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ABSTRACT

The average squared error has been suggested earlier as an appropriate
estimate of the integrated squared error, but an example is given which shows
their ratio can tend to infinity. The results of a Monte Carlo study are
also presented which suggest the average squared error can seriously under-
estimate the ervors inherent in even the simpiest density estimations.

1. INTRODUCTION

In almost all theoretical work on density estimation the quality of the
estimator fn(zc) has been measured by the mean integrated squared error
(MISE} which is given by

MISECS,f,) = 860/ (F@) -,y @) @ dx] W

Here w(z) is a fixed weight function often taken to be 1, and &
the expectation under the true density f(z) .
While this criterion is very convenient in mathematical analyses, the

fis

presence of the x - fold integral represented succinctly by & £ presents

considerable difficulty when the MISE is to be determined numerically. -In
order to circumvent this difficulty Wegman (1972) proposed the use of the

average squared error (ASE) which is defined by

n
~ ~ ~ 2
ASECF) =a/m) I (e )-pe))? €)

where Tys eees T, are the same observations used in the construction of

~

Iy (x) .
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This is certainly a more convenient measure of quality than the MISE,
but, this convenience is paid for in several ways. In the first place, how
does one relate the ASE to the MISE? In the second, how much effect is there
on th? ASE due to the use of the same data in constructing }\'n(x) as in test-
ing fn(::) ? ‘ )

The original metivation for the ASE given by Wegman (1972, p.228) was
that it should approximate the integrated squarederror with a weight fumction
Flxz). This interpretation was carried on by Fryer {1877) who refers to the
ASE as "an experimental MISE". The first objective of this paper is to scru-
tinize this motivation further and to suggest the difficultiss it poses.

The second cbjective is to veport the results of simulations which were
conducted te determine the effects of using the cbservations beth for con-
structing and assessing %n(:c)u Since such a procedure is analogous to tesi-
ing a discriminator on the data used to construct it, one could expect the
ASE to sericusly underestimate the errors of estimation. Although the study
reported here is modest in scope, the results clearly support this expectation.
In the Conclusion, some problems are mentioned which would be of interest for
the foundations of the theory of density estimation.

2. HOW CLOSE ARE THE ASE AND THE MISE?

The ASE can be written suggestively as
12 @ - @) 2eF () (3

where Fn(x) is the empirical distribution function. As Wegman notes, when
n becomes large an(m) approximates f(x)dz, hence (3) approximates

£ @-f@) f@da %)

This last integral is naturally the integrated squared error (ISE) with weight
flx) -

One intrinsic difficulty with this line of reasoning is that both (3}
and (4) are approximately zero for large n. Hence, in using ASE as a stand-
in for (4) which is in turn used as a stand-in for the MISE, the relevant
comparison would be provided by the ratio of (3) to (4). The theorem of this
section shows that even in the favorable case of estimation of smooth densi-
ties this ratio can be disappointingly large. This is one means of showing
that the ASE is an inappropriate substitute for the MISE.

Before stating the theorem we recall that a density estimator f‘n is
consistent for a family of densities F provided that for any feF one has
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tin [7_(F (@) -f(2) *f(z)dz = 0 |
710
If the convergence above is almost sure, _% " is called strongly consistent,

and if the convergence is in probability, ?‘n

is simply said to be consistent.
THEOREM. There is a density estimator which is strongly consistent for the
class of differentiable squared integrable densities, but for which
ISE(F, ,9)
— © Q,S., a8 N, (5)
ASE(S, ,$)

where ¢ 15 the unit normal demsity.

Proof. Llet §n be any strongly consistent density estimator. We will obtain
fn as a modification of gn. Now for any subset 5§ of R, I (x) will be
the indicator of 5. Letting .47: = '[xi - 1/7% z: + 1/n2] we set

—%x?'.

n
r (z) = (1+n'2)(z'rr)'i Ie %A (x) .
i=1 i

Next choose a sequence v, of reals which tends to infinity and which satisfies

v +1
I e(mdr 21/n . 6)

vn+§

L}

n
We then let 3, {vn, \)n+1]\;L=11Ai and set
sn(x) = IB (x) .
n

il

n ~
Finally set ¢ (C Y 4.)uUB )® and define f () by the sum
n izl 1 n n R

~

f () = Qn(xﬂen(z) tr @ +s (2,

Write iyl, for the weighted I? nomm of y which is given by
O vhan? .
To prove }‘n is consistent we apply Minkowski's inequality to obtain

