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Abstract. In the theory of interest rate futures, the difference between the

futures rate and forward rate is called the “convexity bias,” and there are

are several widely offered reasons why the convexity bias should be positive.

Nevertheless, it is not infrequent that the empirical the bias is observed to

be negative. Moreover, in its most general form, the benchmark HJM term

structure model is agnostic on the question of the sign of the bias; it allows

for models where the convexity bias can be positive or negative. In partial

support of the practitioner’s arguments, we develop a simple scalar condition

within the HJM framework that suffices to guarantee that the convexity bias

is positive. Moreover, when we check this condition on the LIBOR futures

data, we find strong empirical support for the new condition. The empirical

validity of the sufficient condition and the periodic observation of negative

bias, therefore leads one to a paradoxical situation where either (1) there are

arbitrage possibilities or (2) a large subclass of HJM models provide interest

rate dynamics that fail to capture a fundamental feature of LIBOR futures.

1. Introduction

To price contracts such as swaps which have values that are driven by the term

structure of interest rates, one typically needs to know the forward LIBOR rates,

but, except in isolated circumstances, these rates are not directly observable via

market prices. In contrast, the Eurodollar futures give us directly observed futures

LIBOR rates from actively traded contracts. Both forward and futures LIBOR

rates are each in essence a kind of proxy for the spot LIBOR rate for some future

date, and they differ primarily because of the daily “mark to market” conventions
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that govern futures contracts. Roughly put, as new information arrives the futures

LIBOR rates are correspondingly adjusted while structurally the forward LIBOR

rates are fixed for the entire duration of the consummated forward contract. As

result, these two rates tend to move in tandem, though typically they are unequal.

The difference between the futures and forward LIBOR rates is called the con-

vexity bias, and there is a well-known theoretical expression for this bias, say as

given by Karatzas and Shreve (1998, p. 47). The formula shows that the size (and

sign) of the bias is determined by the covariance between the LIBOR spot rate and

a certain discount factor. Unfortunately, one cannot estimate this covariance well

enough even to be confident of the sign of the bias that is implied by the formula.

The problem is that vector pair consisting of the spot rate and the discount factor

are highly correlated over time so that even several years of data provides very little

information about the coordinate to coordinate correlation of the stationary pair.

Naturally, for longer periods, one must worry about the loss of stationarity. The

bottom line is that the theoretical formula for the convexity bias is not of much

help when one tries to understand the empirical behavior of the convexity bias.

Fortunately, there is an alternative approach to the sign of the convexity bias

that completely avoids this nearly infeasible covariance estimation. We will shortly

describe a simple inner product condition that provides a sufficient condition for

positive convexity bias in the context of the Heath-Jarrow-Morton term structure

model.

2. Necessary Facts about the HJM Term Structure Model

To put the inner product condition in context, we first recall the conventional

n-dimensional HJM model (Heath et al. (1992) and Musiela and Rutkowski (1997,

p. 304)). Also, for the moment, we work directly under the equivalent martin-

gale measure P . In particular, we assume that the dynamics of the instantaneous

forward rate is given by the familiar formula:

(1) df(t, T ) = −σ(t, T )>a(t, T ) dt + σ(t, T )>dBt,

where {Bt, 0 ≤ t ≤ τ} is a n-dimensional Brownian motion under the probability

measure P , the adapted n-vector σ(·, T ) = (σ1(·, T ), σ2(·, T ), . . . , σn(·, T ))> has

component processes −∞ < σi(·, T ) < ∞ that may be of any sign, and the process
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a(t, T ) is defined by the integral

(2) a(t, T ) = −
∫ T

t

σ(t, u) du, .

This relation between the n-vector σ(t, u) and drift −σ(t, T )>a(t, T ) of the in-

stantaneous forward rate is at the heart of the HJM model. Specifically, it is this

connection that guarantees the absence of arbitrage between zero-coupon bonds of

different maturities.

Incidentally, one should note here that while σ2
i (t, T ) has the interpretation as

an instantaneous variance, we do not restrict the sign of σi(t, T ) since to do so when

n > 1 would substantially weaken the richness of the HJM model. Thus, some care

must be exercised when calling the σi(t, T ) a “volatility.”

