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This note sharpens and generalizes an inequality of Platzman and Bartholdi on the ratio of the cost of the path provided by
the spacefilling heuristic to the cost of the optimal path through n points in R
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1. Introduction

Bartholdi and Platzman [1] recently reviewed
how one can build heuristics for many problems
of combinatorial optimization in Euclidean space
by using spacefilling curves that have easily com-
puted inverses. The purpose of this note is to
examine the efficacy of the spacefilling heuristic.
Specifically, we will sharpen and generalize a
bound of Platzman and Bartholdi [8] on the ratio
of the length of the tour provided by the spacefill-
ing heuristic to the length of the optimal tour.

The spacefilling heuristic for the traveling sales-
man problem (TSP) in R¢ is based on a map ¢
from [0, 1] onto [0, 1]? that is Lip, with a« =1/d,
ie.

lo(s) =) <c|s—1|?

for a constant ¢ and all 0 <s<t<1. We should
note that it is not possible to have a surjection of
[0, 1] onto [0, 1]¢ that is in Lipg for 8> 1/d. This
follows from the fact that the union of sets
o(i/n, (i+1)/n]), 0<i<n, must cover [0, 1]¢
and for large n [0, 1]¢ is not the union of n balls
of radius cn™# unless B < 1/4d.

In the positive direction, Milne [6] observed
that many of the classical spacefillings curves are
in Lip; ;. Moreover, several of those curves are

also measure preserving, i.e. for each measurable
A0, 1]4, we have

M(97(4)) = Ay (4),

where A; and A, denote Lebesgue measures in R
or R¥, respectively.

For a measure preserving Lip, mapping ¢ from
[0, 1] onto [0, 1]¢ to be algorithmically effective,
one also needs for each x €[0, 1]¢ to be able to
quickly compute a ¢ € [0, 1] such that

te ¢ H(x).

A small but sticky point is that by the invariance
of domain theorem (Dugundji [3]), ¢ cannot be
one-to-one. Thus, we have to be content with
computing some point in the pre-image. Since this
note deals with the solution efficacy rather than
the algorithmic efficiency of the spacefilling heur-
istic, we will not consider the computation of ¢~ 1.

For the spacefilling heuristic the most pressing
issue is to obtain a bound on the ratio of the
length of the tour produced by the spacefilling
curve to the length of the optimal tour. For the
TSP in R?, Platzman and Bartholdi [8] provided a
bound of order O(log n), and they conjectured the
existence of a uniform bound independent of n.
This conjecture has recently been answered in the
negative by Bertsimas and Grigni [2] by providing
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an example that shows that in R? the ratio can be
as large as ¢ log n for ¢ > 0.

The following theorem complements the results
of Platzman and Bartholdi [8] by providing an
explicit upper bound on the efficacy ratio of the
spacefilling heuristic in R? for all d> 2. More-
over, the proof given here makes clear that one
does not require any detailed properties of the
spacefilling curve in order to provide ratio bounds.
All one needs is that the curve is measure pre-
serving and as smooth as feasible.

Theorem 1.1. Let ¢ be a measure preserving trans-
formation of [0, 1] onto [0, 1], that is Lipschitz of
order a=1/d, i.e.

lo(x) = (y) [ <clx—y|/" (1.1)

for some ¢ and all x, y €[0, 1}. If H, is the length
of the path through a set of n points S C [0, 1}? that
is constructed using the spacefilling heuristic based
on ¢, then for n =2

H,< {1+ w,_¢? log(m/2)} L, + wsc?m, (1.2)

where L, is the length of the optimal path through
{xy, X3,..., X, }, mis the length of the longest edge
in the heuristic path, € is the average length of the
edges in the optimal path, and w, denotes the
volume of the unit ball in R* for k=d—1 or d.

Corollary 1.2. We have for all n = 2 that
H,< (14 w,_1¢?+ wsc? log n)L,. (1.3)

2. Proof of main result

We require a preliminary geometric inequality
of Esterman [4] that has recently become of inter-
est in mathematical statistics, cf. Naiman [7}], and
Johnstone and Siegmund [5].

