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A limit theorem is established for the asymptotic state of a Markov chain arising from an iterative renormalization. The limit
theorem is illustrated in applications to the theory of random search and in probabilistic models for descent algorithms. Some
special cases are also noted where exact distributional results can be obtained.

Markov chain = lognormal * descent algorithm

1. Introduction

To illustrate the limit theorem which is estab-
lished here we first consider a simplified question
from the theory of random search. We suppose
that we seek to find an object which is located at
unknown position P. The tools available are as-
sumed to allow us to get closer to P with each
probe. The natural goal is to understand how far
away from the target we will be with the nth
probe.

To specify a model for this process we suppose
that f:[0,1]— R is a non-negative integrable
function and F(x) is the integral of f from 0 to x.
If X,=x is the distance from target of the nth
probe, then the distance from the target of the
n -+ lst probe is assumed to satisfy

P(X,, €dy| X,=x)=f(y)/F(x),
0<y<x. (1.1)

To be still more concrete, we can consider the
situation where Z, is the radius of a point chosen
randomly from the unit disc, Z, is a point chosen
randomly from the disc of radius |Z,|, and
successively Z, is chosen at random from the disc
of radius |Z,_, |- To put this in the notation of
the more general search model, we can let F(x)=
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7x? and f(x)=2mx, whence it is clear that | Z,|
and X, have the same probability law.

The random variables | Z,| can also serve to
aid our intuition about the general asymptotic
behavior of X,. An easy calculation shows E | Z, |
= (2/3)", and this suggests that X, is best studied
on a logarithmic scale. Still, it is perhaps surpris-
ing that for a wide class of functions f, the scaled
random variables Y, = log X, are sufficiently trac-
table to allow a central limit theorem.

Models with the renormalization form given
here are quite natural. The random variable X, ;
is just a weighted random choice from that mass
of f which is left over after the selection of X,.
The defining renormalization relation (1.1) is also
closely connected with the basic models of choice
theory (see, e.g., Luce [3] and Steele [4]).

Probably the most intriguing application of re-
normalization chains is to the theory of descent
algorithms. That application is the one which is
developed here in the most detail.

First, we will establish the main results.

2. Approximate recursion for the characteristic
function

Just as the asymptotics of the mean for the
simple example on the disc illustrates that X,
should be studied in the log scale, the relationship
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f(x)=x (or, more generally, f(x)=x®) provides
a leading case for the study of a characteristic
function associated with X, . Since our main result
contains what might otherwise appear to be a
technical hypothesis, we will first derive some
formulas which, together with the leading case
fix)=x* will motivate the final result.

We will let ¢, (1) be the characteristic function
of log X, and we will aim toward a recursion
relation for the {¢,}. Letting g, denote the den-
sity of X, we can calculate

. i ,
0,(1) = [ e 2rpP(X, & dy)

0
:fle1zl()gy lgnwl('x)dx
0 ¥ F(X)

i
:/0 e”logxgnwl(x)

([ o

This expression would be a recursion relation if
the bracketed integral were independent of x. This
will be seen to be approximately the situation. We
first explore the inside integral in the leading case
f(x)=x% a> —1,

[ "(eis0/0f(y) /F(x)} dy

)f(,v)dy

— (a + 1)fxeirlog(y/x)yax-—a~1 dy
0

=(1+ a)fle”k’g“u"‘du
0

-.=(1+ 11(1)“1' (22)

In the motivating case of |Z,|, we saw a = 1;
50, the recursion (2.1) and the identity (2.2) give us
that the characteristic function of log|Z,| is ex-
actly equal to (1 + it/2)", i.e., —log| Z,| is equal
to the sum of n exponential random variables
with mean 3. Naturally, this result can be ob-
tained more directly, but the explicit example
provides a conceptual guide and analytic check on
our main calculation. As a final note on the exam-
ple, we see that log E|Z, | =n log(2/3) 1s con-
sistent with E log| Z, | = —n/2 since Jensen’s in-
equality states E log| Z, | <log E|Z,| and indeed
—0.5 < log(2/3) = —0.405.