Under the HJM model the price at time t of a bond that pays one dollar at the

maturity date T is given by

(3) P (t, T ) = exp

(
−

∫ T

t

f(t, u) du

)
for all 0 ≤ t ≤ T ≤ τ,

and from this definition sees that P (t, T ) satisfies the SDE

(4) dP (t, T ) = P (t, T )[ r(t) dt + a(t, T )>dBt ],

where r(t) is defined by setting r(t) = f(t, t). Naturally, r(t) has the interpretation

as the spot rate at time t.

The HJM model can be developed on the basis of just two fundamental assump-

tions: (1) the filtration of the n-dimensional Brownian motion is rich enough to

accommodate the LIBOR term structure, and (2) the yield curve is smooth with

respect to maturity T . If one agrees with these assumptions and absence of arbi-

trage one is led almost inexorably to the HJM construction.

3. LIBOR Rates in the HJM Context

By the λ-LIBOR rate we mean the LIBOR interest rate that is offered at time

t for a Eurodollar deposit for a maturity of λ360 days. This rate is denoted by

Lλ(t), and it is also called the spot λ-LIBOR rate when it is useful to emphasize

its distinction from the corresponding forward or futures rates. The λ-LIBOR rate

is an add-on rate, so it is easily written as a function of the corresponding zero
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coupon bond:

(5) Lλ(t) =
1
λ

(
1

P (t, t + λ)
− 1

)
0 < t < τ.

The forward rate Lλ(t, T ) is then the interest rate that available is at time t for a

riskless loan that begins at date T and which is paid back at time T +λ. This is also

an add-on rate so it has an analogous representation as a function of zero-coupon

bond prices:

(6) Lλ(t, T ) =
1
λ

(
P (t, T )

P (t, T + λ)
− 1

)
0 < t < T < τ.

Finally, we will always assume that the λ-LIBOR futures rate Fλ(t, T ) is given by

its well-known formula martingale representation formula:

(7) Fλ(t, T ) = E

[
1
λ

(
1

P (T, T + λ)
− 1

) ∣∣∣Ft

]
= E [Lλ(T )|Ft] 0 < t < T < τ.

Karatzas and Shreve (1998, p. 45)) provide conditions that suffice for the validity

of this representation, and Pozdnyakov and Steele (2004) provide alternative con-

ditions that seem to be more easily justified in the context of interest rate futures.

Here we simply take the truth of the identity (7) to be one of our underlying as-

sumptions, so there is need to separate out the more primitive conditions under

which it is known to hold.

4. The Futures Rate-Forward Rate Bias

By the Futures Rate-Forward Rate Bias we mean the quantity

(8) Biasλ(t, T ) ≡ Fλ(t, T )− Lλ(t, T ).

This bias (8) has been considered on several occasions in the financial literature

(e.g. Burghardt and Hoskins (1995), Grinblatt and Jegadeesh (1996), Gupta and

Subrahmanyam (2000), Henrard (2005), Piterbarg and Renedo (2006)), and these

authors all note that practitioners commonly take it as an a priori truth that the

bias is positive. That is, in practice it is typically assumed that for all 0 < t < T

and λ one has the bound

(9) Biasλ(t, T ) = Fλ(t, T )− Lλ(t, T ) ≥ 0 with probability one.

Nevertheless, as Burghardt and Hoskins (1995), Grinblatt and Jegadeesh (1996)

and Pozdnyakov and Steele (2002) have observed in a variety of time frames, it
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is an empirical fact that this bias can be negative. Moreover, when the time to

maturity T − t is relatively small, say less that a year, the bias is frequently found

to be negative. This situation creates both theoretical and practical issues. In

particular, it now seems useful to try to understand the conditions that suffice to

guarantee when an HJM model will have a consistently positive bias.

On such condition was given in Pozdnyakov and Steele (2002) where it is proved

that when the forward rate diffusion equation

(10) df(t, T ) = −σ(t, T )>a(t, T ) dt + σ(u, T )>dBt

has all components of the vector σ(·, T ) = (σ1(·, T ), σ2(·, T ), . . . , σn(·, T ))> with

the same sign, then one does indeed have positive bias (9) for all 0 < t < T and λ.