Lemma 2.1. If T(x, C) C R? is the set of all points
within distance x of the rectifiable curve C, then for
all x » 0 we have

w(T(x, C)) < wy_1x¥7 L + wyx?, (2.1)
where w, is the volume of the unit ball in R? and L

is the length of C.

We begin the proof of Theorem 1.1 by assum-
ing that the points of S are labeled in the order
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they appear on the heuristic tour, so we write
S={xy, X5,..., X, }, and we assume for each 1 <
i<n there is a #, €0, 1] such that 1, <, < ---
<1, with x; = ¢(¢,). Next, for u > 0 we introduce
two subsets of {1, 2,...,n—1} by

Uw) = (i: 1tyan = 1] > 1< i<n),
and
V(u)={i:|¢(t 1) —o() | >u, 1<i<n}.

The benefit of introducing V() is that its cardi-
nality g(u) gives a formula for H,:

H,= ["g(u) du. (22)
0

where

m= izlia}n | ¢(ti+1) - qb(ti) [

Thus, we need to find a bound for g(u), and our
method for achieving this will depend on first
obtaining a bound on f(u)= |U(u)|, the cardi-
nality of V{(u).

For i€ U(u) the intervals [z, ¢, + u] do not
intersect, so if we set
4= 95([% L+ u]),
then, since ¢ preserves measure, we have
d@= T Aa)=r( U a4l @3

ieU(u) i€ Uu)

Now we use Esterman’s inequality (2.1) to bound
the right hand side of (2.3). Letting C, be an
optimal tour of {x,, x,,...,x,} with length L,,
we see by (1.1) and the fact that each x, is
somewhere on the path C, that

4,cT(cu"?, C,), 1<i<n. (2.4)
Hence, by (2.2) and Esterman’s inequality we have
uf (u) = u( U A,») <p(T(cu?, T,))

i€ Uu)

Swy_ ¢ VAL 4 w,cu.
We thus obtain the bound
f(u) < wy_ 1 VAL, + wyc?. (2.5)
Now, to bound g we note that for i € V(u) in-
equality (1.1) implies
clti=tia V92 10(t00) —0(4) |
Z U,

hence we have

V(u)c U(c™u?), (2.6)
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and thus g(u) <f(c %u?). By (2.5) and (2.6) we
find our basic bound

glu) <wy_u™ 'L, + wyed. (2.7)

For any 0 < & < m, we can apply the trivial bound
gluysn—1 for u€ll, a] and apply (2.7) for
u € {a, m]; so, when we integrate in (2.7), we find

H <aln—1)+w, c’L, log(m/a)
—wycd(m—a). (2.8)

Finally, since L, < H,<(n—1)m we have for «
=L,/(n—1)=¢ that a« €[0, m], so we can let
a=¢e in (2.7) to find (1.2). To see that (1.3)
follows from (1.2) we use the very crude bound
m<L,and e=L,/(n—1).

3. Conciuding remarks

The proof of Theorem 1.1 given here uses
several ideas from Bartholdi and Platzman [1],
where it was proved that H,/L, = O(log n). The
present approach sharpens and generalizes that
bound by making systematic use of Esterman’s
inequality and the bound (2.3).

A potentially useful feature of inequality (1.2)
is the presence of the ratio

m/e=(n—-1)m/L,.

The only time the spacefilling heuristic can per-
form badly is when the longest edge in the heuris-
tic path is much larger than the average edge in
the optimal. In the example of Bertsimas and
Grigni [2], the critical ratio m/é€ is of order n.
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Note added in proof

The spacefilling curve heuristic for the TSP
goes back at least to unpublished work of S.
Kakutani in 1966. The early history of the idea is
discussed by R. Adler in the Collected Works of S.
Kakutani, Vol 11, R.R. Kalman (ed.), Birkhauser,
Boston, 1986, p. 444.
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