1. Introduction

J. Michael Steele,! University of Pennsylvania

and
David Aldous, University of California at Berkeley

The theory of algorithms has undergone an extraordinarily vigorous devel-
opment over the last 20 years, and probability theory has emerged as one of
its most vital partners. University courses, research monographs, and spe-
cialized journals have been developed to serve this partnership, yet there is
still a need to communicate the progress in this area to the wider audience
of computer scientists, mathematicians, and individuals who have a stake in
the contributions that mathematical research can make to technology.

The main purpose of this report is to give an understanding of the power
that comes from applying probability in the theory of algorithms, but an
equally essential aim is to point out the variety of ways in which probabil-
ity plays a role. One useful step in understanding this variety comes from
making a clear distinction between the subject of probabilistic algorithms
and the subject of probabilistic analysis of algorithms. Confusion sometimes
arises over what methods are properly called “probabilistic (or randomized)
algorithms”—and indeed there are some gray areas. Still, if one does not
press for too fine a point, there are considerable organizational and concep-
tual benefits in drawing the distinction between probabilistic algorithms and
the probabilistic analysis of a (possibly deterministic) algorithm.

One common distinction is that probabilistic algorithms, unlike deter-
ministic ones, make random choices when computing. They are commonly
referred to as “coin-flipping algorithms.” Such algorithms will produce (pos-
sibly) different results for the same problem when posed in different cir-
cumstances. On the other hand, the probabilistic analysis of an algorithm

1J. Michael Steele’s research was supported in part by NSF grant DMS88-12868,
AFOSR grant 89-0301, ARO grant DAAL03-89-G-0092, and NSA grant MDA-904-H-2034.



incorporates randomness into the data processed by an algorithm. Prop-
erly speaking, we are considering the pair (algorithm, problem instance)
and probabilistically exploring the algorithm behavior over a large variety
of problem instances. Typically, the analyst can make statements about
the probability of selecting a particular instance, or focus attention on the
distribution of suitable variables that describe the problem instance. The
task is then to relate the algorithm performance to these variables.

This introductory chapter provides several simple illustrations of the dis-
tinction between the design of probabilistic algorithms and the probabilistic
analysis of algorithms. An excellent examples-oriented survey of probabilis-
tic algorithms is that of Karp (1991).

1.1 Probabilistic Algorithms

1.1.1 Everyday Examples

Before developing more serious examples that require detailed mathemat-
ical description, it seems useful to provide a couple of everyday analogies.
Mathematics often speaks best for itself, and one should not read too much
into analogies, but because there are important uses of probabilistic algo-
rithms that can be explained without any technical prerequisites, it seems
appropriate to look at them early on.

We have all had the experience of walking along a narrow path and
encountering someone who is approaching on the same side of the path.
As the individuals draw closer, one moves to the other side of the path in
order to let the other person pass, but often the other person does the same
simultaneously. This little shuffle continues one or two more times before
the two people end up on opposite sides of the path and can pass each other.

Although people resolve such difficulties with little more cost than a mo-
ment’s embarrassment, the analogous situation is more serious when packets
of information end up vying for the use of the same place at the same time
in a communication channel. When one tries to program machines to avoid
such deadlocks, there are decided drawbacks to most deterministic rules.
The dogged consistency of machines is such that the shuffling from side to
side can go on unabated until an outside action halts the dance. This is
an unacceptable state of affairs that one ought to be able to avoid through
thoughtful design.

One theme of this report is that a natural course of action when one is
faced by the disadvantages of purely deterministic rules is to introduce some



sort of randomness into the protocol. Each process could continue to follow
its own randomized rule without regard for the rule being followed by the
other process, and the eternal dance would be avoided. This simple idea is
at the heart of many of the communication protocols in use in the world
today.

The larger idea onto which this flavor of application can be attached
might be called “randomization to avoid special coincidences.” Mathemati-
‘cians can find analogs of this phenomenon in many other fields, and, as
more technical examples will illustrate later, there are more profound con-
sequences to the idea than are done justice to by this first quick, everyday
example.