What concerns us here is that in the proof of this constant sign condition criterion

for the positive bias, it was also proved as an intermediate result (pp. 185-187) that

one has positive bias provided that for 0 < s < U < T one has the bound

(11) |a(s, U)|2 ≤ a(s, U)>a(s, T ) a.s.

In retrospect, it appears that this inner product criterion is actually more con-

venient than the constant sign criterion for determining when an HJM model has a

positive futures-rate, forward-rate bias. The reason for this is that because of the

diffusion equation for the zero-coupon bond price

dP (t, T ) = P (t, T )[ r(t) dt + a(t, T )>dBt ],

one can show that inner products of vectors of the form a(·, ·)> can be computed

from the (one-dimensional!) volatility of the bond price. This observation permits

one to construct practical empirical estimates of the inner product condition (11)

that do not require a full parametric specification of the driving HJM model. More-

over, one can test the condition (11) without ever having to confront thorny issue

of specifying the dimensionality n of the HJM model.

In passing, we should that diffusion equation for the bond price provides an

intuitive interpretation of inner product criterion (11). Loosely speaking, the inner

product criterion (11) asserts that the convexity bias will be positive provided that

the price volatility of bonds with longer maturities is larger than the price volatility

of bonds with shorter maturities. This is often, but not always, the case.
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5. An Inner Product Approximation

Shortly we will find that market data provides strong empirical evidence in sup-

port of inner product inequality (11). What makes such a market test feasible

is that for each λ1 and λ2 one can approximate a(λ2)>a(λ1) with help from the

quadratic variation of the spot rate process t 7→ Lλ(t).

To see how this is done, first recall that the process P (·, ·+ λ) is a diffusion that

satisfies the stochastic differential equation

dP (t, t + λ) = P (t, t + λ)[(r(t)− f(t, t + λ))dt + a(t, t + λ)>dBt],

so by Itô formula we have

(12) dLλ(t) =
1

λP (t, t + λ)
[(f(t, t+λ)− r(t)+ |a(t, t+λ)|2)dt−a(t, t+λ)>dBt].

Next we consider the quadratic variation 〈Lλ(·), Lλ(·)〉t of the spot λ-LIBOR rate,

and we recall (Karatzas and Shreve (1991, pp. 32 and 138) or Steele (2001, p. 128))

that one can think about the quadratic variation in two different ways. First, it can

be presented as a limit (in probability) of a discrete quadratic variation (or realized

quadratic volatility) over a partition 0 = t0 < t1 < t2 < ... < tK = t:

〈Lλ(·), Lλ(·)〉t = lim
maxi(ti+1−ti)→0

K−1∑

i=0

[Lλ(ti+1)− Lλ(ti)]2.

Second, since the spot λ-LIBOR rate Lλ(·) is an Itô integral, the quadratic variation

〈Lλ(·), Lλ(·)〉t also can be viewed as a Riemann integral:

〈Lλ(·), Lλ(·)〉t =
∫ t

0

{ |a(s, s + λ)|
λP (s, s + λ)

}2

ds

= lim
maxi(ti+1−ti)→0

K−1∑

i=0

{ |a(ti, ti + λ)|
λP (ti, ti + λ)

}2

(ti+1 − ti) a.s.

To use these representations a(·, · + λ) must be well behaved, and, to proceed

heuristically for the moment, we will consider a strong (but simple) non-parametric

assumption. Specifically, we assume that for all sufficiently small positive t the

process a(s, s + λ), 0 < s < t is deterministic and depends only on λ. That is, we

consider the case when a(t, t + λ) ≡ a(λ) for all s ∈ [0, t] for some small t. One

might worry if this is too much to ask, but, with a little more work, one can check

that it suffices to know that one can approximate the process s 7→ a(s, s + λ) as

closely as one likes by a process that is predictable and piecewise constant.
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Now, if we observe the LIBOR rate Lλ(·) during K business days denoted by

the times 0 = t0 < t1 < t2 < ... < tK = t, then from the two representations for

the quadratic variation we obtain

〈Lλ(·), Lλ(·)〉t ≈
K−1∑

i=0

[Lλ(ti+1)− Lλ(ti)]2 ≈ |a(λ)|2
λ2

K−1∑

i=0

ti+1 − ti
P (ti, ti + λ)2

.

