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ABSTRACT: The theory of the minimal spanning tree (MST) of a con-
nected graph whose edges are assigned lengths according to independent identically
distributed random variables is developed from two directions. First, it is shown
how the Tutte polynomial for a connected graph can be used to provide an exact
formula for the length of the minimal spanning tree under the model of uniformly
distributed edge lengths. Second, it is shown how the theory of local weak con-
vergence provides a systematic approach to the asymptotic theory of the length
of the MST and related power sums. Consequences of these investigations include
(1) the exact rational determination of the expected length of the MST for the
complete graph Kn for 2 ≤ n ≤ 9 and (2) refinements of the results of Penrose
(1998) for the MST of the d-cube and results of Beveridge, Frieze, and McDiarmid
(1998) and Frieze, Ruzinkó, and Thoma (2000) for graphs with modest expansion
properties. In most cases, the results reviewed here have not reached their final
form, and they should be viewed as part of work-in-progress.

1 Introduction and Main Results

Consider a finite, connected, simple graph G with vertex set v(G), and for each
element of the edge set e(G) let ξe denote a nonnegative random variable that
one views as the length of the edge e. The random variables {ξe : e ∈ e(G)} are
assumed to be independent with a common distribution F , and the quantities
that are of central concern here are the total length of the minimal spanning tree
(MST) of G,

LMST(G) =
∑
e∈G

ξeI( e ∈ MST(G) ),

and the associated sums for power weighted edges

Lα
MST(G) =

∑
e∈G

ξα
e I( e ∈ MST(G) ).

The first of these sums has been studied extensively since Frieze (1985) showed
that for edge lengths with the uniform distribution on [0, 1] that one has

E[LMST(Kn)] → ζ(3) =
∞∑

k=1

1
k3

= 1.202 · · · as n → ∞ (1)

where Kn is the complete graph on n vertices.
In particular, this result has now been refined or extended by numerous

investigations. There are relaxations of the distributional assumption by Steele
(1987), extensions to the bipartite MST expectations E[LMST(Kn,n)] by Frieze
and McDiarmid (1989), and even the development of a central limit theorem for
LMST(Kn) by Janson (1995). More recently, the basic limit (1) has been extended
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to larger classes of graphs, including an extension to the d-cube Qd by Penrose
(1998) and extensions to general classes of “modestly expansive” regular graphs by
Beveridge, Frieze, and McDiarmid (1998) and Frieze, Ruzinkó, and Thoma (2000).

The path taken here diverges from this earlier work in several respects, but
one key difference comes from the focus on exact calculations, rather than asymp-
totic relations. Specifically, we provide a formula for E[LMST(G)] that permits one
to determine the exact rational value of E[LMST(G)] for many concrete choices of
G.

We also pursue exact calculations for a certain infinite graph T that is in
a sense the universal limit for any sequence of randomly rooted independently
weighted finite graphs whose vertex degrees go to infinity. This calculation then
permits us to provide a necessary and sufficient conditions for the determination of
the asymptotic behavior of E[Lα

MST(Gn)] for a large class of sequences of graphs.
After framing our main results more fully in the next few paragraphs, we turn

to the proofs. In particular, Section 2 develops an exact formula for E[LMST(G)]
finite G, and then in Section 3 we calculate the expected length per vertex of a
special subgraph of T that holds the key to many of the limit theorems for the
MST. Section 4 then addresses some foundational results that connect calculations
on T to calculations for sequences of finite randomly rooted graphs, and these
results are subsequently applied to complete the proof of the basic limit theorem for
E[Lα

MST(Gn)]. Section 4 also examines a critical example that serves to illustrate
the role of uniform integrability in the limit theory of the MST. The final section
reviews some open problems and briefly speculates on the possibilities for further
development.

A Formula for E[LMST(G)]

Theorem 1.1 If G is a finite connected graph and the Tutte polynomial1 of G
is T (G;x, y), then for independent edge lengths that are uniformly distributed on
[0, 1], one has

E[LMST(G)] =
∫ 1

0

(1 − p)
p

Tx

(
G; 1/p, 1/(1 − p)

)
T

(
G; 1/p, 1/(1 − p)

) dp, (2)

where Tx(x, y) denotes the partial derivative of T (x, y) with respect to x.

We illustrate the efficacy of this formula by providing what we believe to
be the first explicit computations for E[LMST(Kn)] for finite values of n that go
beyond the trivial n = 2 and the easy n = 3. Specifically, we use this formula
to calculate E[LMST(Kn)] for 2 ≤ n ≤ 9, and these calculations lead to several
compelling conjectures.