Our second everyday example involves opinion polls. These are so widely
discussed and so well understood that it is not easy to evoke a proper aware-
ness that there is actually quite a bit of magic in the technology—enough
so that there is still cutting-edge research in computer science related to the
subject. Still, in order not to get ahead of our story, let us first consider a
question that is typical of the sort addressed by Gallup and other famous
pollsters: What percentage of the U.S. voting population feels that the re-
cent pay raise voted for itself by the U.S. Senate was well deserved? A fact
that was completely unavailable to the founding fathers, but which is much
a part of modern political life, is that one can obtain a useful answer to the
question at a cost that is a small fraction of the cost of conducting a census
of the whole voting populace.

One point that deserves to be underscored in this example is that the
precise question that has been posed has nothing a priori to do with prob-
ability. If we are totally faithful to the precise phrasing of the question, we
have to agree that it is one that can be answered only by a complete census
as long as one insists on an ezact answer. Still, a useful answer need not be
perfectly exact, and the full complement of political insight is likely to be
gained by knowing the answer to within plus or minus two percentage points.
This fact is easily seen and accepted in this context, yet when one reviews
the theory of algorithms one finds that tremendous effort is often expended
to get exact answers where approximate ones might serve just as well. Thus,
willingness to accept approximation seems to be one door for probability to
enter. More surprising mathematical examples to be considered below will
show that this is not the only door.

Still, in the context of our polling question, an approximation clearly
serves the policy purpose just as well as a complete census. If one selects a
random sample of about 2,500 from the target population and asks, “Do you




agree that the pay raise that the U.S. Senate gave itself is well deserved?”,
the percentage of individuals who say yes provides an estimate of the per-
centage of the whole populace that would answer in the same way. It is
a consequence of elementary probability theory that our estimate will be
correct to within +2 percent on better than 95 percent of the occasions on
which such a sampling experiment is conducted.

This is a familiar tale, even if told a bit more precisely than usual, and
the reader may legitimately ask why this old tale is being told here. The
retelling is not occasioned to celebrate polling, which certainly draws enough
of its own attention. The point is not even to recall the often missed subtlety
that the required sample size depends only on the precision required, and
not on the size of the population about which the inference is being made;
though it is interesting that the senators from Rhode Island find it as costly
to obtain information about the voting populace of that state as it is for the
National Committee to get the corresponding information about the nation
as whole.

The point is rather to see that the sampling techniques of political poll-
sters are actually probabilistic algorithms; one uses exogenous randomiza-
tion to obtain an approximation to a problem that would be prohibitively
expensive to answer exactly. The key point for us is not the approximation
issue. Approximation is a common but not inevitable feature of probabilis-
tic algorithms. The key point is that one pours in randomness that was not
there to begin with. In the pollster’s case the randomness that was added
was that used in making the random selection. What was purchased at
the price of this extra complication was the applicability of the probability
theory that enabled us to quantify the quality of our solution. These are
features that one finds throughout the theory of probabilistic algorithms.

To be sure, there are differences in flavor between the pollsters’ tech-
niques and those applied in computer science. The pollsters’ methods are
applied in a social rather than a computational context, and, perhaps as a
result, the process looks unsophisticated, or even straightforward. Individ-
uals will sometimes disagree, but it seems useful to hold that the polisters’
techniques are just as much a probabilistic algorithm as any being studied
in computer science. The difference of context does not alter the logical
structure, and the perceived difference in sophistication comes in good mea-
sure from the fact that our example did not go into any subtleties such as
how one might really draw the sample and whether some trickier sampling
scheme might do better than a uniform random sample.

This pollster problem completes the second of our two everyday exam-



ples. Both were illustrations of randomization applied in algorithms. In one
case the randomization offered escape from the “special situation” traps into
which deterministic processes can fall. In the second case, we gained great
savings of cost at the price of accepting an approximation, and we were able
to quantify the quality of our approximation because we were able to add
just the kind of extra randomness to which a compelling theory could be
applied.

1.1.2 Hashing

Some of the earliest examples of probabilistic algorithms were invented in
the context of storage algorithms, and one of most influential of the ideas to
be developed to speed up the access of stored information is hashing. This
device is used in many important computational contexts and even lives at
the heart of some computer operating systems. Still, it can be described in
the style of an everyday example.