] f—fnll 2 <l f-gnll 2 + 0l gn—Icn. gnll 2 + |l Z'nll 2 + 1l snu 5 " (N
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One easily sees that Hf-?ynﬂz, Ilrnli 93 and | Sn“2 go a.s. to 0 as n-o,
so we consider the more subtle second term. By Schwarz inequality,

g, - Icngnil , <1E I Iczﬂ )
1 AY 1
~ 5 N n+1 =" 2
<ig 2(3 u{ o, (2)dx)* < | gnilz(f\)n ¢ (x)dx) + Wfﬂ fb(x)dm) .
e -

n
U4
1=

U
1 KA i=1 7
Since @n is consistent | énll 9 is bounded. Further since the measure of
iQ)lAi is at most 2/n and by the boundedness of ¢ we see that

nS ¢(x)dx

L
514

goes to 0 as n-+«= . Finally, since v -« Wwe have

A
5 ™y (zydz 0

v
n

as n-=; hence (7) shows }‘n is in fact strongly consistent. To prove the
key condition (5) we note that

2 2
ASE(f,f.) = .L )= Loe <1l/n”
" =1 2 21m4 =1
Next we have
SE(F,7) = 10 (F,@ - s@) b@dz2ly (4@ @ . @
n
Since iz;lei has measure at most 2/n we have
IS vn+1 2 2 \)n+1
ISE(fr )2 [ (1-0(2) ¢(x)de2 19(v)))" [ ¢(x)dr . (9
n vn+2/n \)n+§

Finally, inequalities (6), (8), (9) show that the ratio of ISE(f,,¢) 1o
ASE(fn,¢) increases like n2 as n tends to infinity. Q.E.D.

Remarks. Much of the detail of this construction is caused by the necessity
of making ISE(?‘n,q)) non-zero and the desirability of making ASE(:f\‘n,da) also
non-zero. The estimator f, constructed here is not itself a density since
it need not have integral 1. While it is not unusual to consider such esti-
mators (e.g., orthogonal-series methods give non-density density estimators)
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one should note thatA }'n can be adjusted easily to make it a proper density.
Mlso, we note that fn is not smooth, but it can be made smooth by routine
modifications.

There is no claim that the example constructed above is "natural’ but
it serves well enough to pinmpoint the possible extreme pathelogies of the
ASE. The more natural pathologies are taken up in the next section.

3. DOES THE ASE UNDERESTIMATE?

The fact that in some cases the ISE can be many times larger than the
ASE might not deter a practical person's desire to use the ASE in assessing
the quality of an estimator. On the other hand, if the ASE were seen to con-
sistently underestimate the error of an estimator in very simple situations,
then almost any application of the ASE would be dubious.

In order to detect this possibility we consider the new average sum of
squared errors (NASE). If }'n is constructed on the basis of a sample
Xl’XZ" .. ’Xn from a population with density f, then a second independent
sample X',Xé,...,Xr'l is drawn and we set

n ~
MSECP,F) = A/mE (7 () - rap? .

We can now check that the motivations given to support the ASE's case
for approximating ISE can be repeated verbatim on behalf of the NASE. First
we write 7 for the empirical distribution function of X1 X5suaisX) o
Since the X! have density f(x) we see dIT’n approximates f(x)dzx just

as an did earlier. Since NASE(f,fn) is precisely equal to

IZG @ - f@) i (@

the NASE(f,f‘n) isAthus an estimate of ISE(f,?'n) with just the same pedi-
gree as the ASE(f,f) . .

The point to be made is that (a) if the a priori arguments in favour of
NASE and ASE are the same and (b) if NASE and ASE differ significantly, then
one must conclude that the a priori arguments do not constitute a significant
motivation for the ASE.

It remains to be seen if the NASE and ASE are significantly different.
To this end a modest Monte Carlo study was undertaken of the ratio

’ mo(f,}n) = NASE(f,}n)/ASE(f,}n) . (10)
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In order not to confound the difficulties of interpreting Monte Carlo
evaluations of (10), RHO was calculated for very simple estimators of an
essentially parametric type. The cases considered were the following:
I. The unit normal was estimated by fn(x) = ¢ (x+2) )
II. The triangular density with base [0,1] was estimated by f,(2),
the triangular density of base [0,2x} . . 4
II1I. The rectangular density with base [0,1] was estimated by }h(m), ﬁﬂ
the rectangular density with base [0, nil max(Xi)] . !

