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Abstract 

For a sample of points drawn uniformly from either the d-dimensional torus 
or the d-cube, d 2, we give limiting distributions for the largest of the 

nearest-neighbor links. For d - 3 the behavior in the torus is proved to be 
different from the behavior in the cube. The results given also settle a 

conjecture of Henze (1982) and throw light on the choice of the cube or torus in 
some probabilistic models of computational complexity of geometrical al- 

gorithms. 

COMPUTATIONAL GEOMETRY; SPIRAL SEARCH; EXTREME-VALUE DISTRIBUTION; 

GUMBEL DISTRIBUTION 

1. Introduction 

If pi, p2, 
* * , pn are n given points of Rd, it is a basic problem of computational 

geometry to determine the set of nearest-neighbor linkages, i.e. to determine for 
each pi which element of {pl, P2,.., * -i, pi+li-., pn} is nearest to pi. 

The work done on this problem from the point of view of computational 
complexity is quite extensive, but the works of Friedman et al. (1975), Lee et al. 
(1976), Friedman et al. (1977), and Bentley et al. (1980) provide a tracing of the 
basic development of the areas in terms of average-case behavior. From the 
point of view of worst-case behavior, basic contributions are made in Shamos 
(1978), Lipton and Tarjan (1977), and Zolnowsky (1978). 

The length of the largest of the nearest-neighbor links is defined formally by 

(1.1) Z(pi,p, p ' , p)= max min Ilp -p II 
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where Iip - q i1 denotes the usual Euclidean distance. This quantity comes up in 
almost all discussion of nearest-neighbor computations although its appearance 
is not always explicit. 

The object of principal interest here is the sequence of random variables Zn 
defined by 

(1.2) Z = Z(X,, X2, , X) 

where the Xi are independent and uniformly distributed on either the d-cube 

[0, l]d or the d-torus obtained by identifying opposite faces of the d-cube. This 
random variable is closely related to a similar weighted nearest-neighbor 
variable which has been studied in Henze (1981), (1982), (1983). 

There are three limit results which will be given and which provide an 

asymptotic understanding of Z,. Because of the proximity of Henze's work only 
the last limit result will be proved in detail. Theorem 2 answers the conjecture of 
Henze (1982), cf. p. 354, item 5. 

One practical implication of Theorem 2 is that in the modeling applications of 

computational geometry one would be well advised in many cases to work in the 
d-torus as opposed to the d-cube. To do otherwise, one risks having to be 

seriously concerned with counterintuitive boundary effects whenever d - 3. The 
value of this advice might be particularly felt by those who would attempt to 

appraise the computational complexity of a nearest-neighbor procedure by 
means of simulation. 

Theorem 1. For X,, 1 ' i < o, independent and uniformly distributed on the 
d-torus, one has 

(1.3) lim P(Z > (t + log n)/nwd)= 1 - exp(- e-') 
n---oc 

where ()d is the volume of the unit sphere in Rd, d _ 2. 
For the d-cube the boundary begins to play a role for d _ 3, as the following 

results illustrate. 

Theorem 2. For X,, 1 - i < X independent and uniform on [0, 12, one has 

(1.4) lim P(Z2> (t + log n)/Irn) = 1 - exp(- e-') 

but for Xi, 1 i < oc, independent and uniform on [0, 1]d, d - 3, one has 

(1.5) lim P(Zd> (t + log n)/dn)= 1. 

The weighted nearest-neighbor random variables studied by Henze are given 
by 

525 



Z'= max min (min X, - Xj II, Xi - as ) 

where dS is the boundary of the d-cube. The proofs of (1.3) and (1.4) can be 
obtained by modification of the results of Henze (1982), and this modification 
will not be given here. The main goal is the proof of (1.5) which we give in 
Section 2. 

Before quitting the introduction, it is worth noting that nearest-neighbor 
statistics have recently been studied from a different point of view in Bickel and 
Breiman (1983) and Shilling (1983a, b). These authors provide much information 
about sums of functions of nearest-neighbor link lengths and the application of 
such sums to the theory of goodness-of-fit tests. 