Consider an office where 50 employees receive mail. The thoughtful
employer typically provides a set of somewhat more than 50 mailboxes so
each employee can be assigned one. Conceivably, the assignment of physical
mailboxes to individuals could be done in lots of different ways. But the
conventional method is so familiar that most people would call it obvious.
The tradition is to physically label mailboxes with employees’ names, in al-
phabetical order (this suggests an ordering of the boxes, usually left-to-right
within rows and top-to-bottom across rows, but we digress). To see that this
arrangement is not the only conceivable one, consider instead a hotel that
has 50 rooms and receives letters addressed to its guests. The hotel could
use the arrangement above, but that would be silly because guests arrive
and leave so rapidly that the staff would waste time moving name labels. In-
stead, hotels label their mailboxes by room number, and when letters arrive
they look up the addressee’s room number. Hashing abstracts the hotel’s
procedure. Suppose we have n storage locations numbered 1,2, ... ,n and
wish to store m < n items, where each item has (say) a name in plain En-
glish. We specify some hash function f : {all names} — {1,2, ... ,n}. For
each item in turn we compute f(name) = ¢, say, and attempt to store the
item in location i. We then need a rule to tell us what to do if location ¢ is
already occupied; the simplest rule, hashing with linear probing, is to
look at locations 2+ 1, ¢ + 2, ... until an empty location is found and store
the item there. Note that once all the items are stored, they are simple to
locate. Given the name, compute f(name) = i, say, and look at locations




i,i+ 1, ... until the item is found or an empty location is found, in which
case the item cannot be present.

This algorithm is appropriate if storage is cheap and we desire to lo-
cate items very quickly. Under plausible assumptions, the mean number
of locations checked in searching for an item (averaged over items) is ap-
proximately a function of the density m/n only; that is to say, it does not
depend on the total number of items to be stored. The conceptual idea is
to choose a hash function that “scrambles” the name so that the resulting
value can be regarded as random and uniform on 1,2, ...,n. Thus, the
mathematical analysis of the performance of hashing with linear probing
can be done under the assumption that the hashed values of the m items
are independent uniform random variables. To justify this assumption for
a particular hash function would consequently involve the same issues as
justifying a pseudorandom number generator.

Though it is not difficult to analyze the scheme just described (see Knuth,
1973, §6.4), the main features of this scheme can be seen from a trivial-to-
analyze but less practical variant in which one specifies a sequence of hash
functions and resolves collisions by applying the next hash function. Here,
after inserting the (i+ 1)st item, one will need to search a mean number ;2
of locations until finding an empty location. The same number is needed to
search for the item, so the mean search length (over all m items) is

li n LW 1
m n—14+1 m & 1-2 /"

i=1

The linear probing scheme turns out to require more searching because the
occupied locations tend to cluster, and its analysis is more taxing. Still,
both linear probing and multiple hashing share the fundamental qualitative
feature of depending only on the ratio m/n.

1.1.3 Geometry

One of the areas in which probabilistic algorithms have recently proved to be
exceptionally powerful is computational geometry. The body of this report
does not pursue these applications except somewhat in passing; the reader
is referred to Seidel (1992), which recounts several applications and gives
references to further work. To give some sense of the way that randomization
can come into play in computational geometry, we look briefly at one of the
examples treated by Seidel.



The Delaunay triangulation of a set S of n points in the plane is the
graph with vertex set S that puts an edge between points z and y if and
only if there is a disc with z and y on its boundary that contains no other
points of S. Algorithms for computing the Delaunay triangulation have been
well studied. There is a known deterministic algorithm for computing the
tessellation in O(nlogn) steps, and in the worst case this order cannot be
improved.

For the special case where S consists of the vertices of a convex polygon,
a simple probabilistic algorithm is available. The key idea is to let s, be one
of the points in § and let S,—1 = S \ {s»}. In this special case S,-; still
forms the vertices of a convex polygon. Suppose we are given the tessellation
of S,—; and want to compute the tessellation of S. There is an algorithm
for doing this (see Seidel, 1992) which we shall not describe here: if we are
lucky, we may only have to add two edges to s,, but in general we must
delete some existing edges and retriangulate.

