GUESSING MODELS

Guessing models are statistical structures
which aim to provide insight into the norma-
tive and optimal behaviors of people who
must make choices in the apparent absence
of data. Such models are related to aspects
of Bayesian® statistics and the Delphi
method ', but they have a flavor and a theory
of their own.

This is most easily illustrated by the anec-
dote of two statisticians, Bob and Mike, who
engaged in a contest to guess the weights of
people at a party. Bob agreed to always
guess first, and on person | Bob guessed 142
pounds. Mike then guessed 142.1 pounds,
and the subject declared Mike the winner.
The contest continued; and, when final tal-
lies were made, Bob found he had lost al-
most three-fourths of the time.

To model this scenario, consider a system
of four p vectors

Target values: (0,,0,...,6,)=128

First guess: (XI,XZ,...,XP)zX
Second guesser’s hunch: (Y, Y, ..., Yp) =Y
Second guess: (G1,Gy ..., G)=6G

The 6, denote the real values to be
guessed, so, for example, 4, would denote
the weight of the second person considered
by Bob and Mike. The X, are the guesses
made by the first guesser, and the Y, repre-
sent the second guesser’s best estimate of §,.
Finally, the G, are the guesses that are an-
nounced by the second guesser. The first
problem in this theory is to determine how G
should be determined by X and Y.

As the anecdote suggests, each player
wishes to come closer to each 6, than his
opponent, so we consider

P
V(G.0)= 3 ¥(G.0)
2

where

Vj(G,6’)={1 if |G, — §] <|X; - 6]
0 otherwise.
With the objective of maximizing V(G, 8),

,G,i‘

it is intuitive that the second guesser should
always guess just a bit higher or a bit lower
than the first guesser. This can be proved to
be true under very general circumstances.
Specifically, if 8, X, and Y are assumed to
have a joint distribution that is continuous
and if »,(X,Y) denotes the conditional me-
dian of . given X and Y, a key role is played
by the strategies

G = X +e X, <p(XY)
X — ¢

!

otherwise.

These guesses G are called Hotelling strate-
gies and the first result in the theory of
guessing models 1s the following:

Theorem 1.
optimal, i.e.,

The Hotelling strategies are e
1iné EV(G:,0)=supEV(G,9).
€ G

Although this result reassures intuitive
feelings, it just makes the first step in telling
the second guesser how to guess. Consider-
able ingenuity may be required to ferret out
those models in which »,(X,Y) can be calcu-
lated, and much of the theory of guessing
strategies resides in the calculation of suit-
able approximations.

Consider, for example, the strategies

élz{Xi‘*'C
X — ¢

if X, <Y,
if X,>7,.

These are the “hunch” guided strategies and
they model the reasonable actions of Mike
in the anecdote. In some cases the hunch
guided strategies are, in fact, Hotelling strat-
egies, but even when these strategies are not
€ optimal they have surprising power.

Theorem 2. If for each 1 < i< p, X; and
Y, are independent and identically distrib-
uted with a distribution that is symmetric
about 4, then the hunch guided strategy G;
has a 2 probability of winning the ith con-
test as e —> 0.

The fact that one shrinks the first guess Y,
toward one’s hunch X, anticipates that the
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fact that other types of shrinkers are relevant
in guessing models. In particular, when
p >3 and all the Y's are available to the
second guesser, a very powerful strategy for
the second guesser can be based on the
James~Stein estimator®.

NOTE

1. Editor’s note: The Delphi method referred to
above is the subject of a book [1], and is defined
there as follows: “Delphi may be characterized as
a method for structuring a group communication
process so that the process is effective in allowing
a group of individuals, as a whole, to deal with a
complex problem.” [1, p. 3]

(See also PUBLIC ADMINISTRATION, STATISTICS
IN, and SOCIOLOGY, STATISTICS IN.)
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The theory of statistical extremes has a short
effective history. Beginning, essentially, with
a paper by Dodd [10] on the distribution of
the extremes (maxima and minima) of a
univariate independent and identically dis-
tributed (i.i.d.) sample, the basic results re-
garding special properties and asymptotic
behavior are contained in Fréchet [12],

Fisher and Tippett [11], Gumbel {17], and
von Mises [46], culminating in the funda-
mental paper by Gnedenko [14] (see EX-
TREME-VALUE DISTRIBUTIONS). The initial re-
sults concerning the law of large numbers*
for extremes—not dealt with here—can be
found in de Finetti [9]. The basic bibliogra-
phy for statistical problems is still Gumbel
[19]: many results and examples can be
found in this fundamental reference. A large
block of references can be found in Johnson
and Kotz [22] and Harter [20]. A modern
and essential reference for probabilistic re-
sults is Galambos [13]. Extensions and appli-
cations can be found at the end of the entry.

BASIC RESULTS
Consider a sample of k iid. random vari-

ables (Y, . .., Y,) with cumulative distribu-
tion function (CDF) F(x)= Pr[Y < x].

Then the CDF of max(Y,, ..., Y,) is
Pr[max(Y,, ..., ¥;) < x]
k
= HPr[X,- < x]
1
= F*(x);
in the same way,
Pr[min(Yl, LY < x]
=1-(1- F(x))~

In general, to deal with samples of maxima
(or minima), all obtained under the same
conditions (with the same k and F), it would
be necessary to know the form (and parame-
ters) of F. But if k is large, we can try to use
asymptotic distributions in statistical analy-
sis. In fact, it can be shown that, in many
cases, coefficients ¢, and B,(> 0) exist such
that Pr{(max(X,, ..., X,) — o)/ B < x]
= F¥(a, + B,x) has a nondegenerate limit
CDF; note that (a, B,) are not uniquely
defined. There are only three such limit
forms (Weibull*, Gumbel, and Fréchet)
which can be integrated in a condensed von
Mises [46]-Jenkinson {21] form.