Asymptotic Consequences of an Exact Calculation

If dn, n = 1, 2, ... is a sequence of integers such that dn → ∞ as n → ∞, we
say that the sequence of graphs Gn, n = 1, 2, ... is nearly regular provided that
the maximum ∆(Gn) degree and the minimum degrees δ(Gn) satisfy the degree
conditions

∆(Gn) ∼ dn and δ(Gn) ∼ dn as n → ∞. (3)

1Subsection 2.2 provides a brief but friendly development of the necessary background on the
Tutte polynomial — beginning with its definition.
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We also relax our assumption on F (x) = P (ξe ≤ x), and instead of requiring the
that the ξe be uniformly distributed on [0, 1] we only require

F (0) = 0 and F (x) = x + o(x) as x → 0, (4)

a condition that simultaneously covers the uniform distribution on [0, 1] and the
exponential distribution with mean one — our two leading cases.

Next, we consider the power-weighted analog to the MST,

Lα
MST(Gn) =

∑
e

ξα
e I

(
e ∈ MST(Gn)

)
,

and we introduce a new sequence

Yα(Gn) =
∑

e

(dnξe)α
I
(
e ∈ MST(Gn) and R(Gn) ∈ e

)
, (5)

where R(G) denotes an element of the vertex set v(G) that is chosen independently
according to the uniform distribution. While Yα(Gn) may not seem natural at
first, we will see shortly that its expectation determines the expectation of Lα

MST;
moreover, there are major technical benefits to working with Yα(Gn). In particular,
Yα(Gn) satisfies a limit law that requires nothing more of the graph sequence {Gn}
than those features that one needs for the definition of Yn(Gn) and the statement of
the limit. As an easy consequence of the general theory of local weak convergence
and an exact calculation on a special infinite tree, one obtains the asymptotic
behavior of E[Lα

MST(Gn)].

Theorem 1.2 If Gn, n = 1, 2, ... is a sequence of connected graphs that are nearly
regular in the sense of (3), then for any 0 < α < ∞, one has

E[Lα
MST(Gn)] ∼ Γ(1 + α) ζ(2 + α) |v(Gn)| d−α

n as n → ∞, (6)

if and only if the sequence

{Yα(Gn) : n = 1, 2, ...} is uniformly integrable.

Thus, one finds that even a crude qualitative measure of the good behavior
of the sequence {Yα(Gn) : n = 1, 2, ...} is enough to guarantee the regular asymp-
totic behavior of E[Lα

MST(Gn)]. Moreover, the good behavior of {Yα(Gn)} turns
out to be necessary, so one finds a strong hint that this sequence may be more
fundamental to the theory of the MST than first impressions might suggest.

As a quick illustration of this last result, we should note that if one takes
α = 1 and takes Gn to be Qn, the n-cube, then it implies

E[LMST(Qn)] ∼ 2n

n
ζ(3) as n → ∞, (7)

a limit which was found by Penrose (1998) by different means. A more novel
consequence of the limit (6) comes from taking α = 1/2 and α = 3/2 to find that
the limit (7) is nicely sandwiched between

E
[
L

1/2
MST(Qn)

]
∼ 1

2
ζ(5/2)2n

√
π

n
and E

[
L

3/2
MST(Qn)

]
∼ 3

4
ζ(7/2)

√
πn−3/22n.
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Despite the large swath of ground that Theorem 1.2 covers, one should not
lose sight of the fact that it really is a simple corollary of more general result from
the theory of local weak convergence that has its roots in Aldous (1992) and Aldous
(2001). In particular, local weak convergence to the PWIT is a fundamental part
of those papers, and the modest generalization PWIT Limit Theorem developed
here in Theorem 4.2 is best viewed as part of a longer term effort to make the
techniques introduced in Aldous (1992) and Aldous (2001) more easily accessible
and more readily applied.

2 Exact Calculations for Finite Graphs

The program begins with the derivation of an exact formula for the expectation
E[LMST(G)] under the uniform model for the edge lengths. Here the first step is
to derive a relationship between the random variable LMST(G) and an integral
of another random variable that measures the connectedness of G when one just
uses edges length not greater than 0 ≤ p ≤ 1. Versions of this relationship go
back at least to Avram and Bertsimas (1992), and in some way or another it has
had a role in most recent investigations of the MST, including the central limit
theorem of Janson (1999) and the general graph MST results of Beveridge, Frieze,
and McDiarmid (1998) and Frieze, Ruzinkó, and Thoma (2000).

