ot

Analysis of a Randomized Data Structure
for Representing Ordered Sets!

Jon Louis Bentley
Departments of Computer Science
and Mathematics
Carnegic-Mellon University
Pittsburgh, PA 15213

, Donald F. Stanat
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27514

J. Michael Stcele
Department of Statistics

Stanford University
Stanford, CA 94305

7 October 1981

Abstract

Janko has described an efficient randomized sorting algorithm for ordered sets. In this paper we extend the
basic data structure of his algorithm to a randomized data structure for representing ordered sets, and give a
precise combinatorial analysis of the time required to perform various operations. In addition to a practical

data structure, this work gives a new probabilistic lower bound and an instance of a problem whose

randomized complexity is provably less than its deterministic complexity.

1'I‘his rescarch was supported in part by the Office of Naval Rescarch under Contract N00014-76-C-0370 and in part by the National

Science Foundation under Grant MCS-78-07736.

7 October 1981 ' . A Randomized Data Structure

Table of Contents
1. Introduction
2. The Problem and Its Dcterministic Complexity
3. A Randomized Algorithm
4. A Lower Bound on the Randomized Complexity
5. A General Data Structure
6. Conclusions
References

OO OO0 ~) Wh NI — Pt

7 October 1981 ' . A Randomized Data Structure -1-

1. Introduction
In this paper we will consider the problem of maintaining a set from a totally ordered domain under the

operations Member, Insert, Delete, Predecessor, Successor, ctc. The basic data structure we will use to
represent such a set is due to Janko [1976, 1977]: a sorted linked list implemented by the two arrays

Link[0..NJand Value[1..NJ(where Link[0] points to the first cicment in the list).

In Scction 2 we will define the problem more preciscly and sce that the worst-case complexity of
pcrforrmng a Member scarch is lincar in N. "In Scction 3 we will sce a randomized algorithm for Member
searching that requires only ~2Nl/ 2 comparisons, and in Section 4 we will sce a lower bound that shows that
~(2N)1/ 2 comparisons are necessary, on the average. Thosc scctions deal only with Member scarching; other

operations on sets are considered in Section S. Finally, conclusions are offered in Scction 6.

2. The Problem and Its Deterministic Complexity

" The data structure we will study was briefly mentioned-in the introduction; we will now describe it in more
detail. It is a sorted linked list implemented in contiguous storage by the two arrays Link[0..N] and
Value[1..N]. The pointer Link[0] points to the first clement of the list, Value[Link[0]7; the next
element can be found in VaTue[Link[Link[0]]], and so forth. The end of the list is denoted by an
clement whose Link field contains --1. Furthermore, we will insist that the array is dense: val uel[1..N]
must contain N clements of the represented set. The sortednéss of the linked list implies that if Link[I] is
not —1, then

‘ Value[I] <Value[Link[E]].

We will often refer to Vatue[I7] and Link[I] together as node I. The following figure illustrates the array
representation of the sorted linked list €2.6, 3.1, 4.1, 5.3, 5.8, 5.9, 9.7>.

I 0 1 2 3 4 5 6 7
Value[I] il 4.1 59 26 5.3 58 9.7
Link[1] 4 2 -5 7 1 6 3 -1

It is clear that performing a Member search in such an array requires accessing at most N clements of the
array (either by following L1 nk fields through the list or simply by iterating through Value ficlds of the

array). -

We will now show that in the worst case, linear time is necessary to locate whether a given clement is in the

list. We will assume that a (deterministic) scarch algorithm is composed of operations of the following types.

1. Determine the index of the node at the head of the list (by accessing Link[0]). There is one
operation of this type.

2. Determine the Value of node I, for 1<I<N (by acccssmﬂ Value[I]). 'lhcrc arc N opcratrons
of this type.

-7 October 1981 A Randomized Data Structure -2-

3. Determine the successor of node I, for-1<I<N (by accessing Link[I]), where node I was
previously accessed by an opceration of Type 1, 2 or 3. {There are N operations of this type, but
only r of them are valid when r nodes have-been accessed by previous operations.) ***Is this a
drag? Can we remove it7***
We will assume that cach of the above operations has unit cost. (Note that if operations of Type 3 have no

cost then binary search can be used to solve the problem in logarithmic time.)