We now let ¢(¢)=(1+it/(1 +a))"! and com-
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bine egs. (2.1) and (2.2) to obtain

¢, (1) = (1), (1)
=fole“1"“;"'3())n~1(,¥)h()c)d)c~ (2.3a)
where
o) e,
Iy \ F(x) xt
(2.3b)

We can now use (2.3) to get an effective mea-
sure of the extent to which f(x) differes from x°.
We have

1-/. zlloar

S){)g,,(-x)\h(x}ldx

)h(x)dx]

g-/;g,,(x)h*(x) dx=r, (2.4a)
where we define

wion () (at+1)y®
h (x)--fO ) | (2.4b)

The quantity h* captures just what we need to
know about the approximability of f(x) by x*
We now use the defining recursion for g, to
calculate a recursion for r, as follows:

n=J ', (x)h*(x)dx

- [ Lo B az e ()ax

[ — [(f(x)r*(x)dx }d

= [oms)| s [Fm*(x)ax

_ (2.5)

So, if there is a 0 <A <1 such that

1 : * *

—I;(-Z—)—fof(x)h (x)dx < Mh*(z) (2.6)
for all z €0, 1], then
r,<Ar,_, and r,<X'r,. (2.7)

The recursion relations (2.3a) and (2.7) can be
used to approximate ¢, in terms of powers of
by noting

lo,(£) =¥ ()1 () =<1y
[Hb(t)d)n (1) =2 (1), 2(’)‘— T2 SN

<X
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and generally,

W ()8, (1) =47 (00, (1)]

<r <N

— ‘n-m

Summing the expressions above for m between 1
and n — k, we have

L6, (1) = (o, (DD <N (1=2)
(2.8)

Here one should note that the characteristic
function ¥(r) does not vanish for any real 1,
Y0y = —i(l+a)" ! and ¢(0)= —2(1 + R R
W is an exponential random variable with mean u
equal to (1 + &)~ ! and variance o equal to (1 +
«)~2 then Y is the characteristic function of —W.
We see therefore that ¢ (t(1+ «)e’* is the char-
acteristic function of a random variable with mean
zero and variance 1. By the central limit theorem,
we then get that ¢"(¢(1+ a)/n"? ye' converges
to e~ /2 for all ¢, so (2.8) implies for all fixed &
that

limsup

n-> o0

<rN(1-2)"N

1(1“}"")) it _ a—t2/2
S ef — e
¢"( /n

Since k is arbitrary, the required limit theorem is
established. We can now summarize the main
result.

Theorem. If f :[0, 1] = R is a non-negative function
and F(x) = [&f(y)dy < o0, 0 <x <1, then for the
Markov chain { X, )% defined by the kernel

K(x, y) =P(X,.,€dy| X, =x) =f(») | F(x),
O<y<ux,
we have the convergence in distribution of
log X, +n/(1+a)
Vn /(1 +a)

to the standard normal, provided only that the
function

h(x) = f:

(2.9)

f(y) _ (a+D)ye
F(x) - xa+1 dy

satisfies the integral inequality
1 - g * *
oy L FCe () ax < (2)

forall 0<z <l

(2.10)
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Here one should note that there is nothing
special about the interval [0, 1]. It was chosen just
to keep notation clean. Also, the continuity of A*
guarantees that if (2.10) holds, then the nominally
stronger uniform inequality (2.6) must hold as
well. The effective use of the preceding result will
often require a proper choice of scale in order to
be able to establish (2.10), and an instance of such
change of scale is given in the course of the
examples detailed in the next section.

3. Random descent algorithms

If ¢ is a convex function on R4, then a se-
quence of vectors x, € R%, 1 <n<o0, is said to
satisfy the descent condition with respect to ¢
provided ¢(x,,;) <®(x,). Many important al-
gorithms are known to produce sequences which
satisfy a descent condition for an appropriate
choice of ¢, and the descent property is one of the
basic tools for analyzing numerical algorithms (cf.
Luenberger [2]). The EM algorithm is an example
of such a descent algorithm currently of great
interest in statistics (see, e.g., Dempster, Rubin
and Laird [1] and Wu [5]). In addition to calling
attention to the presence of the descent condition,
our reason for singling out the EM algorithm is
that it is known to exhibit linear convergence, as
opposed to the quadratic convergence which 1s
typical of Newton method based algorithms. The’
lognormal law which was established in the pre-
ceding section will now be used to show that, in
general, random descent algorithms have a very
specific type of linear convergence.

