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Short Note

Hasegawa’s Three Point Method for Determining Transient Time Constants
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Ir many physical contexts it is important to estimate the time constant for a transient which is represented by a curve
with exponential decay. The three point method for estimating such constants is studied here with the aim of understan-
ding the influence of measurement error. The three point method is found to depend delicately on the choice of the
middle (or design) point, to have a small positive bias, and to have a large standard error relative to the measurement

€ITors.

The purpose of this note is to remark on the statistical
properties of a simple method (the Three Point Method)
which was given by Hasegawa! for estimating the time
constant associated with phenomena whose transients
can be expressed as an exponential function.

Methods which speak directly to the physical
phenomena of transients and which come before
Hasegawa’s Three Point Method include: plotting the
logratihm of the capacitance change against time,? the
deep transient spectroscopy (DLTS) method introduced
by Lang,” the isothermal capacitance transient spec-
troscopy (ICTS) method which essentially plots the
differential of the capacitance and which calculated the
time constant from the maximum of the differential,”
and the Fourier Series method more recently introduced
by Ikeda and Takaoka.”

The Three Point Method has a compelling analytic
simplicity and it addresses a recurring physical problem.
It is therefore reasonable to examine the method from
the view point of the statistical properties of mean square
error and of bias. In the next section the so-called delta
method is applied to give closed analytical expression for
the approximate variance of the three point estimator.
The third section reports the results of a Monte Carlo
study. The main points to be made by that study are (1)
the delta method estimate of variance is justified as a
good approximation of the true variance (2) the three
point method has relative standard error which is (even
in the best cases) is almost 20 times as large as the stan-
dard error of the individual observations, (3) the three
point method has a positive bias for all reasonable
choices of the design parameter and (4) the bias of the
three point is not intolerably largé (ranging from 0.5 to
2.0 percent for reasonable choices of the design
parameter).

Capacitance change C(f) is commonly assumed'™ to
be expressed by

C()y=Co(1—Nexp (—ab) ¢y

where C, is the capacitance at t=o, N is a constant
(which in certain instances can be explicitly related to the
shallow donor and trap densities), and « is the emission
rate.

To estimate « from the value of C(f) with the Three
Point Method, one first chooses a design parameter s and
then sets #,=s/2, t,=s, and t;=3s/2. Hasegawa" ob-
served that a good choice of s is =« !, the time con-
stant. Since 7 is not assumed to be known one can begin

with a crude estimate of 7 or a subjective a prior
estimate. The three point estimate of « is given by
1etting AC{ZC(Q)‘“C(H), ACQ:AC(E)"’AC(Z:), =
6L—1t,=t;—1, and observing by simple arithmetic that one

then has
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To model the measurement error associated with a
method like this, one typically assumes that the actual
observations C(1) are expressible as C(¢;)+¢&; where the ¢,
are independent normally distributed random variables
with mean 0 and variance o”. Setting 4C;= C(t,+1)— C(t)
one can estimate the effect of modest noise on « by the
delta of first linearly approximating & as a function of
the noise and the true o,
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and then obtaining the so-called delta method estimate of
variance by taking the variance of the linear approxima-
tion,

07

For this plot it is assurmed that the individual
observations of C{t) have standard error 0.01 and
that the value of aipha is 1.00, The minimurm value obtained
is stiff more than 20% of alpha.
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Fig. 1. Delta Method Estimate of Standard Errors as a function of
the Design Parameter S.
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o The standard error of the three point
} estimator can be estimated independently of the
Dalta Method by combining the results Mente Cario
estimates of the bias and expected
sguared loss. It works out that the bias makes
a negligble contribution
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Fig. 2. Bias of the 3 Point Estimator as a Fig. 3.
function of the Design Parameter S.

The minimum value of the expected
squared error is attained outside the range

Fig. 4. Monte Carlo Estimate of Standard
Errors as a function of Design Parameter.

where bias is smallest.

g L, (G=Cy) 3
A 4acy +(AC,AC2)2+(AC2) C))
For the sake of comparisons one can take Co=N=g=1
in (3) and plot the approximate variance given by (4) as a
function of the design parameter s. For the sake of
specificity we take g to be 0.01 in the plots which follow.
The assumption that the measurement error is typically
as much as one percent of the parameter being estimated
is not critical and the essence of the plots is unchanged by
varying that assumption. As the results of the Monte
Carlo estimates will indicate, delta method estimate of
variance is quite good through almost all its range.
Under the same conditions as above, the behavior of &
by Monte Carlo methods. We let the design parameter s
vary from 0.5 to 2.5 and calculated one thousand values
of & for each value of 5. The mean these of these one
thousand calculated values of & gives a reasonable
estimate of the expected value of &. When «=1.0 is sub-
tracted from those means one then has an estimate of the
bias of & as function of the design parameter s. The plot
of these biases given in Fig. 2 show that & consistently ex-
hibits a reasonably small bias. One consequence of this
observation is that with out correcting for that bias, no
number of replications of & can lead to a consistent
estimate of «. In addition to the Monte Carlo estimate
of bias the same design was used to provide an indepen-
dent estimate of the standard error. The mean sum of
squared errors was calculated for one thousand values of

~

& at each design value s. These values are given in

Var(a) =

Fig. 3. Since the variance of & equals the sum of the ex-
pected squared error loss and the the square of the bias,
the simulations of Figs. 2 and 3 can be combined to give
an independent estimate of the standard error of &. This
estimate is given in Fig. 4 and shows excellent agreement
with the delta method results of Fig. 1.

The Hasegawa Three Point Method for estimating
time constants of transient phenomena has been exam-
ined in the context of noisy observations. Analytical
estimates of the variance and Monte-Carlo analyses of
the mean and variance provided information of the
dependence of the three point critical choice of the mid-
dle point (design parameter). While the analytical
elegance of the method can be commended, the practical
applications of the Three Point Method seems best con-
strained to those situations where the time constant is
known a priori with some precision, the coefficient of
variation of the observations is quite small, and ob-
servations at more than three time points is costly or
impractical.
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