Therefore, taking into account that P (t, t + λ) = (1 + λLλ(t))−1 we get the very

instructive formula

(13) |a(λ)|2 ≈ λ2

∑K−1
i=0 [Lλ(ti+1)− Lλ(ti)]2∑K−1

i=0 (ti+1 − ti)(1 + λLλ(ti))2
.

The benefit of this representation is that all the quantities on the righthand side

are directly observable from market prices.

To obtain more generally a formula for a(λ2)>a(λ1) we call on the quadratic

cross-variation for λ-LIBOR rates of two maturities λ1 and λ2. In direct analogy

with our first derivation, we find

〈Lλ2(·), Lλ1(·)〉t ≈
K−1∑

i=0

[Lλ2(ti+1)− Lλ2(ti)][Lλ1(ti+1)− Lλ1(ti)]

≈ a(λ2)>a(λ1)
λ2λ1

K−1∑

i=0

ti+1 − ti
P (ti, ti + λ2)P (ti, ti + λ1)

,

and, as a consequence, we find the approximation

(14) a(λ2)>a(λ1) ≈ λ2λ1

∑K−1
i=0 [Lλ2(ti+1)− Lλ2(ti)][Lλ1(ti+1)− Lλ1(ti)]∑K−1
i=0 (ti+1 − ti)(1 + λ2Lλ2(ti))(1 + λ1Lλ1(ti))

.

Here one should note that these formulas were developed with respect to the

martingale measure, but, given our assumption on a(s + λ, λ), they are also valid

under the original measure since quadratic variation is the same in each case.

6. Examination of the Assumptions

When we model the term structure with help of the HJM construction we have

just one (admittedly large) “free parameter” — the volatility of the instantaneous

forward rate, {σ(t, u), 0 ≤ t ≤ u ≤ τ}. Naturally, this vector-valued process must

satisfy some mild regularity conditions and it must be adapted to the filtration Ft,

but one is still left with a vast amount of freedom.

Since σ(t, u) and the bond volatility a(t, T ), 0 ≤ t ≤ T ≤ τ are related by the

no-arbitrage condition (2), one may alternatively begin the HJM modeling process
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by specifying the process a(t, T ) instead of the specifying the volatility σ(t, u) of the

instantaneous forward rate. Here, of course, we have to keep in mind that because

of the integral representation (2), we must choose a bond volatility a(t, T ) that is

smooth with respect to the second variable. Further, since our principal focus is on

LIBOR, we can choose to base our model design on a choice of the λ-LIBOR rate

volatility aλ(t) = a(t, t + λ) instead of the bond volatility a(t, T ). To be sure, the

two points of view are ultimately equivalent.

Here it seems most appropriate to focus on the LIBOR rate volatility aλ(t). Our

main assumption about aλ(t) is that it can be well approximated by predictable

piecewise constant process with respect to t. Specifically, we consider the LIBOR

models for which there is some partition 0 = T0 ≤ T1 ≤ · · · ≤ TN = τ − λ of [0, τ ]

such that

(15) aλ(t) =
N−1∑

i=0

aTi

λ 1Ti≤t≤Ti+1 where aTi

λ ∈ FTi .

Models that satisfy this relation seem to provide a natural class that essentially

spans the full class of HJM models. One can frame this assertion as a formal

theorem, but, since our goal here is to understand the nature of the LIBOR con-

vexity bias, it seems sufficient just to restrict attention to models that have the

LIBOR-rate representation (15).

7. Estimation and the Inner Product Criterion

Now we consider the publicly available data from the British Bankers’ Associa-

tion (www.bba.org.uk) on twelve spot LIBOR rates with maturities that vary from

one month to twelve months. These data and the representations (13) and (14),

allow one to construct a direct check of the inner product condition (11).

