric intersec-
tions", IEEE Trans. Comp., C-28, 643-647.

Chazelle, B. (1984). "Intersecting is easier than
sorting", Proc. 16th ACM STOC, 125-135.

Chazelle, B. Guibas, L.J. and Lee, D.T. (1983). "The
power of geometric duality,” Proc. 24th IEEE
FOCS, 217-225,

Daniels, H.E. (1954). "A distribution-free test for
regression parameters,” Annals of Mathemari-
cal Staristics, 285, 499-513.

Dobkin, D.P. and Souvaine, D.L. (1986). "Computa-
tional Geometry - A Users Guide," Advances
in Robotics I: Algorithmic and Geomerric
Aspects of Roborics, J.T. Schwartz and C.K.
Yap (Eds.), Lawrence Erlbaum Associates,
Hillsdale, NJ.

Dolby, J.L. (1960). "Graphical procedures for fitting
the best line to a set of points," Technometrics,
2,477-481.

Donoho, D.L. and Huber P.J. (1983). "The notion of
breakdown point", A Festschrift for Erich [.
Lehman, P.J. Birkel, K. Doksum, and JI.L.
Hodges (Eds.), Wadsworth, Behmont CA,
157-184.

Edelsbrunner, H. O’Rourke, J. and Seidel, R. (1983).
"Constructing arrangements  of lines and
hyperplanes with applications,” Proc 24th
IEEE FOCS, 83-91.




e

Edelsbrunner, H. and Guibas, L.G. (1986). "Topolog-
ically sweeping an arrangement,” Technical
Report, Stanford University, Department of
Computer Science.

Emerson, I.D. and Hoaglin, D.C. (1983). "Resistant
lines for y-versus-x." In D.C. Hoaglin, F.
Mosteller and J. Tukey (Eds.), Understanding
Robust and Exploratory Data Analysis, John
Wiley, New York.

Hample, F.R. (1968). "Contributions to the Theory of
Robust Estimation,” Ph.D. Thesis, University
of California, Berkeley.

Harary, Frank (1972). Graph Theory, Addison-
Wesley Publishing Company, Menlo Park,
CA.

Johnstone, LM. and Velleman, P.F. (1985). "The
resistant line and related regression methods,”
J. Amer. Statis. Assoc., 80, 1041-1054.

248

Leroy, A. and Rousseeuw, P.J. (1984). "PROGRESS:
A program for robust regression,” Report 201,
Centrum voor Statistick en Operationell
Onderzoek, Univ. Brussels.

Rousseeuw P.J. (1984). "Least median of squares
regression,” J. Amer. Statist. Assoc., 79, 871-
880.

Shamos, M. and Hoey, D. (1976). "Geometric inter-
section problems, IEEE FOCS Conference,
Houston, TX.

Souvaine, D.L. and Steele, .M. (1986). "Time and
space efficient algorithms for least median of
squares regression,” Technical Report, Pro-
gram in Statistics and Operations Research,
Princeton University.

Steele, I.M. and Steiger, W.L. (1986). "Algorithms
and complexity for least median of squares
regression,” Discrete Applied Mathematics, 13
509-517.