Our model assumes that a protagonist specifies a sequence of the above operations while an adversary
ensures that N operations will be required. We will assume that the adversary knows the value of the key the
protagonist secks, which we will call V, and that other key values may be assigned arbitrarily by the adversary.
We will describe a strategy that enables the adversary to delay returning V until the protagonist haé specified a

sequence of N operations,

To aid in his task, the adversary maintains a partial specification of an ordered list that is consistent with his
responses to date. The data structure initially consists of two empty linked lists, which we will call the

"bottom list""and the "top list". ***Finish

3. A Randomized Algorithm .

In this section we will consider the randomized complexity of the searching problem. We will investigate
an algorithm derived from Janko’s [19'76]; it uses the fact that the list is stored in contiguous storage to sample
randomly several elements bf the sorted list, and then follows the links from the one that is closest to the
desired clement in a sequential scan. Janko analyzed this method statistically using approximations; we will
study a precise combinatorial analysis showing that if we sample k elements then the number of comparisons
made in the sequential scan is ~N/(k+1). Choosing & as NY2 shows that ~2N/2 comparisons suffice on the

average to find the desired clcment.

The algorithm we will study is described in the following pseudo-Pascal program that scarches for the

element T in the data structure described in the previous section.

o

7 October 1981 A Randomized Data Structure -3-

P :=0 :
for.I := 1 to- K do
J := Random(1,N)
if.Value[J] < T and Value[J] > Value[P] then
p :=J .
while Value[Link[P]] < T do
P :="Link[P]

~if value[Link[P]] = T then
(* T is in Link[P] *)
else
(* T is not present; we could insert it after P *)

Program 1. Scarch for T in a linked list. .
The operation of the above program is straightforward. The for loop randomly samples & clements of the
array, and stores in P the pointer to the node of greatest Value among all sampled nodes with Value less
than T. (The function Random(1,N) returns an integer chosen uniformly from the range 1..N.) After that,
the Whi]e loop follows Link fields until it cither finds T or an element greater than T; the appropriate
processing of the element could be inserted in place of the comments in the if statement. The above code
assurnes that Value[0] is —oo (this is the zero™ node in the list) and that Value[= 1] is oo (this is the last
node in the list); those aésumptions are not necessary for the algorithm, but they do make the code simpler

and more efficient.

We will turn now to an analysis of the running time of Program 1. If k is an input parameter to the
procedure, then the only variable in the running time is the number of comparisons made by the whi1e loop.
That number is a function of two conditions: the position of T in the list, and the random numbers returned
by the random number generator. Our analysis Will be worst-casc in one sensc: we will assume that the search
object T is greater than every e]cment'in the list (that is, than all elements of Value[1..N]). The most
important part of our analysis will be probabilistic: we will assume that all Nk possible sequences of outputs
from the random number generator are cqually likely. Notice that no assumptions are made regarding the

distribution of the elements of Value[1. .N] or of their order in the array. .

The following lemma reduces the analysis of Program 1 to a straightforward combinatorial problem. The
lemma assumes the definition that M KN denotes the minimum of k& integers chosen uniformly with

replacement from 1..N.