Since we are concerned here with the Eurodollar futures which are written on

3-month LIBOR, we only need to verify the inner product condition when the

maturity difference λ2−λ1 is equal to 90 days, or 1/4 on the 360-day financial year

scale. In Table 1 we report the estimated signs of |a(λ1)|2 − a(λ2)>a(λ1) for the

period January 2000 to December 2004. These estimates are based on the formulas

(13) and (14) with K = 20. Estimates using values of K equal to 10, 15, 25, 30,

and 40 were also computed and they did not differ meaningfully from the estimates
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with K = 20. The bottom line is that there is a strong empirical evidence that the

inner product condition (11) holds for the time period under consideration.

It is therefore ironic that one finds that during the same time period the Futures

Rate-Forward Rate inequality (9) is often violated. Specifically, from Table 2 and

the column labeled %V, one finds that for a substantial fraction of the time the

futures rate is below the forward rate. Moreover, Table 2 also shows that the

observed difference ∆ between the rates is often large enough to be economically

significant.

More specifically, for each contract for December, March, June and September

for the years 2000 through 2004, we considered the futures 3-month LIBOR rates

that are implied by Eurodollar contracts. For each contract the futures rate process

was observed for every business day for last nine months of the contract, and for

each business day an associated forward LIBOR rate was computed from the BBA

LIBOR data. These rate computations were done using the cubic spine interpo-

lation method that has become traditional since Muelbroek (1992) and Grinblatt

and Jegadeesh (1996). Here, to guarantee that our rate estimates are conservative,

we used the highest intra-day futures rate instead of closing futures rate for each

day.

What one finds from these computations is that even when the highest futures

rate is compared to the corresponding forward rate, the futures rate is often below

the forward rate. This observation squarely contradicts the conventional presump-

tion that in theory and in practice one should have a positive value for the forward

rate futures rate bias, Fλ(t, T )− Lλ(t, T ).

From Table 2, one also sees that the Eurodollar futures contract that expired in

September 2003 was particularly extreme. For this contract, both the mean and

median of the difference are negative. Moreover, the size of the negative bias seems

to be quite substantial, although at present there is not any reliable method for

assigning standard errors to these estimates. Still, for one measure of scale, one

should note that Eurodollar futures prices are quoted with precision of 0.0025, and,

for another sense of scale, one can consider the oscillations of Figure 1 which gives

the time series for ∆ for the September 2003 contract.
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Taken together, Tables 1 and 2 present something of a paradox. In Table 2 we

have 2783 observations of futures/forward differences and for 49% of these the dif-

ference is negative. Since the inner product condition (11) is a sufficient condition

for a positive bias, one might reasonably expect to see a similar frequency of viola-

tions of the inner product condition (11). To explore this possibility, we computed

563 realized values of the difference |a(λ1)|2 − a(λ2)>a(λ1). Here one should note

that these differences that can be computed without any interpolation; that is,

only observed LIBOR futures prices are needed for the computation. Surprisingly,

in only 2% of the cases was there a positive difference.

8. Concluding Remarks

The inner product condition (11) has been found to hold up to empirical scrutiny

for a rich (essentially complete) class of HJM models, and the inner product condi-

tion is sufficient for the positivity of the Futures Rate Forward Rate bias (8). For

modelers and practitioners who rely upon the intuitive positivity of the bias this

offers some theoretical assurance. Still, this reassurance is wrapped in a paradox,

since it remains an empirical fact that the conventional bias inequality (8) often

violated.

One possible resolution of the paradox is that the HJM term structure model is

inadequate when applied to the Eurodollar futures market. A second, perhaps less

likely resolution is that LIBOR futures offer as yet unexplained arbitrage possibil-

ities. To choose between these two possibilities, or to yet other alternatives, would

take us much further than we can go here.
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Contract Obs %V Mean ∆ Std ∆ Median ∆ MAD ∆

EDZ00 166 18.07 .0422 .0667 .0304 .0418

EDH01 164 42.07 .0084 .0419 .0045 .0350

EDM01 164 42.07 .0086 .0418 .0054 .0357

EDU01 166 63.86 -.0071 .0403 -.0091 .0349

EDZ01 165 34.55 .0255 .0615 .0180 .0514
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Table 2. The Percentage %V of Observations that Violate the

Futures Rate-Forward Rate Inequality and Features of the Differ-

ence ∆ Between the Rates


