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Limit Properties of Luce’s Choice Theory

J. MicHApL STEELE

Department of Psychology, Stanford University, Stanford, California 94305

Luce’s Axiom is interpreted in terms of a sequence of measures on the unit interval,
and their limit properties are discussed. In particular, all limit laws are found to be
either absolutely continuous with density x* for « € (—1, «) or else degenerate laws
consisting of a point mass at 0 or 1. A close connection between Luce’s choice theory
and Karamata’s theory of regularly varying functions is established and systematically
used.

InTRODUCTION

A principal problem of choice theory is how preferences among a finite set of
alternatives change as the set is enlarged. A model for this situation has often been
given in terms of probability distributions on the set of alternatives. To describe these
models let 4, , 4, ,..., 4, denote a set of alternatives and suppose p, 1 <k < n
gives the probability of the kth alternative being chosen. Now if 4, , 4, ,..., 4, , Apis
is an increased collection of alternatives, the fundamental problem is to predict the
probabilities p,’ 1 <{ &2 <C# -+ 1 which describe the kth alternative being chosen from
the increased collection.

In this situation Luce (1959) suggested an axiom which has considerable mathemat-
ical elegance. If we assume p; 5 0 for 1 <<k <{n then Luce’s axiom implies that
P3Py’ = pi[py for all j, k such that j < n and k < n.

The range of validity of this assumption has been widely studied, and it seems
justified in a variety of important contexts. We refer here to Luce (1959) and also
Tversky (1972) where the instances that the assumption is justified or unjustified
are well discussed.

The focus of this paper is on the analysis of sequences of probability distributions
which satisfy Luce’s Axiom. To facilitate the statement of results it is convenient to
make the following definition. A sequence of probability distributions L, = (p,(1),
Pn(2)seee, Pu(n)) for m =2, 3,... is called a Luce process if for all j and % such that
J < min(n, m) and k < min(n, m) it follows that

Pr(D)Ipn(R) = Pm(7)/Pm(R). (¥)
It is further assumed that p,(k) 5% 0 for n > 2 and 1 < k <7 since in (%) this is
tacitly required.
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125 LIMIT PROPERTIES OF LUCE'S CHOICE THEORY

The first part of our program is to establish the existence of a large class of Luce
processes and to obtain useful representations for them. This will then make it possible
to give a complete statement of the limit questions which are investigated and which
are the main results of this paper. As background for the solution of the limit problems,
we set forth in Section II the results and notation which will be needed from the
theory of regularly varying functions. The main results on the limit behavior of Luce
processes are proved in Section T11 and then in the last section the meaning of these
results is discussed.

1. EXISTENCE AND REPRESENTATION OF Luce PROCESSES

To construct 2 Luce process, let » be a function from the strictly positive integers
to the strictly positive reals, and define the probabilities p,(k) by pa(k) = v(&)/(v(1) +
2(2) + -+ o) for 1 <k<n and for 7 = 2, 3,.... Now if j < min(n, m) and
k < min(n, m) we have p,(7)/pa(R) = v(j)[o(k) = pu(f)[pm(k) This shows that the
distributions L, defined by p,(k) do indeed form a Luce process.

An exceedingly convenient aspect of Luce processes is that any such process can be
represented by some v in the manner just described. In proving this, we will examine
the special role of p,(n) which, as defined above, is the probability of chosing the
nth alternative from the set of the first n alternatives. We show that the sequence
pu(n), 7 = 2, 3,..., uniquely determines the Luce process L = {L,},p and then use
this to establish the correspondence between the functions v and the processes L.
In order to clean notation and to stress the relationship between o(n) and p,(n) we
define a function p on the positive integers by p(z) = Pn(n), and the function p defined
in this way is said to be associated with L. We now proceed by a short sequence of
propositions.

ProposITION 1. If p(n) is associated with Luce processes L and L', then L =L’

Proof. For n =2 we have L, = (ps(1), P5(2)) and Ly’ = (ps/ (1), £2'(2)), and by
hypothesis py(2) = p(2) = p;'(2). Hence we also have py(1) =1 — p(2) = p/(1),
and thus L, = L,’. Now we proceed by induction, so assume L, = L,’. Then just
applying the definitions p,(k) = o(R)/(2(1) + -+ + v(n)) and pu(n) = p(n) we have
the following.

Lyy= (Pn+1(1)7 Pn+l(2))"‘» Pn-l—l(n +1))
— (1 — pln 4 1)) pa(Dserss (1 — p(2 + 1)) pr(m), (2 + 1))
= (1 = p(n + 1) ' (Dsoees (1 — (1 + 1)) 24 (n), Prsae -+ 1)
= (Para(D)s P5sr(Dses Pria(®)s Pra(n + 1)) = Lana

Hence we have L, =L, for all #n >> 2 and thus L = L’ as claimed.
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Now denote by Z* the strictly positive integers and R* the strictly positive reals.