Lemma 3.1: Reduction to minimum.)
The distribution of the number of comparisons made by the while loop in Program 1 to find a search
value T that is greater than all clements of Value[1. .N] is identical to the distribution of M

Proof: ,
The key to this lemma is the permutation function Perm defined as follows for any valid assignment of
Link valucs (Perm is bijective on thé integers in 1..N). Let j be the unique integer such that Link [/]

E[M

7 Octo.ver 1981 ' | A Randomized Data Structure -4-

= —1; then Perm(j) 2 1. Note that if the variable P in Program 1 is j after the for loop, then the
while loop will maicc exactly one comparison. In general, if Pernn(i) = k and Link[m]=, then
Perm(m) & k+1. It is casy to cstablish by induction the fact that if the variable P in Program 1
contains jafter the for loop, then the while loop will make Perm(j) comparisons. Furthermore, the
for loop will sct P to be that j with minimum value of Perm(j). Thus Perm can be viewed as mapping
array indices into their distances from the end of the linked list, and Program 1 chooses the minimum

index of the k it samples.

To cstablish the lemma we use the fact that choosing a random integer from 1..N and applying an
arbitrary permutation function gives a random integer from 1.. V.

The above lemma has reduced the analysis of Program 1 to the combinatorial problem of analyzing the

distribution of M N the next lemmas do exactly that.

Lemma 3.2: Expectation of minimum.
The expected value of the minimum of & elements chosen randomly with replacement from 1.V is

EM,y = (Zi N)/N"'

1<k<

Proof:
The key observations in the proof are that there are a total of N* k- -arrangments of 1.V, and that

(N—+ l)k of those arrangements have a minimum value of i. The above expectation then follows by
straightforward algebra.

Using standard approximations with the above lemma shows that for fixed k and large N, we have

N] ~ N/(k+1). However, we will be concerned with the case that k] varies as a function of N (and

specifically, when k grows as @ CIN)U 2) we therefore need the following lemma.

Lemma 3.3; Expectation of growing k.
For integer N > 2 and real a such that NY2q >2,

NY%/a- 172 < EM W% M < NY%a + Va + 4(@NY),

Proof Sketch:
The proof is by the Euler-McI__aun'n formula, and is omitted from these proceedings for brevity.

With the above lemmas in hand, it is easy to establish the following theorem.

Theorem 3.4: Analysis of Program 1.
If the variable K in Program 1 is cqual to
Value array.

NY2 then the program makes NV 4 O(1) accesses of the “

Proof: ')
Immediate from Lemmas 3.1 and 3.3. - ’

A Tiead meetees i e it 2

o e e e

SN

7 October 1981 A Randomized Data Structure -5-

4. A Lower Bound on the Randomized Complexity ’

Janko [1976] proved that the ~IN2 comparisons of the algorithm of Section 3 are optimal over the class of
all strategics that first perform a number of random probes and then scquentially search from the best. In this
scction we will show a weaker lower bound on the randomizc.d complexity of scarching a linked list that holds
in a more robust model. We il first define a probabilistic game such that the number of opcrations in the

game is cxactly the number of values accessed by the scarching algorithm, and then prove a lower bound on

the number of operations in the game.

We will now study two variants of a probabilistic game; the second variant corresponds exactly to the

problem of scarching in a linked list, while the first version contains more information than the scarching
problem.

Definition 4.1: Probabilistic games G, and G,
Both variants G1 and 02 of this game involve two integers, { and N; the value of N remains fixed

throughout the gaine, and the value of /is originally N. The goal of the player is to reduce the value of
i 10 zero in the minimal expected number of steps. ‘The value of the game G, is defined to be the
expected number of steps uscd by an optimal strategy and is denoted by G 1(N); similarly the value of
the game G, is denoted by G,(N). A step consists of performing one of the following two opcrations.

o D (for Decrement): Replace i by i—1.

e G (for Guess): Choose j to be an integer uniform from 1..N and replace i by jifj < i
There are two variants of the game: in the first variant, GI, the player knows at all times the current
value of i. In the second variant, GZ, {is unknown and the player is notified when i becomes zero.

The game G2 models the problem of searching a linked list of N elements if we assume only the operations of
randomly probing an clement of the list (corresponding the the G opcration) and following a link

(corresponding to D). The initial condition (that /= N) corresponds to having a pointer to the initial element

of the list, and the final condition assumes that the scarch element is greater than all elements in the list.