Here, for specificity, we will assume that ¢ > 0
and that 0 is the minimum value attained by ¢ in
the convex set {x: ¢(x) < 1}. We can then define
a random descent sequence by choosing a point
U, at random from {x:¢(x)<1}, and then
successively choosing U,,, at random from
{x:¢(x) <o(U,)}-

If we let p denote Lebesque measure on R4,
then we will shortly show that the main theorem
of this note establishes that X, =p{x:¢(x)<
¢(U,)} is asymptotically lognormal for a large
class of convex functions ¢.

We first examine the special case of quadratic
6. In this instance the expression —log X, can be
shown to have exactly a gamma distribution.

If Q is a symmetric positive definite matrix, the
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quadratic form x"Qx defines a convex function ¢
which can also be written as ¢{x)=x"MTMx
where M is a non-singular linear mapping of R
onto RY. Setting F(1)=p{x:¢(x) <1}, we see

F(y=pM Yx:xTx<t) =w(det M)
H 5 d )

=, t4(det )7, (3.1)

where w, is the volume of the unit sphere in R4,
By the characteristic function calculation given by
eq. (2.2), we see that —log X is the sum of »
independent exponentials with mean 1/4d.

We wili now pursue the general case and build
on the fact that any regular convex function is
locally well approximated as a quadratic. Here,
the notion of approximation needs to be devel-
oped with an eye toward the condition (2.10); but,
in sympathy with the leading case (3.1), we will
first consider those convex ¢ which as ¢ — 0 satisfy
the condition

f(t) = %H{Xi (P(X) < t} =c;“1’“‘1 +0(l‘d~1+e)’
(32)

where ¢ and € >0 are constants. In applications
where ¢ is more general than the quadratic lead-
ing to (3.1), one can still often obtain (3.2), even
with € = 1. The key issue is that of relating condi-
tion (3.2) with the more technical hypothesis (2.10)
of the main theorem.

From (3.2) we have F(t)=ct?/d+ 0(¢?"¢), so
setting « =d — 1, we note that for 0 <y <x

f(y) (a+1)y®
F(x) x‘“'l

:O(ya+e/xa+l), (3.3)

and for A*(x) defined as in (2.4b) we have h*(x)
= 0(x®).

If we let fs(x) = f(8x), then the corresponding
expressions for F; and A} satisfy Fy(x) =
J&fs(u)du=8"1F(8x) and

o= [ 40) _tez0
=j'8x

f(u)  (at+1)u”
F(8x)  (sx)*™"
The basic convergence hypothesis (2.10) ap-
plied to f; is therefore equivalent to the condition
that the integral inequality

fozf(u)h*(u)du <n*(z) (3.4)

dy

du=h*(8x).
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hold for all z in the restricted range (0, 8].

The fact that A*(x)=0(x*) and the identity
(3.2) let us check easily that (3.4) holds for a
sufficiently small 8§ > 0. By the equivalences just
established, f; and h¥ satisfy eq. (2.10).

If f; is associated with the Markov chain ¥, by
the basic relation (1.1), then Y, has the same
distribution transition kernel as § 1X, for X, < 8.
Since Y, is asymptotically lognormal and since
P( X, >8) tends to zero, we see X is also asymp-
totically lognormal.

To summarize, we have proved that if u and ¢
satisfy (3.2), then the random variables defined
by

Z,=—log p{x:¢(x)<¢(U,)}

have approximate mean n/d and asymptotic vari-
ance n/d”. Moreover, the standardized variables
(Z,—n/d)/n/d?* are asymptotically normal.

4. Concluding remark

We have exhibited a lognormal law for the
asymptotic state of a class of Markov chains which
have a transition kernel defined by a natural re-
normalization. The Markov chain is motivated by
a simple search model and it also serves to model
the behavior of random descent algorithms. These
random descent models exhibit linear convergence
of a very precise type which is made explicit by
the lognormal law. It would be of interest to
provide a random descent model which could
exhibit the quadratic convergence rates typical of
Newton methods.
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