PropoSITION 2. There is a one-one correspondence between Luce processes and
Sfunctions v : Z+ — R* such that ©(1) = 1.

Proof. Let L be a Luce process, and let p be the associated function defined by
Pp(n) = pu(n). Since p,(n) = 0 it is possible to define v :Z+ > Rt inductively by
2(1) = 1 and v(r) = p(n)(1 — p())™ (v(1) + - + o(n — 1)). Now let L be the Luce
process defined by p,'(k) = v(k)/(x(1) + - + v(n)) for 1 <k <nand n=>2. In
particular, calculating p,,'(n) we have

pa/(1) = o(n)/(2(1) + - + o(n)
= p(m)(1 — p(m))™ (2(1) + -+ + o(n — D/((1) + -+ + v(n))
= p(n)(1 — p(m)) /(L — p(m))™ = p(n)-

This shows that L and L’ have the same associated functions and hence, by Proposition
1,L = L'. Further, since v represents L' it also represents L so all that remains to show
is that v is uniquely determined. But since p is uniquely determined and since the
conditions that o(1) =1 and o(n)fo(1) + - + v(n) = p(n) uniquely determine o,
the one—one correspondence is established.

PROPOSITION 3. If q(n) is a sequence of probabilities which are never 0 or 1, then
there exists a unique Luce process L such that the associated function p of L satisfies

p(n) = q(n).

Proof. If v is defined inductively by (1) =1 and o(n) = g(n)(1 — q(n))™*
(v(1) + - -+ »(n — 1)) then a Luce process L can be defined by . Now on calculating
the p function associated with L as in Proposition 2, we see that p(n) == ¢(n). This
proves the existence asserted in the proposition, and the uniqueness is a consequence
of Proposition 1.

The preceding propositions continue the ideas of Luce (1959), and they lay a
foundation for the study of the limiting behavior of the distributions L,, = (pn(1),---,
Pa(n)). To facilitate the study of this behavior, we will represent the distributions L,
by measures P, on a fixed probability space. This is accomplished by defining measures
P, on [0, 1] by putting atoms of mass p,(k) at the points kjn for 1 <k <nand
n > 2. The measures P, defined in this way will be called the associated measures
of the Luce process L.

The fundamental limit problems for Luce processes can now be put as follows.

(a) What are the possible limit laws? That is, which measures on [0, 1] can arise
as the limit in distribution of the measures P, associated with some L ?

(b) Under what conditions on the representing function v or on the associate
function p, do the measures P, converge?
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These questions, and also other questions, are answered by the theorems of Section
11I. These theorems based on the theory of regularly varying functions and the
essential results which will be used are presented in the next section.

11. Backcround oN Recurarry Varvine FuNcTiONS

The results summarized in this section are due to Karamata (1933) and recent
expositions can be found in the books by Feller (1971) and deHaan (1970). First, we
define a function U : R+ — R+ to be regularly wvarying of exponent o if
lim,, U(tx)]U(t) = x= for all xe[0, co]. The applicability of this definition is
further extended by the convention that the symbol x* be interpreted as oo for x > 1
and as O for x < 1. Likewise ™ is interpreted as co or 0 accordingasx <<l orx > 1,
and the symbols x® and x~= are left undefined for ¥ = 1. We now state as lemmas some
of the basic facts about the functions just defined.

Levmva 1. Let U be a positive monotone function on [0, co] such that
limy.,, U(tx)]U(x) = f(x) < 00 on a dense subset A of [0, co]. Then J{(x) = x* where
—00 L oK .

Proof. Feller (1971), p. 275, Lemma 1.

Lemma 2. Suppose U :R+—R* is an o varying function with «€[—1, 0]
Then [q U(t) dt is « -+ 1 varying.

Proof. deHaan (1970), p. 13, Lemma 1.2.2.

LemMA 3. Suppose U(x) = [q u(t) dt and u(t) is monotone. Then if U(x) is o
varying with « > O then u(x) is « — 1 varying.

Proof. Feller (1971), p. 446, Lemma to Theorem 4.

LemMA 4. Suppose U :R*— Rt is Lebesgue summable on finite intervals. If
lim,..., xU(x)/ 5 U(t) dt = « with « € (0, ) then U is « — 1 varying.

Proof. deHaan (1970), p. 16, Theorem 1.2.1, part b.

Levma 5. Suppose V is o varying for a€(—o0, ) and that V{x) = fo o(t) dt
where v(t) is monotone, then

Lg)tg x0(x)/V(x) = a

Proof. deHaan (1970), pp. 22-23, Corollary 1.2.1, part 8.



