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Abstract. This entry for the Encyclopedia of Actuarial Sciences
provides an introduction to the Itô Calculus that emphasizes the
definition of the Itô integral and the description of Itô’s Formula, the
most widely used result in the Itô Calculus.
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1. First Contact with Itô Calculus

From the practitioner’s point of view, the Itô calculus is a tool for manip-
ulating those stochastic processes which are most closely related to Brow-
nian motion. The central result of the theory is the famous Itô formula
which one can write in evocative shorthand as

df(t, Bt) = ft(t, Bt)dt +
1
2
fxx(t, Bt)dt + fx(t, Bt)dBt.

Here the subscripts denote partial derivatives, and the differential dt has the
same interpretation that it has in ordinary calculus. On the other hand,
the differential dBt is a new object that needs some care to be properly
understood.

At some level, one can think of dBt as “increment of Brownian motion,”
but, even allowing this, one must somehow stir into those thoughts the
considerations that would make dBt independent of the information which
one gains from observing {Bs : 0 ≤ s ≤ t}, the path of Brownian motion
up to time t. The passive consumer can rely on heuristics such as these to
follow some arguments of others, but an informal discussion of dBt cannot
take one very far.

To gain an honest understanding of the Itô integral one must spend some
time with its formal definition. The time spent need not be burdensome,
and one can advisably gloss over some details on first reading. Nevertheless,
without some exposure to its formal definition, the Itô integral can only
serve as a metaphor.

2. Itô Integration in Context

The Itô integral is a mathematical object which is only roughly analo-
gous to the traditional integral of Newton and Leibniz. The real driving
force behind the definition — and the effectiveness — of the Itô integral is
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that it carries the notion of a martingale transform from discrete time into
continuous time.

The resulting construction is important for several reasons. First, it
provides a systematic method for building new martingales, but it also
provides the modeler with new tools for specifying stochastic processes in
terms of “differentials.” Initially these specifications are primarily symbolic,
but typically they can be given rigorous interpretations which in turn alow
one to forge a systematic connection between stochastic processes and the
classical fields of ordinary and partial differential equations. The resulting
calculus for stochastic processes turns out to be exceptionally fruitful both
in theory and in practice, and the Itô calculus is now widely regarded as
one of the most successful innovations of modern probability theory.

The aims addressed here are necessarily limited since even a proper def-
inition of the Itô integral can take a dozen pages. Nevertheless, after a
brief introduction to Itô calculus it is possible to provide (i) a sketch of the
formal definition of the Itô integral, (ii) a summary of the key features of
the integral, and (iii) some discussion of the widely used Itô Formula. For
a more complete treatment of these topics, as well as more on their connec-
tions to issues of importance for actuarial science, one can consult Baxter
and Rennie [1] or Steele [4]. For additional perspective on the theory of
stochastic calculus one can consult Karatzas and Shreve [2] or Protter [3].

3. The Itô Integral: A Three Step Definition

If {Bt : 0 ≤ t ≤ T} denotes Brownian motion on the finite interval [0, T ]
and if {f(ω, t) : 0 ≤ t ≤ T} denotes a well-behaved stochastic process whose
specific qualifications will be given later, then the Itô integral is a random
variable which is commonly denoted by

(1) I(f)(ω) =
∫ T

0

f(ω, t) dBt.

This notation is actually somewhat misleading since it tacitly suggests that
the integral on the right may be interpreted in a way that is analogous to the
classical Riemann-Stieltjes integral. Unfortunately, such an interpretation
is not possible on an ω-by-ω basis because almost all paths of Brownian
motion fail to have bounded variation.

The definition of the Itô integral requires a more subtle limit process,
which perhaps is best viewed as having three steps. In the first of these
one simply isolates a class of simple integrands where one can say that the
proper definition of the integral is genuinely obvious. The second step calls
on a continuity argument which permits one to extend the definition of the
integral to a larger class of natural processes. In the third step one then
argues that there exists a continuous martingale which tracks the value
of the Itô integral when it is viewed as a function of its upper limit; this
martingale provides us with a view the Itô integral as a process.
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The First Step: Definition on H2
0