The analysis of Section 3 shows that in game Gz’ where i is unknown, the strategy of performing NYIG
operations followed by a series of D operations performs a total of ~2NY2 operations, on the average. This
cstablishes the upper bound that G,(N) < ~2NY2, We conjecture that this bound is tight, but we cannot
prove that. In the rest of this section we will prove a lower bound for G, by proving a lower bound on Gl;
since the game G | contains more information than GZ', a lower bound on the former implies a lower bound on
the latter (that is, Gl(N) < ,Gz(N))' Specifically, we will demonstrate an optimal strategy for G1 that shows
that Gl(N) = ~(2N)1/ 2. These results together identify the value of GZ(N) to within a constant factor of 21/,

We will use dynamic programming to cstablish the optimal strategy for the game Gl. We will let the

function F(i,N) denote the number of operations required by the optimal strategy for G | for given values of 7

7 Qctober 1981 A Randomized Data Structure -6-

and N. The following theorem cstablishes a recurrence for F(i,N).

Theorem 4.2: A dynamic programming recurrence.
The function F(i, V) satisfies the dynamic programming recurrence

FGN) = 1+ min{ F(i—LN), (1/N)~1S]2<§(1,N) + (N=i+1)-FGN/N},

with the boundary condition that F(O,N) = 0.

Proof: . A

The boundary condition states that the problem has been solved once i ié zero. The recursive part
minimizes the expected value for arbitrary values by choosing the operation with minimum expected
cost. If the D operation is chosen, the value of i is decreased by one. If the G operation is chosen,
therc are two possible outcomes. With probability (N—i+ 1)/ N, the value of i is unchanged; with
probability 1/ N, it assumes each of the i—1 positive integers less than i. The recursion is valid by the
principle of optimality. '

Note that the optimal strategy corresponding to the recurrence must know the value of i to choose which

operation to perform at each step.

To express the solution to the above recurrence, we will let Tk denote the & triangular number,

k-(k—-1)/2.
’l‘hcorcm 4.3: Solution of the recurrence.

IfN=T, + k, where 0 < k < m, then

FGN) = FG, T _+4k) = i-1 foricm .
m+ k/m. fori>m
Note that T is the largest triar}gular number not greater than N.

Proof:
The proof for a fixed value of N is a straightforward inductive argument on /, and is omitted in these
proceedings for brevity.

Because T~ mz/ 2, the value of m in Theorem 4.3 is ~(2N)Y2. This establishes the claim that G,N) =

The solution to the dynamic programming recurrence implics the optimal strategy for the game Gl. Letm
be the largest triangular number less than N (as in Theorem 4.3); if the current value of i is greater than m,
then the optimal strategy performs a G, otherwise it perAforms a D. ‘It is interesting to obscrve that both the
solution to the recurrence and the optimal strategy remain unchanged if the game is modified so that the G

operation always sets / to the random integer j.

et

7 October 1981 ' . A Randomized Data Structure -7-

5. A General Data Structure

In previous sections we have considered only the problem of scarching the linked list to determine if it
contains a given clement. [t is casy to perform many other sct operations on this structure;. the following list
summarizes thosc operations, and describes their costs in terms of the number of Value clements accessed.

e Member: The previous scctions studied the problem of scarching to dctermme whether a given
element is a member of the sct represented by the linked list. Cost: ~2NY2 :

o Insert: A new clement can be inserted in the list by using Program 1. Cost: ~2NY2,

e Delete: The first stcp‘ in deleting an clement is to find that clement by a scarch algorithm like that
in Program 1, and then modify the Link ficld of its predeccesor to point to its successor; that step
makes ~2NY2 references to the Value array. The next step must patch the "hole” created in the

dense array by movm§ the last clement of the array to the vacant position; scarching for the last
element requires ~2NY? references. Cost: ~4NY?

o Predecessor: The clement immediately preceding a given element can be found by a modification
of Program 1. Cost: ~2NV2,

o Successor: The clement immediately succeeding a given clement can be found by a modification
of Program 1. Cost: ~2NY 2

o Minimum: The minimum clement in the sct is pointed toby Link[0]. Cost: 1.