Obviously, given such an algorithm we can order the points of S arbi-
trarily as s1,S2, ... ,5, and apply the algorithm to update the tessellation
as each new point is added. The efficiency of this process will clearly depend
on the order of the s;, but it is not easy to envisage an optimal order. The
key idea is to proceed as in Quicksort and put S in random order. Then
the final update can be rephrased as follows: pick s, at random from S,
suppose we have constructed the triangulation on S\ {s.}, and apply the
update algorithm. A geometrical argument shows that, for each choice of
Sn, the number of steps needed is on the order of the degree of s, in the
tessellation on S. But it is easy to see that the average degree of the ver-
tices in a Delaunay tessellation is less than 4, so because s, is random we
conclude that the expected number of steps in the final update is O(1), and
hence the total number of steps is O(n).

1.1.4 Competitive Analysis

Traditionally, algorithms have been compared using worst-case analysis or
average-case analysis, in other words by considering the worst possible
‘input or by putting some probability measure (perhaps chosen for mathe-
matical simplicity rather than realism) on inputs. Recently, attention has
been paid to a different mode of analysis called competitive analysis. In
particular, this has been applied to on-line algorithms (defined in Chap-
ter 7). The idea is to compare a given on-line algorithm with the optimal
off-line algorithm and define the competitiveness coefficient to be the



smallest ¢ such that, for some b,

{ Cost using on-line algorithm}
< ¢ x {Cost using optimal algorithm} + b,

for all inputs. One specific problem where this method of analysis has been
used is the caching problem.? Imagine a cache (fast memory) that can
hold n items and a slower external memory that we can model as having un-
limited capacity. A requested item that is not in the cache must be retrieved
from the main memory at unit cost. To use these memories efficiently, an
algorithm is needed to specify when items are switched between cache and
main memory. Fiat et al. (1991) invented a simple probabilistic algorithm,
the marker algorithm. Initially, let none of the n items in the cache be
marked. If an item in the cache is requested, then it is marked. If an item
outside the cache is requested, then an unmarked item in the cache is cho-
sen uniformly at random and switched with the requested item, which is
then marked. Eventually, all items in the cache are marked, at which time
remove all marks and start again. Fiat et al. proved this algorithm has
competitiveness coefficient at most 2} 1} 1/i ~ 2logn. Note the simplicity
of the randomization: it is hard to imagine a simple deterministic algorithm
performing so well.

1.1.5 Random Constructions

A surprising connection between mathematical probability and the theory of
algorithms is the idea of proving mathematical results about random objects
by studying the behavior of an algorithm for constructing the random object.
We illustrate this with the classical topic of random permutations. Suppose
we want to generate, inductively on n, the uniform random permutation of
n objects into n positions. Picturing the objects as physical files in a file
cabinet, the natural update algorithm for adding the nth object is: pick
p uniformly on 1, ...,p, move objects at positions ¢ = p, p+1,...,n to
positions i + 1, and put object n at position p. In a computer the natural
update algorithm is: put object n at position n, pick p uniformlyon 1, ...,p,
and switch the objects at positions n and p.

Though the latter algorithm is essentially the standard optimal algo-
rithm for computer simulation of a random permutation, here is a more

20ur treatment follows Raghavan (1990).



complicated algorithm that turns out to be useful for mathematical pur-
poses:

The Chinese restaurant process. Mathematicians at a conference agree
to dine at a Chinese restaurant.> They arrive separately, and so the ith
arrival has 7 choices of where to sit: next (clockwise, say) to one of the
i—1 mathematicians already present, or at an unoccupied table. Suppose
the choice is random and uniform. After n arrivals, the pattern of mathe-
maticians (labeled by arrival order) at tables can be regarded as the cycle
representation of a permutation, and it is easy to see that the sequential
uniform random choices create a uniform random permutation.

Suppose we want to study the random number C, of cycles in a random
permutation. In terms of the Chinese restaurant algorithm, C,, is just the
number of occupied tables. But the ith arrival has chance 1/7 of starting a
new table, so without calculation we can see that the expectation of Cy, is

n

*_; 1/i. (Classical probability theory gives a normal limit distribution.)

1.1.6 Testing Equality and Faith

Suppose one has a polynomial in n variables p(z;,z2, ... ,Z5) that repre-
sents a possible identity. Naturally, it is desirable to know if the identity is
valid for all 1,22, ... ,Z,. For example, suppose one did not know about
the modulus identity for quaternions but had somehow come to suspect that,
fora, B8,7,6,0, 0,7, 8 €R,

(02 +ﬂ2 +72+62)(a'2+ﬁ'2 +'7‘2 +5'2) -
(ad = BB — 17— 68') + (af’ + Ba’ +8' — &7')?
+ (a7 + 70’ + 66 — BE)? + (ab' + 80 + By —18')*.