The integrand of an Itô integral must satisfy some natural constraints,
and, to detail these, we first let B denote the smallest σ-field that contains
all of the open subsets of [0, T ]; that is, we let B denote the set of Borel
sets of [0, T ]. We then take {Ft} to be the standard Brownian filtration,
and for each t ≥ 0 we take Ft × B to be the smallest σ-field that contains
all of the product sets A × B where A ∈ Ft and B ∈ B. Finally, we say
f(·, ·) is measurable provided that f(·, ·) is FT ×B measurable, and we will
say that f(·, ·) is adapted provided that f(·, t) is Ft measurable for each
t ∈ [0, T ]. One then considers the class H2 = H2[0, T ] of all measurable
adapted functions f that are square-integrable in the sense that

(2) E

[ ∫ T

0

f2(ω, t) dt

]
=

∫

Ω

∫ T

0

f2(ω, t) dtdP (ω) < ∞.

If we write L2(dt× dP ) to denote the set of functions that satisfy (2), then
by definition we have H2 ⊂ L2(dt × dP ). In fact H2 turns out to be one
of the most natural domains for the definition and application of the Itô
integral.

If we take f(ω, t) to be the indicator of the interval (a, b] ⊂ [0, T ], then
f(ω, t) is trivially an element of H2, and in this case we quite reasonably
want to define the Itô integral by the relation

(3) I(f)(ω) =
∫ b

a

dBt = Bb −Ba.

Also, since one wants the Itô integral to be linear, the identity (3) will
determine how I(f) must be defined for a relatively large class of integrands.
Specifically, if we letH2

0 denote the subset ofH2 that consists of all functions
that may be written as a finite sum of the form

(4) f(ω, t) =
n−1∑

i=0

ai(ω)1(ti < t ≤ ti+1),

where ai ∈ Fti , E(a2
i ) < ∞, and 0 = t0 < t1 < · · · < tn−1 < tn = T, then

linearity and the equation (3) determine the value of I on H2
0. Now, for

functions of the form (4) one simply defines I(f) by the identity

(5) I(f)(ω) =
n−1∑

i=0

ai(ω){Bti+1 −Bti}.

This formula completes the first step, the definition of I on H2
0, though

naturally one must check that this definition is unambiguous; that is, one
must show that if f has two representations of the form (4) then the sums
given by (5) provide the same values for I(f).

The Second Step: Extension to H2
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We now need to extend the domain of I from H2
0 to all of H2, and the

key is to first show that I : H2
0 → L2(dP ) is an appropriately continuous

mapping. In fact the following fundamental lemma tells us much more.

Lemma 1 (Itô’s Isometry on H2
0). For f ∈ H2

0 we have

(6) ||I(f)||L2(dP ) = ||f ||L2(dP×dt).

By the linearity of I : H2
0 → L2(dP ), the Itô’s Isometry Lemma implies

that I takes equidistant points in H2
0 to equidistant points in L2(dP ), so,

in particular, I maps a Cauchy sequence in H2
0 into a Cauchy sequence in

L2(dP ). The importance of this observation is underscored by the next
lemma which asserts that any f ∈ H2 can be approximated arbitrarily well
by elements of H2

0.

Lemma 2 (H2
0 is Dense in H2). For any f ∈ H2, there exists a sequence

{fn} with fn ∈ H2
0 such that

||f − fn||L2(dP×dt) → 0 as n →∞.

Now, for any f ∈ H2, this approximation lemma tells us that there is a
sequence {fn} ⊂ H2

0 such that fn converges to f in L2(dP × dt). Also, for
each n the integral I(fn) is given explicitly by formula (5), so the obvious
idea is to define I(f) as the limit of the sequence I(fn) in L2(dP ); that is,
we set

(7) I(f) def= lim
n→∞

I(fn),

where the detailed interpretation of equation (7) is that the random variable
I(f) is the unique element of L2(dP ) such that ||I(fn) − I(f)||L2(dP ) → 0
as n → ∞. This completes the definition of I(f), except for one easy
exercise; it is still necessary to check that the random variable I(f) does
not depend on the specific choice that one makes for the approximating
sequence {fn : n = 1, 2, ...}.

The Third Step: Itô’s Integral as a Process

The map I : H2 7→ L2(dP ) permits one to define the Itô integral over
the interval [0, T ], but to connect the Itô integral with stochastic processes
we need to define the Itô’s integral on [0, t] for each 0 ≤ t ≤ T so that
when viewed collectively these integrals will provide a continuous stochastic
process.