n T
1sisn

TABLE 1: lumbers of Values of RHO out of 1000 fer Three Different Density

Estimators.
Range of T - Normal 11 - Triangular II1 - Rectangular
RHO |n =10 20 50 10 20 50 10 20 50
0-11 36 1 0 55 11 0 1 0 0
1-21{ 85 15 0o | 138 71 7 1532 1512 |506
2-3 |11 45 2 | 127 | 116 44 44 5 0
13-4 | 110 60 8 86 | 107 54 33 17 1
4 -5 83 56 8 85 81 77 3% 16 1
5-6 77 62 11 60 75 67 31 15 3
6 -7 54 56 27 46 55 69 24 19 3
7-8 39 49 37 26 29 45 23 21 9
g8-91 36 37 19 12 32 I3A 12 2% 4
9 - 10| 26 38 30- 4 31 42 13 9 4
10 - 11} 27 32 23 2 19 34 11 19 8
11 - 12§ 20 31 29 0 29 27 12 15 8
12 - 13} 18 40 23 1 21 28 13 17 6
13 - 4] 16 21 32 0 9 36 8 13 7
14 - 15) 13 14 14 5 6 16 10 4 4
15 - 16| 10 19 31 2 5 9 14 7
16 - 17} 12 22 13 1 2 7 8 3 ;
17 ~ 18 9 11 20 2 0 13 8 13 9
18 - 19] 12 17 17 0 0 3 10 8 |
19 - 20f 12 15 18 3 0 10 8 9 11
20 - 30| 61 | 102 | 154 30 6 | 126 34 56 53
30 - | 133 | 249 | 484 315 295 | 242 125  [197 345
Mean 25 78 138 | 4700 | 55000 {37000 | 34 89 118
St.Dev. | 141 |313 |} 1100 |41200 105000 105 {316 1140 |548
Largest | 4000 130000 | 25000 | 93000 29x10° |29x10° | 7900 126000 19300
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For sample sizes n=10, n=20, and n=50 the value of RHO(f,}n) was
calculated 1000 times in each of the cases. For example, from Table 1 we see
that in 1000 calculations of RHO by procedure II with a sample of size
n=20 there were 29 times that RHO was between 7 and 8. Also, the mean,
standard deviation and largest reported at the bottom of Table 1 refer to
the set of all 1000 values generated for each column.

Thefe are a mumber of conclusions which can be drawn from the calcula-
tions. The most naive but most basic is that RHO is frequently very large
and consequently the ASE may frequently give a serious under-estimation of
the error inherent in estimating f(x) by }'n(ac) . There are qualifications
to be made and these are taken up in the Conclusion, but there is a lot of
validity in the naive observation.

4, CONCLUSION

The Theorem of Section 2 gives a theoretical reason why the ASE might
be very small compared to the ISE, and the simulations of Section 3 show how
ASE can be very small compared to +he even more natural measure NASE. The
clear conclusion is that the ASE can seriously under-estimate the errors of
density estimation.

There are numerous possible criticisms of the procedures which have been
applied here, yet none of these seem to seriously inveigh against the conclu-
sion. OCne may observe that the example given in Section 2 is not natural
since }n was constructed precisely to have a small ASE when used to esti-
mate ¢. This may indeed be trickery, but one should mot be prepared to
take as a standard a measure which can be so easily tricked. Moreover, as
it is always the case with counter-examples, once one has been produced it
suggests the possibility of more natural ones existing all around us.

The criticisms of the second section are essentially the generic criti-
cisms of any Monte Carlo study. Since all possible care was taken with the
random mmber generation, one must conciude that the huge range of values of
RHO given in Table 1 ave true reflections of the ratio of the NASE and ASE.

Since only three estimation problems were considered it is possible that there

o

are density estimation problems in which ISE, NASE, and ASE are all comparabl
P

While it would be interesting to kmow if such estimstors exist, it seems al-

ready 2 sufficient indictment of the ASE that it is shown deficient by the
three simplest estimators.
Beyond the basic conclusions to be drawn from Table 1, the data given
there suggest several problems. Can one prove that under most circumstances
1lim 'NASE(f,f;ﬂ)/ASE(f,fn) =mwg,8. 7

}’[—'}CD
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This is hinted at ey Table 1, and has been prcve@, in some special cases but
it would be interestis iy it holds.

The main pmbi%ﬁ“ s » e preceding analysis is naturally the
following: Is there z mumerically dient megsure which accurately reflects

centives which lead to Wegman's

original introduction the ASI mzin s valid as before, but the deficien-
E the problems to be overcome.
- 2
RESUME
L'erreur carrde approachfe (ASE) a &8 introduite comme un bon estimateur
lfery TrEe lﬂter¢9 {ISE).0n présent
o : Y ’ 7

sxemple ol le quoL*emt de
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