Is there a quick and painless way to decide if this conjectured identity is
indeed valid for all values of the arguments?

There is way to answer this question that suggests itself rather naturally
from the probabilistic point of view and that also serves to point out some
subtleties in the algorithmic uses of probability. The idea can also be used
to test one’s faith in probability theory.

Because nonzero polynomials in n variables cannot vanish on a set of
positive measure, the brave probabilist can check identity almost trivially.

3Chinese restaurants often have large circular tables.

g i




10

All one has to do is choose a point (a, 8, v, 6, &, §', 7', §') at random from
[0,1]® to see if the point satisfies our would-be identity. If the expression
in question is not an identity, the two sides will evaluate to different values
with probability one. Thus, without any call on sampling theory or repeated
trials, one can answer the point in question with probabilistic certainty and
very little arithmetic.

Still, the answer is too easy not to provoke doubts. Our ability to choose
numbers at random from sets like [0, 1] comes belatedly into question, and
we are reminded that computers do not actually operate on real numbers.
There is clearly some need to discretize the probabilists’ suggestion, and
there are important details to be resolved. Our first help is to be found in a
discrete version of our statement that a nontrivial polynomial in n variables
cannot vanish on a set of positive measure in R".

Lemma 1 Suppose p(z1,22,...,Zn) s a polynomial of degree d with in-
teger coefficients. If values X1, X2, ... , Xy are chosen independently from
the uniform distribution on {0,1,2, ... ,d}, then

Plp(X1, X2, ..., Xn) = 0] < 1/2.

This lemma can be found in Schwartz (1980), and it can be proved by
induction on the number of variables. The main point of the lemma is that
it tells us that we can put our relation to the test k times, and, if it is
not a true identity, then we will discover the fact with probability at least
1—2"k. After suffering prior doubts about the possibility of selecting points
at random from [0,1]%, one might worry about how we can make random
choices out of {0,1, ... ,d}. Clearly, the situation is better, but still it may
not be fully resolved. This question is dealt with at length in Chapter 6.

1.2 Probabilistic Analysis of Algorithms

1.2.1 Sample Analyses: The Assignment Problem

Probabilistic analysis is inevitably mathematical, so no everyday example
can help illustrate this second of the great gates through which probability
theory enters the theory of algorithms. Still, for our first such example, we
can use a task that often arises as a module in larger computational problems
and that is evocatively expressed in language that reflects its origins in
industrial engineering. It requires a slight increase in technical level over our
everyday examples, but it is still friendly and nontechnical. An additional



11

benefit of the problem is that its analysis offers several surprises that have
only recently been discovered.

We suppose that we have a set of n jobs labeled {1,2,...,n} and a set
of n machines on which to perform the jobs that are similarly labeled. We
further suppose that there is a matrix of numbers ¢;; that describe the cost
of doing job i on machine j. A natural and important computational task
is to specify a one-to-one assignment of jobs to machines that minimizes the
total cost. In other words, the task is to determine a permutation o that
minimizes

A(0) =) cioi) -
i=1

This is called the assignment problem, and one can see how it could come
about easily on its own or in the context of a larger computational task.

One natural way to try to solve this problem is to use a “greedy” strategy.
There are two natural ways to proceed, so we will consider the simplest one
first. We look at job 1 and assign it to machine j, where j is chosen to
minimize ¢;; over all 1 < j < n. We then successively assign jobs 2,3, ... ,n
by choosing at each step we take the least costly among the unassigned
machines.

There is a slightly more sophisticated algorithm that takes a more glob-
ally greedy perspective. For the first assignment, one chooses the assignment
i— j, where (i,j) are chosen to minimize c;; over all n? possible choices.
The second assignment then chooses the cheapest possibility from the re-
maining set of (n— 1)? pairs of feasible assignments. One then continues
in this globally greedy way until one has a complete assignment of jobs to
machines. The natural problem in this context is to determine which of the
two methods is better. Another compelling problem is to determine if there
are still other methods that do substantially better than these two greedy
procedures.