This is the most delicate step in the construction of the Itô integral, but
it begins with a straightforward idea. If one sets

mt(ω, s) =

{
1 if s ∈ [0, t]
0 otherwise,

then for each f ∈ H2[0, T ] the product mtf is in H2[0, T ], and I(mtf) is a
well-defined element of L2(dP ). A natural candidate for the process version
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of Itô’s integral is then given by

(8) X ′
t(ω) = I(mtf)(ω).

Sadly, this candidate has problems; for each 0 ≤ t ≤ T the integral
I(mtf) is only defined as an element of L2(dP ), so the value of I(mtf) can
be specified arbitrarily on any set At ∈ Ft with P (At) = 0. The union of
the At over all t in [0, T ] can be as large as the full set Ω, so, in the end,
the process X ′

t suggested by (8) might not be continuous for any ω ∈ Ω.
This observation is troubling, but it is not devastating. With care (and

help from Doob’s maximal inequality) one can prove that there exists a
unique continuous martingale Xt which agrees with X ′

t with probability one
for each fixed t ∈ [0, T ]. The next theorem gives a more precise statement
of this crucial fact.

Theorem 1 (Itô Integrals as Martingales). For any f ∈ H2[0, T ], there is
a process {Xt : t ∈ [0, T ]} that is a continuous martingale with respect to
the standard Brownian filtration Ft and such that the event

(9) {ω : Xt(ω) = I ( mtf ) (ω) }
has probability one for each t ∈ [0, T ].

This theorem now completes the definition of the Itô integral of f ∈ H2;
specifically, the process {Xt : 0 ≤ t ≤ T} is a well-defined continuous
martingale, and the Itô integral of f is defined by the relation

(10)
∫ t

0

f(ω, t) dBt
def= Xt for t ∈ [0, T ].

An Extra Step: Itô’s Integral on L2
LOC

The class H2 provides one natural domain for the Itô integral, but with
a little more work one can extend the Itô integral to a larger space which
one can argue is the most natural domain for the Itô integral. This space
is known as L2

LOC, and it consists of all adapted, measurable functions
f : Ω× [0, T ] 7→ R for which we have

(11) P

( ∫ T

0

f2(ω, t) dt < ∞
)

= 1.

Naturally L2
LOC contains H2, but L2

LOC has some important advantages
over H2. In particular, for any continuous g : R → R, the function given
by f(ω, t) = g(Bt) is in L2

LOC simply because for each ω the continuity of
Brownian motion implies that the mapping t 7→ g(Bt(ω)) is bounded on
[0, T ].

To indicate how the Itô integral is extended from H2
0 to L2

LOC, we first
note that an increasing sequence of stopping times is called an H2[0, T ]
localizing sequence for f provided that one has

(12) fn(ω, t) = f(ω, t)1(t ≤ νn) ∈ H2[0, T ] for all n
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and provided that one has

(13) P

( ∞⋃
n=1

{ω : νn = T }
)

= 1.

For example, one can easily check that if f ∈ L2
LOC[0, T ] then the sequence

(14) τn = inf
{

s :
∫ s

0

f2(ω, t) dt ≥ n or s ≥ T

}

is an H2[0, T ] localizing sequence for f.
Now, to see how the Itô integral is defined on L2

LOC, we take f ∈ L2
LOC

and let {νn} be a localizing sequence for f ; for example, one could take
νn = τn where τn is defined by (14). Next, for each n, take {Xt,n} to
be the unique continuous martingale on [0, T ] that is a version of the Itô
integral of I(mtg) and where g(ω, s) = f(ω, s)1(s ≤ νn(ω)). Finally, we
define the Itô integral for f ∈ L2

LOC[0, T ] to be the process given by the
limit of the processes {Xt,n} as n →∞ . More precisely, one needs to show
that there is a unique continuous process {Xt : 0 ≤ t ≤ T} such that

(15) P

(
Xt = lim

n→∞
Xt,n

)
= 1 for all t ∈ [0, T ];

so, in the end, we can take the process {Xt} to be our Itô integral of
f ∈ L2

LOC over [0, t], 0 ≤ t ≤ T . In symbols, we define the Itô integral of f
by setting

(16)
∫ t

0

f(ω, s) dBs
def= Xt(ω) for t ∈ [0, T ].