2. Boundary behavior 

We now give the proof of the limit relation (1.5) for the interesting case of 
d _ 3. We fix e > 0 and choose for each n a sequence of M(n) points yi on the 
one-dimensional faces (i.e. the edges) of [0, 1]d such that 

(2.1) Ily-yj I-> 2(1+ )Zn for i j 

where z d= (t + log n)/ntod, and 

(2.2) all of the yi are at least a distance (1 + E)zn from the corners of the 
cube. 

It is easy to check that we may choose M(n) such that M = M(n)-~ a/Zn 
where a depends only on d. 

We next let Co,, be the event that the ball B(yi, ez,)={x :llx - y, II eZn} 
contains exactly one of the points of {Xi, X2, -', Xn} and the remainder of the 
ball B(yi, (1 + E )z,,) contains no further such points. 

On setting D. = UM= C,n we see that (1.5) follows at once if we show 
P(Dn)-> 1. This will be done with help from the Poisson process. 

We denote probabilities which are calculated with respect to a homogeneous 
Poisson process with rate n by a subscript ir, and we calculate 

(2.3) P, (DC) = (1 - P(C, ))M 

and 

P,(C)= ne dz 21d exp(- n(1 + E)dZ n21-d) 

(2.4) (2.4) = e d (log n + t)21-d exp(- 2- (1 + )d (log n +t)). 

Since d - 3, we now see that e > 0 can be chosen such that (1 + E)d < 2d-'Id, so 

using the fact that M(n) a- ) d(log n )-ldnld we obtain P, (D c)- 0. 
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It remains to show that this last relationship also holds under the uniform 
model. 

For each 1 i ' M we let Ki and Li denote the number of sample points in 

B(yi, rzi) and B(yi,(1 + E)zi)\B(y,, ezi) respectively. The event Dn depends 
only on these counts. We complete the proof of (1.5) by establishing the 

following result. 

Lemma. For any event En which depends only on {Ki, Li : 1 i - M} we 
have P(En)- P,(En)--O as n --cc. 

Proof of the lemma. We denote the probability mass function of 
Kl, K2, ', KM, L1, L2, '- , LM by gn or by h, accordingly as one uses the 
Poisson or the uniform model. The likelihood ratio is given by 

(2.5) Rn\ hn (K,, K2, -', KM, Li, L2,' ? ', LM) 
gn (K, K2, .. , KM, Ll, L2,, * *I LM) 

In order to show P(En)- P,(En)->0, it will suffice to show that R, -> 1 in 

probability under the uniform model. (For this reduction see Weiss (1969), pp. 
261-262, or Weiss (1965), pp. 219-220.) 

To write an explicit formula for the likelihood ratio R,, we introduce the 

following notations: 

(2.6) pn = ECddZn2 , qn [(1 + e)d - ]dZd2n2l rn = pn + qn 

and 
M M 

(2.7) U=Un=yK, V , =V= W = W = Un +Ln. 
i=1 i=l 

This notation permits us to write 

(2.8) Rn = (n )wn-(1 - Mr )"- exp(nMr ) 

where (n)S denotes the falling factorial n(n - l)(n -2) * (n - s + 1). The 

leading term (n)wn-w can be most easily estimated by first noting 
w 

(2.9) (n)wn-w = f (1- k/n)> W- W(W+ 1)/(2n). 
k=l 

Under the uniform model W = Wn is just a binomial random variable with 

sample size n and success probability M(1 + )dodzn2l~ d-(logn/n)(dl)/d for a 
constant /3. One can thus easily check that Wl/n -O in probability, so 

(n )wn -w -1 in probability. 
One can similarly express the remaining factors of Rn as 

(2.10) (1 - Mrn )n-W exp(nMrn) = exp(n (Mrn + log(1 - Mr)) - W log(1 - Mrn). 
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Since Mr -- 0 and nM2r--> 0, and Wn log(1 - Mrn)- 0 in probability we have 

completed the proof that Rn - 1 in probability. This was all we needed to 
establish the main result expressed in Equation (1.5). 
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