J. MICHAEL STEELE 128

Finally, in order to apply the preceding lemmas to the theory of Luce processes we
extend the domain of definition of the functions v and p to R*. As usual we denote by
[x] the greatest integer less than or equal to x. For ¥ = 1 the functions v and p can be
extended by defining v(x) = o([x]) and p(x) = p([x]), and for x <1 v and p can
be given the arbitrary value 0 since these functions will never be used in this range,

I11. Tue Limrtr Taeory oF LuUCE PROCESSES

The first theorem of this section shows that the limit laws which arise from Luce
processes are of a remarkably simple type.

TueoreMm 1. If the measures P, associated with a Luce process L converge in distribu-
tion to P then PO, x] = x* for 0 < a <{ 0.

Proof. Let U(x) = i[zll o) if x> 1 and U(x) =0 if 0 <x < 1, where v is
taken, as usual, to be the representing function for the process L. Further, we have
Uxt)| U(t) = Ei? 'z)(i)/zz1 o(7) == Pr,([0, [x£]/[£]]) for ¢ == 1. Now, since (xz — 1)/t <
[x£]/[£] < x2/(z — 1) we have for x € (0, 1) and sufficiently large ¢ that

P[0, (w2 — 1)ft] < Uxt)]U(#) < Pral0, x2/(2 — 1)). (1

P has at most countably many atoms so that for a dense subset 4 of [0, 1] the left
and right expressions of (1) must have the same limit as # — co. Letting (z) denote
this common limit where it exists, we can write for x € 4 that lim,_,, U(xt)/ U(t) = (2).
But, now choose x > 1 such that 1/x € 4. Then lim,,, U(#(x))/U(t) = 4(1/x) so also
lim,_, U(#)/U(tx) = (1/x). Since 4 is dense in (0, 1) we have B = {x : 1/xe 4} is
dense in (1, c0). On B define ¢ by the relation (%) = 1/#(1/x) < co. This gives that

lim UGet)/U(t) = $(x)  for xeAUB.

Lemma 1 is applicable since U is positive and monotone, so consequently
lim, ., U(xt)]U(t) = x® for —o0 < o < o0 and x € A U B. By (1) it is necessary that
x* be bounded on [0, 1] and hence 0 <{ a < ©0. Also by (1) and the definition of 4
we have P[0, x] = x* for 0 < o < c0.

Cororrary 1.1, If the measures P, associated with a Luce process converge to P in
distribution, then either P is absolutely continuous or else consists of a unit mass at 0 or 1.

Proof. This is just the qualitative distinction of the cases «€ (0, 1), « =0, and
o = 0.
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COROLLARY 1.2. If P, are associated with a Luce process and if lim,,__, PI0,y] =8
Jor some v € (0, 1), then P, converge in distribution to the measure P with distribution
P[0, x] = x> where o =log Bflog y if B # 0 and & = oo i B =0.

Proof. If we take any subsequence £, of the P, then by Helley’s selection theorem
there is a subsequence P, - of P, which converge in distribution. But by Theorem 1
the limit P of the subsequence P, - must be such that P[0, x] = x* and in particular «
must be the same « as stated in this corollary. Since every subsequence of P, has a
subsequence which converges to P it follows that P, converge to P,

The next two theorems give conditions under which P, converge and show that
this convergence is very closely connected with the regular variation of the representing
function v and the associated function P

‘THEOREM 2.  Suppose measures P, ave associated with a Luce process which s
represented by v. If v is regularly varying with exponent o« > —1 then lim,,_,, P[0, x] =
x>+ Conversely, if v is ultimately monotone and lim,, _,, P[0, x] = x* with « > O then
v is regularly varying with exponent oo — 1.

Proof. First, define two functions V and U by V(x) = [y o(¢) d¢ and U(x) =
ZEL 9(?) with the understanding that U(x) =0 for x€[0,1). Since P,l0, x] =
U(nx)/U(n), the direct part of the theorem is proved if U is proved to be o - 1
regularly varying. Note that by Lemma 2 Vis o + 1 varying so we proceed by com-
paring U and V.

For the moment, consider the case « £ o0. Choose g > 1, then for x > (a — 1)1
we have

LS U®)V(x) < Vi + 1)/V(x) < Viax)/ Vi),

Hence, 1 < lim,,, sup V(x)/V(x) < a*** and by the arbitrariness of a, lim, ., sup
U(x)/V(x) = 1. The same result holds for lim, ., inf U(x)/V(x), and thus U(x) and
V(x) are asymptotic provided « ¢ oo. This implies that U(x) is o - 1 varying and
completes the direct part of the proof in this case.