Some work is required to justify this definition, and in particular one
needs to show that he defining limit (16) does not depend on the choice
that we make for the localizing sequence, but once these checks are made,
the definition of the Itô integral on L2

LOC is complete. The extension of the
Itô integral from H2 to L2

LOC introduces some intellectual overhead, and
one may wonder if the light is worth the candle: be assured, it is. Because
of the extension of the Itô integral from H2 to L2

LOC we can now consider
the Itô integral of any continuous function of Brownian motion. Without
the extension, this simple and critically important case would have been
out of our reach.

Some Perspective and Two Intuitive Representations

In comparison with the traditional integrals, one may find that the time
and energy required to define the Itô integral is substantial. Even here,
where all proofs and verifications have been omitted, one needed several
pages to make the definition explicit. Yet, oddly enough, one of the hardest
parts of the theory of Itô calculus is the definition of the integral; once the
definition is complete, the calculations which one finds in the rest of the
theory are largely in line with the familiar calculations of analysis.
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The next two propositions illustrate this phenomenon, and they also add
to our intuition about the Itô integral since they reassure us that at least
in some special cases the Itô integrals can be obtained by formulas that
remind us of the traditional Riemann limits. Nevertheless, one must keep
in mind that even though these formulas are intuitive, they covertly lean
on all the labor that is required for formal definition of the Itô integral. In
fact, without that labor, the assertions would not even be well-defined.

Proposition 1 (Riemann Representation). For any continuous f : R→ R,
if we take the partition of [0, T ] given by ti = iT/n for 0 ≤ i ≤ n, then we
have

(17) lim
n→∞

n∑

i=1

f(Bti−1)(Bti −Bti−1) =
∫ T

0

f(Bs) dBs,

where the limit is understood in the sense of convergence in probability.

Proposition 2 (Gaussian Integrals). If f ∈ C[0, T ], then the process de-
fined by

(18) Xt =
∫ t

0

f(s) dBs t ∈ [0, T ]

is a mean zero Gaussian process with independent increments and with
covariance function

(19) Cov(Xs, Xt) =
∫ s∧t

0

f2(u) du.

Moreover, if we take the partition of [0, T ] given by ti = iT/n for 0 ≤ i ≤ n
and t∗i satisfies ti−1 ≤ t∗i ≤ ti for all 1 ≤ i ≤ n, then we have

lim
n→∞

n∑

i=1

f(t∗i )(Bti −Bti−1) =
∫ T

0

f(s) dBs,

where the limit is understood in the sense of convergence in probability.

4. Itô’s Formula

The most important result in the Itô calculus is Itô’s formula, for which
there are many different versions. We will first consider the simplest.

Theorem 2 (Itô’s Formula). If the function f : R 7→ R has a continuous
second derivative, then one has the representation

(20) f(Bt) = f(0) +
∫ t

0

f ′(Bs) dBs +
1
2

∫ t

0

f ′′(Bs) ds.

There are several interpretations of this formula, but perhaps it is best
understood as a version of the fundamental theorem of calculus. In one way
the analogy is apt; this formula can be used to calculate Itô integrals in
much the same way that the fundamental theorem of calculus can be used
to calculate traditional definite integrals. In other ways the analogy is less
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apt; for example, one has an extra term in the right hand sum, and, more
important, the expression Bs that appears in the first integral is completely
unlike the dummy variable which it would represent if this integral were
understood in the sense of Riemann.

A Typical Application

If F ∈ C2(R) and F ′ = f with F (0) = 0, then Itô’s formula can be
rewritten as

(21)
∫ t

0

f(Bs) dBs = F (Bt)− 1
2

∫ t

0

f ′(Bs) ds,

and in this form it is evident that Itô’s formula can be used to calculate
many interesting Itô integrals. For example, if we take F (x) = x2/2 then
f(Bs) = Bs, f ′(Bs) = 1, and we find

(22)
∫ t

0

Bs dBs =
1
2
B2

t −
1
2
t.