One way to approach these problems is to assume some probability model
on the input data c¢;; and to calculate appropriate measures of performance
under this model. An issue that emerges at this point is that for algorithms
that do not return an exact solution, there are two compelling dimensions
along which to measure performance: the quality of the solution obtained
and the amount of time needed to obtain that solution. For the simple
and global greedy algorithms for the assignment problem, the running time
analysis does not depend on probability theory, so we will consider it first.

Because one can find the smallest element in a list of k items in time that




12

is bounded by a constant times k, the running time of the first algorithm
is bounded by c[n+ (n— 1)+ (n—2)+ --- + 1] = O(n?). The second al-
gorithm requires a little more knowledge to implement efficiently, but for
people who have had some exposure to the subject of data structures there
are some off-the-shelf tools that come to mind almost immediately. One
such tool is a data structure called a heap. Given m items that have a total
order, one can build this structure in time O(m), and it has the remarkable
property that one can delete the largest item in the heap at a cost bounded
by clogm and be left with a new heap that is now of size m ~ 1. There
are other structures besides heaps that have this property, but unless one
is ready to get down to coding, there is no need to do more than note that
there is some abstract data structure that can be built at the specified cost
and that permits deletion at the specified cost.

We can now go about measuring the running time cost of our greedy
algorithms. If we put the n? costs ¢;; into a heap at a cost of O(n?), then
even if we have to delete all the items in the heap to build our assignment,
the total time used is still only O(n%logn). The bottom line of these two
running time analyses is that both of the algorithms are quite practical, just
as we expected them to be, and the global greedy algorithm is more costly
in time to the tune of a factor of logn. This second result is also much as
one might have expected.

A bigger surprise comes when one looks at the quality of the solutions
that are obtained by the two algorithms. Here, a natural way to proceed
is to make some probabilistic assumptions about the cost ¢;;. One is not
likely to find any assumption that is more natural than to take the ¢;; to
be independent, identically distributed random variables. Further, because
we are just looking for some computable feature of merit that casts light
on the quality of the assignments we obtain, we might as well go the rest of
the way in making our model easy by assuming that the c;; are uniformly
distributed on [0, 1].

This setup does indeed make it easy to compute the expected value
of the total assignment cost A, that is obtained using the simple greedy
algorithm. Because the expected value of the minimum of k independent,
uniformly distributed random variables is exactly equal to 1/(k + 1), we see

E(A)=1/(n+1)+1/n+1/(n-1)+ ... +1/2 ~ log.(n).

The analysis of the expected value of A/, the cost of the assignment obtained
under the global greedy method, is a little bit more difficult to obtain. The



13

problem is that one loses all independence in the model after the very first
step. One can nevertheless show by setting up a simple integral equation
based on dynamic programming that one again has that E(AL) ~ log.(n).
The punchline is that even though the global greedy algorithm takes a little
more time to compute and seems to be a more powerful strategy, the value
of the assignment that it yields is typically no better than that one gets by
the simple greedy strategy.

Before leaving this example, we note that these heuristics fall short of
providing the deepest understanding of E(A9F7T), where E(A9F7) denotes
the least cost of any assignment. Karp (1987) showed by a remarkable
argument that E(A2PT) < 2, and the insight provided by Karp’s proof has
been shown by Dyer et al. (1986) to apply to many other problems that can
be expressed as linear programs. Finally, Mézard and Parisi (1987) have
offered intriguing calculations based on methods of statistical mechanics
that suggest E(A9FT) ~ 72/6 as n — oo. For further information on the

history of A2F7 and conjectures concerning its behavior, one can consult
Steele (1990).

1.2.2 Quick Lessons from Quicksort

For the second example of a probabilistic analysis of a deterministic algo-
rithm, we have to increase the technical level somewhat. We will first sketch
some salient features of an archetypical example: Quicksort. This example
is a little shopworn, because it is considered in almost every introductory
course in the theory of algorithms. Still, Quicksort is an algorithm that has
remarkable intrinsic richness, and it is one of the few algorithms to be the
subject of an entire monograph (Sedgewick, 1980).