Now suppose o = o and fixa, b € (0, 1). Ifx > 1/a(1 — b) we have Ulabx) < V(ax)
and we always have I(x) < U(x) so

0 < Ulabw)/ U) < V(aw)/ V(). 2)

Since V is regularly varying of exponent « -~ 1 = oo the right hand side of (2) con-
verges to 0 as x — co. This gives lim,,_., P,[0, ab] = 0, and since the product ab can
equal any x € [0, 1] we have lim,, P[0, x] = x=. That is, the measures P, converge
in distribution to a unit mass at x = 1.

For the converse, suppose that lim,,_., P,[0, x] = x* for a € (0, ). We then have
that U(x) is regularly varying with exponent «. By essentially the same estimates as in
the first part of the proof, this implies that V(x) is also regularly varying of exponent w.



j. MICHAEL STEELE 130

But by Lemma 3 this says v is regularly varying with exponent o — 1, s0 Theorem 2
is proved.

In Theorem 1 it was proved that any limit of a Luce process must be a law of the
form P[0, x] = x* a € [0, 0], and as a corollary of Theorem 2 we have the result
(which can also be proved directly) that all such laws are possible.

CoroLLarY 2.1. If P[0, x] = x* for «€ [0, oo, then there exist a Luce process L
with associated measures P, such that limy, ., P[0, x] = P[0, x] = =~

Proof. Define a representing function v for L by v(x) = x*~* for a€ [0, o] and
o(x) == exp x for a = 0. Since these functions are respectively o — 1 and oo varying
Theorem 2 implies the corollary.

The next theorem accomplishes for the associated function p much the same thing
as Theorem 2 does for the representing function v. The only difference is that the
quantities involved are more intuitive and the use of regular variation is covert.

THEOREM 3. Suppose p is the associated function of a Luce process. If lim, . np(n) =
o for a e (0, ) then lim, . P,[0, x] = x*. Conversely, if the representing function o(x)
is monotone and lim, o P,[0, x] = x* for a €0, ], then lim,, . #p(n) == o

Proof. Define ¢(n) by the equation
n+1
(Do + DY o) =(n+ 1=
=1

and note that p(n -+ 1) — 1 by the hypothesis.
Now

o(n + DY, o) = ¢ln + D afln + 1 — opln 1)
i=1
and since @(n)—> 1 we have lim,.o o(n + 1)/ v() = 0. This guarantees that
fg o(f) dt and 25111 () are asymptotic.
Hence

[} 3
o = lim np(n) = lim [] (=) /Zl ofi) = lim wo(x) / L o(t) dt.

By Lemma 4 this implies that o(x) is « — 1 varying and thus by Theorem 2 we have
limyoe Pal0, x] = 2%

For the converse, first note that limg .o P, [0, x] = x= implies that Ux) = Eill o{i)
is regularly varying with exponent . As in Theorem 2 this implies that V(x) =
{5 o(f) dt is « varying. But since a € [0, 0] and v is assumed to be monotone it follows
from Lemma 5 that lim,, ., x0(x)/ V(%) = o We also know from the proof of Theorem 2
that U(x) and V(x) are asymptotic so limy.« x0(x)/U(x) = . By the definition of p
this implies lim,. 7p(n) = o
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IV. CoNcLUDING REMARKS

Luce’s Axiom is firmly rooted in the literature of choice theory, and as an elegant
probabilistic model the questions concerning its limit behavior deserve to be answered.
There is another good reason to look for limit laws: simplicity. It is often the case that
complicated matters become simple in the limit and Theorem 1 is an example of this,

As the focus of this paper has been on limit laws, the results set forth in Section 1
were created to form a foundation for such work. Proposition 2 was motivated by
Theorem 3 of Luce (1959), but it is not evident that either of these results implies
the other. The motivation for emphasizing the importance of p(z) in defining a Luce
process was provided by the powerful results of Karamata’s we have called Lemmas
4 and 5.

Of the results in Section III, Theorem 1 and the converse part of Theorem 3
deserve particular consideration. Theorem 1 says, of course, that any limit of a Luce
process is a power law, that is, has distribution x*. One could not hope for anything
more strikingly simple.

Theorem 3 also allows for some discussion. The result is in a way very natural,
since it says, basically, that for convergence of P, to a nontrivial law that the nth
alternative should be chosen with probability on the order of 1/z. Another aspect of
Theorem 3 is that its essential ingredients Lemmas 4 and 5 are also the essential
ingredients of the fundamental representation theorem of Karamata. Indeed the close
connection bectween Luce’s model in choice theory and Karamata’s theory of regular
variation is the basic contribution of this paper.
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