In other words, the Itô integral of Bs on [0, t] turns out to be just a simple
function of Brownian motion and time. Moreover, we know that this Itô
integral is a martingale, so, among other things, this formula reminds us
that B2

t − t is a martingale, a basic fact that can be checked several ways.
A second way to interpret Itô’s formula is as a decomposition of f(Bt)

into components that are representative of noise and signal. The first inte-
gral of equation (20) has mean zero and it captures information about the
local variability of f(Bt) while the second integral turns out to capture all
of the information about the drift of f(Bt). In this example we see that
B2

t can be understood as a process with a “signal” equal to t and a “noise
component” Nt that is given by the Itô integral

Nt = 2
∫ t

0

Bs dBs.

Brownian Motion and Time

The basic formula (20) has many useful consequences, but its full effect
is only realized when it is extended to accommodate function of Brownian
motion and time.

Theorem 3 (Itô’s Formula with Space and Time Variables). If a function
f : R+×R → R has a continuous derivative in its first variable and a
continuous second derivative in its second variable, then one has the repre-
sentation

f(t, Bt) = f(0, 0)+
∫ t

0

∂f

∂x
(s, Bs) dBs+

∫ t

0

∂f

∂t
(s,Bs) ds+

1
2

∫ t

0

∂2f

∂x2
(s, Bs) ds.
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One of the most immediate benefits of this version of Itô’s formula is that
gives one a way to recognize when f(t, Bt) is a local martingale. Specifically,
if f ∈ C1,2(R+× R) and if f(t, x) satisfies the equation

(23)
∂f

∂t
= −1

2
∂2f

∂x2
,

then the space-time version of Itô’s formula immediately tells us that Xt

can be written as the Itô integral of fx(t, Bt). Such an integral is always
a local martingale, and if the representing integrand is well-behaved in the
sense that

(24) E

[∫ T

0

{
∂f

∂x

}2

(t, Bt) dt

]
< ∞,

then in fact Xt is an honest martingale on 0 ≤ t ≤ T .
To see the ease with which this criterion can be applied, consider the

process Mt = exp(αBt−α2t/2) corresponding to f(x, t) = exp(αx−α2t/2).
In this case we have

∂f

∂t
= −1

2
α2f and

∂2f

∂x2
= α2f,

so the differential condition (23) is satisfied. As a consequence we see that
Mt is a local martingale, but it is also clear that Mt is an honest martingale
since the H2 condition (24) is immediate. The same method can be used
to show that Mt = B2

t − t and Mt = Bt are martingales. One only has to
note that f(t, x) = x2 − t and f(t, x) = x satisfy the PDE condition (23),
and in both cases we have f(t, Bt) ∈ H2.

Finally, we should note that there is a perfectly analogous vector version
of Itô’s formula, and it provides us with a corresponding criterion for a
function of time and several Brownian motions to be a local martingale.

Theorem 4 (Itô’s Formula —Vector Version). If f ∈ C1,2(R+×Rd) and if
~Bt is standard Brownian motion in Rd, then

df(t, ~Bt) = ft(t, ~Bt) dt +∇f(t, ~Bt) · d ~Bt +
1
2
∆f(t, ~Bt) dt.

From this formula we see that if If f ∈ C1,2(R+×Rd) and ~Bt is standard
Brownian motion in Rd, then the process Mt = f(t, ~Bt) is a local martingale
provided that

ft(t, ~x) = −1
2
∆f(t, ~x).

If we specialize this observation to functions that depend only on ~x, we see
that the process Mt = f( ~Bt) is a local martingale provided that ∆f = 0;
that is, Mt = f( ~Bt) is a local martingale provide that f is a harmonic func-
tion. This observation provides a remarkably fecund connection between
Brownian motion and classical potential theory, which is one of the richest
branches of mathematics.
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5. The Itô Shorthand and More General Integrals

Formulas of the Itô calculus can be lengthy when written out in detail,
so it is natural that shorthand notation has been introduced. In particular,
if Xt is a process that with a representation of the form

(25) Xt =
∫ t

0

a(ω, s) ds +
∫ t

0

b(ω, s) dBs,

for some suitable processes a(ω, s) and b(ω, s), then it is natural to write
this relationship more succinctly with the shorthand

(26) dXt = a(ω, t) dt + b(ω, t) dBt, X0 = 0.

Expressions such as dXt, dBt, and dt are highly evocative, and the in-
tuition one forms about them is important for the effective use of the Itô
calculus. Nevertheless, in the final analysis, one must always keep in mind
that entities like dXt, dBt, and dt draw all of their meaning from their
longhand interpretation. To prove a result that relies on these freeze-dried
expressions, one must be ready — at least in principle — to first reconsti-
tute them as they appear the original expression (25).