° M'mmzum The maximum clement in the set can be found by a modrﬁcauon of Program 1. Cost:
~INV2,

-Each of the above operations is straightforward to implement given the model of Program 1 and basic

techniques for dealing with data structures for searching (described, for example, by Knuth [1973]).
Furthermore, the simplicity of that code implies that the constant factors of the running time of the program
will be relatively slow (Janko [1976] describes an implementation in detail). The only deviation that a
programmer should make from the code of Program 1 deals with the random number generation: since many
random number generators are very cxpe'nsive, it might be preferable to use some other approach to sample

the k clements.

This data structure is superior to all o_f those described in Knuth [1973] for certain applications; the salient

attributes of such applications arc listed briefly.

e Space is important. This structure uses only onc extra word of storage per clement, while binary
scarch trees use at least two extra words, and various hashing schemes use varying amounts of
extra storage. However, the storage for this structure must be available in a single contiguous
block.

e The."orderedness” operations of Successor, Predecessor, Min and Max are frequent; these are not
possible in most hashing schemes.

o Inscrtions and deletions are frequent. If the data structure changes rarcly, binary scarch in a

SN

7. QOctober 1981 A Randomized Data Structure -8-

sorted array is very cfficicnt.

e Program simplicity is important. Each operation on this structurc requires only about a dozen
lines of code, while some operations on balanced binary search trees require over one hundred
lines of code.)

e Run time is important for problems of medium size (where medium means that N is between, say,
100 and 10000). If N.is below that range, simple scquential strategies are probably efficient
cnough. If N is above that range, then the logarithmic scarch time of binary scarch will be
necessary for many applications. When N is in that range, though, the low constant factors of this
structure will make it competitive with binary scarch trecs.

6. Conclusions
The following list summarizes our extensions to Janko’s work.
e We have extended the problem from sorting an ordered sct to maintaining an ordered set under

various set operations. The data structure has a number of desirable properties both theoretically
and practically (it uses little space, has good randomized time and is casy to implement).

e We have tightened Janko's upper bounds on Member searching to give an exact combinatorial
analysis of the procedure.

e We have given a lower bound on the problem of searching a linked list with random probes that is
weaker than Janko’s but holds in a more robust model.

e We have interpreted Janko’s construction as a randomized algorithm; that class of algorithms was
identified as a class only after Janko’s [1976] paper was published. This problem provides an
example of a problem whose randomized complexity is provably less than its deterministic
complexity; few examples of such problems arc currently known.

This work raises a number of open problems. Perhaps the most obvious is to tighten the bounds on the
randomized complexity of the searching problem (using the game Gz); the bounds we present are a factor of
2172 apart. We conjecture that the game G, of Section 4 has the value of ~2NY2. A broader open problem is
to explore additional randomized data structures, and the application of other probabilistic games to the

analysis of randomized algorithms and data structures.

References

Aho, A. V., J.E. Hopcroft and J. D. Ullman [1974]. The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA. '

Janko, W.[1976]. "A list insprtion sort for keys with arbitrary key distribution,” ACM Transactions on
Mathematical Sofiware 2,2, June 1976, pp. 143-153. ’

Janko, W.[1977]. "An insertion sort for uniformly distributed keys based on stopping Lhcon.'y," International

7 October 1981) ~ A Randomized Data Structure -9-

Computing Symposium 1977, April 1977, North-Holland Publishing, pp. 373-379.

Knuth, D. E. [1973). The Art of Computer Progranuning, volume 3: Sorting and Searching, Addison-Wesley,
Recading, Massachusetts. '