Given a list of n records (R;, R, ... , R,) that are associated with n keys
(K1, K, ... ,Ky,) for which there is a total ordering, Quicksort is elegantly
expressed as a recursive process that returns an ordered list of the records -
(Riy, Riyy --. ,R;,) such that K;; < K;, £ --- £ K;,.

In its simplest form, Quicksort takes the key K, and divides the records
into those whose key is less than I; and those whose key is greater. The
algorithm then recursively calls itself on each of the two resulting sublists.
If one resists the temptation to add all of the refinements that help make
Quicksort a truly practical procedure, it is a joy to analyze its “average
case” behavior.

To sketch the analysis, we first suppose that the list that we begin with
is in random order; that is, we suppose that we are equally likely to begin



14

with the list in any of the n! possible orderings. The simplest consequence
of this assumption is that the key K is equally likely to have any of the n
possible ranks, and, moreover, the two sublists produced by splitting at K3
are again in random order. R

If we let Q, denote the expected number of comparisons that are needed
to sort a list of n items under the model that the input lists are in random
order, then it is easy to check that @, satisfies the recursion

n—1
Qu=(n=1)+ = Y {Qu+Qn-ko1}
k=0

This equation expresses the fact that the first split requires n—1 comparisons,
and if k is the number of keys less than K7, one then has to call the Quicksort
procedure on two lists of size k and n—k-1, respectively. The only remaining
point is that by our randomness assumption, K; has probability 1/n of
having 0,1, ... ,n—1 keys less than itself.

To gain any insight about the efficiency of the Quicksort process, one
still needs to solve the recursion, or at least to extract the asymptotics of
Q. from it. This can be done without great difficulty, and one finds that
@n ~ 2nlog,. n.

This analysis provides the basis of a number of insights into the behavior
of the Quicksort process. Although we are more concerned with the pointers
it provides about basic theoretical structures, it is worth noting quickly
that our analysis already suggests when Quicksort will perform poorly. The
random divisions are efficient when they almost cut the list in half, and they
are inefficient when the division is highly lopsided. It is easy to check that if
one begins with a sorted list, the Quicksort process we have described would
make (n — 1)+ (n —2) + --+ + 1 = n(n — 1)/2 comparisons, which is poor
indeed in comparison with the expected performance on a random list.

1.3 How To Use This Survey

Chapters 2 through 11 stake out a very large part of the territory at the
interface of probability and algorithms. Each of these chapters is more
technical than this introduction. Still, each is designed to be accessible to
individuals who are considering new directions of research.

Since each of these chapters has its own introduction and abstract, brows-
ing is encouraged. The chapters can be read independently, and overlap has
been kept to a minimum.



References

Dyer, M.E., A.M. Frieze, and C.J.H. McDiarmid (1986), On linear programs
with random costs, Math. Programming 35, 3-16.

Fiat, A,, R. Karp, M. Luby, L. McGeoch, D. Sleator, and N. Young (1991),
On competitive algorithms for paging problems, J. Algorithms 12, 685-699.

Karp, R.M. (1987), An upper bound on the expected cost of an optimal as-
signment, in Discrete Algorithms and Complezity: Proceedings of the Japan-
U.S. Joint Seminar, D. Johnson et al., eds., Academic Press, New York.

Karp, R.M. (1991), An introduction to randomized algorithms, Discrete
Appl. Math. 34, 165-201.

Knuth, D.E. (1973), The Art of Computer Programming, vol. 3, Addison-
Wesley, Reading, Mass.

Mézard, M., and G. Parisi (1987), On the solution of the random link match-
ing problem, J. Physique 48, 1451-1459.

Raghavan, P. (1990), Lecture notes on randomized algorithms, Research Re-
port, IBM, Yorktown Heights, N.Y., unpublished.

Schwartz, J.T. (1980), Fast probabilistic algorithms for verification of poly-
nomial identities, J. Assoc. Comput. Mach. 27, 701-717.

Sedgewick, R. (1980), Quicksort, Garland, New York.

Seidel, R. (1992), Backwards analysis of randomized geometric algorithms,
in New Trends in Discrete and Computational Geometry, J. Pach, ed.,
Springer-Verlag, New York, to appear.

Steele, J.M. (1990), Probability and statistics in the service of computer

science: Illustrations using the assignment problem, Commun. Stat. 19,
4315-4329.