With this caution in mind, one can still use the intuition provided by
terms like dXt to suggest new results, and, when one follows this path, it
is natural to define the dXt integral of f(t, ω) by setting

(27)
∫ t

0

f(ω, s) dXs
def=

∫ t

0

f(ω, s)a(ω, s) ds +
∫ t

0

f(ω, s)b(ω, s) dBs.

Here, of course, one must impose certain restrictions on f(ω, t) for the
last two integrals make sense, but it would certainly suffice to assume that
f(ω, t) is adapted and that it satisfies the integrability conditions:

• f(ω, s) a(ω, s) ∈ L1(dt) for all ω in a set of probability one and
• f(ω, s)b(ω, s) ∈ L2

LOC.

6. From Itô’s Formula to the Box Calculus

The experience with Itô’s formula as a tool for understanding the dBt

integrals now leaves one with a natural question: Is there an appropriate
analog of Itô’s formula for dXt integrals? That is, if the process Xt can be
written as a stochastic integral of the form (27) and if g(t, y) is a smooth
function, can we then write the process Yt = g(t,Xt) as a sum of terms
which includes a dXt integral?

Naturally there is an affirmative answer to this question, and it turns
out to be nicely express with help from a simple formalism that is usually
called the box calculus, though the term box algebra would be more precise.
This is an algebra for the set A of linear combinations of the formal symbols
dt and dBt where adapted functions are regarded as the scalars. In this
algebra, the addition operation is just the usual algebraic addition, and
products are then computed by the traditional rules of associativity and
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transitivity together with a multiplication table for the special symbols dt
and dBt. The new rules one uses are simply

dt · dt = 0, dt · dBt = 0, and dBt · dBt = dt.

As an example of the application of these rule are applied, one can check
that the product

(a dt + b dBt) · (α dt + β dBt)
can be simplified by associativity and commutativity to give

aα dt · dt + aβ dt · dBt + bα dBt · dt + bβ dBt · dBt = bβ dt.

If one uses this formal algebra for the process Xt which we specified
in longhand by (25) or in shorthand by (26), then one has the following
general version of Itô’s formula:

(28) df(t,Xt) = ft(t,Xt) dt + fx(t,Xt) dXt +
1
2
fxx(t,Xt) dXt · dXt.

This simple formula is exceptionally productive formula, and it summarizes
a vast amount of useful information.

In the simplest case, we see by setting Xt = Bt that the formula (28)
quietly recaptures space-time version of Itô’s formula. Still, it is easy to go
much farther. For example, if we take Xt = µt + σBt so Xt is Brownian
motion with with drift, or if we take Xt = exp(µt+σBt) so Xt is Geometric
Brownian motion, the general Itô formula (28) painlessly produces formulas
for df(t,Xt) which other wise could be won only by applying the space-time
version of Itô’s formula together with tedious and error prone applications
of the chain rule.

To address more novel examples, one naturally needs to provide a direct
proof of the general Itô formula, a proof that does not go through the space-
time version of Itô’s formula. Fortunately, such a proof is not difficult, and
it is not even necessary to introduce any particularly new technique. In
essence, a properly modified repetition of the proof of the space-time Itô’s
formula will suffice.

7. Concluding Perspectives

Itô’s calculus provides the users of stochastic models with a theory that
maps forcefully into some of the most extensively developed area of math-
ematics, including the theory of ordinary differential equations, partial dif-
ferential equations, and the theory of harmonic functions. Itô’s calculus
has also led to more sophisticated versions of stochastic integration where
the role of Brownian motion can be replaced by any Lévy process, or even
by more general processes. Moreover, Itô calculus has had a central role in
some of the most important developments of financial theory, including the
Merton and Black-Scholes theories of option pricing.

Too be sure, there is some overhead involved in the acquisition of a
fully functioning background in the Itô calculus. One also faces substantial
limitations on the variety of models that are supported by the Itô calculus;
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the ability of diffusion models to capture the essence of empirical reality
can be marvellous, but in some contexts the imperfections are all too clear.
Still, despite its costs and its limitations, the Itô calculus stands firm as
one of the most effective tools we have for dealing with models which hope
to capture the realities of randomness and risk.
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