2.1 Length of the MST as an Integral

For any finite graph G and any subset A of the edge set e(G), we write k(G,A)
for the number of connected components of the graph with vertex set v(G) and
edge set A. If each edge e ∈ G is assigned length ξe, then we also write

et(G) = {e ∈ e(G) : ξe ≤ t},

and we let
NMST(G, t) =

∑
e∈MST(G)

I(ξe ≤ t),

so NMST(G, t) denotes the number of edges of the MST of G that are elements of
et(G). Now, if G is a connected graph, then by counting the number of elements
of et(G) in each connected component of (G, et(G)) one finds

NMST(G, t) + k(G, et(G)) = n,

so we can simply compute

LMST(G) =
∑
e∈G

ξeI( e ∈ MST(G) ) =
∑
e∈G

∫ 1

0

I( t < ξe, e ∈ MST(G) ) dt

=
∫ 1

0

∑
e∈G

(
1 − I(ξe ≤ t, e ∈ MST(G) )

)
dt

=
∫ 1

0

(n − 1 − NMST(G, t)) dt =
∫ 1

0

{k(G, et(G)) − 1} dt.
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In other words, for any connected graph we have the rather pleasing random
variable representation

1 + LMST(G) =
∫ 1

0

k(G, et(G)) dt. (8)

Thus, our main task is to understand the expectation of k(G, et(G)), and this
provides a natural roll for the Tutte polynomials.

2.2 The Tutte Polynomial

To define the Tutte polynomial, one needs to go outside the familiar class of simple
graphs and to consider graphs that may have loops or parallel edges. Given such a
graph G, the Tutte polynomial T (G;x, y) is then defined by a set of four devilishly
simple rules:

1. If G has no edges, then T (G;x, y) = 1.

2. If e is an edge of G that is neither a loop nor an isthmus, then

T (G;x, y) = T (G′
e;x, y) + T (G′′

e ;x, y),

where G′
e is the graph G with the edge e deleted and G′′

e is the graph G with
the edge e contracted.

3. If e is an isthmus, then T (G;x, y) = xT (G′
e;x, y).

4. If e is a loop, then T (G;x, y) = yT (G′′
e ;x, y).

To confirm the understanding of these rules, one might want to check that they
imply that the Tutte polynomial of K2 is just x; indeed, by successive applications
of Rule 3 one finds that the Tutte polynomial of any tree with n vertices is just
the monomial xn−1.

The rules are more amusing when one needs to use contractions, and here
the basic exercise is to show that the Tutte polynomial of K3 is x+x2 +y. Finally,
one might want to check that the Tutte polynomial of a bow tie (made by two
copies of K3 joined at a vertex) is just (x + x2 + y)2. The last exercise naturally
suggests a general principle for finding the Tutte polynomial for the graph built
by joining two arbitrary graphs at a single vertex; one can then recapture Rule 3
as a special case of the general principle.

Much of the usefulness of the Tutte polynomial comes from its relation to
the rank function r(·) that associates to each A ⊂ e(G) the integer r(A) given by

r(A) = |v(G)| − k(G,A),

where, as before, k(G,A) is the number of connected components of the graph
with vertex set v(G) and edge set A. The rank function provides a measure of the
extent to which the graph (v(G), A) is connected, and it permits one to express
the Tutte polynomial as a large — but informative — sum:

T (G;x, y) =
∑

A⊂e(G)

(x − 1)r(G)−r(A)(y − 1)|A|−r(A), (9)

5



where r(G) is shorthand for the more pedantic r(e(G)).
One immediate consequence of this formula is that it shows the Tutte poly-

nomial does not depend on the order in which one deletes the edges of G in the
recursive definition of T (G;x, y), a fact that may not seem particularly evident
from the rules themselves. To return the favor, the defining rules make it evident
the coefficients of T (G;x, y) are nonnegative, while this is not so easily seen from
the sum.

One obvious consequence of the sum formula (9) is that

T (G; 2, 2) = 2m where m = |e(G)|, (10)

and a natural use of this triviality is to provide a quick feasibility check on a
candidate Tutte polynomial. In fact, the evaluations of the Tutte polynomial at
special choices of x and y provide a rich buffet of combinatorial interpretations
(cf. Welsh (1999)), and in principle each such evaluation can be used as a check.
In practice, the evaluation (10) is the easiest to use; it catches many blunders and
offers many hints.

2.3 Connection to the Probability Model

Any sum over all of the subsets of e(G) can be interpreted as an expectation
∑

A⊂e(G)

p|A|(1 − p)m−|A|f(A) (11)

for an appropriate choice of f , and when one recalls that

r(A) = |v(G)| − k(G,A) = n − k(G,A) and r(G) = n − 1

for a connected graph G, then the sum formula (9) is simply

T (G;x, y) =
1

(x − 1)(y − 1)n

∑
A⊂e(G)

(y − 1)|A|((x − 1)(y − 1)
)k(G,A)

,

which obviously may be written in expectation form as

ym

(x − 1)(y − 1)n

∑
A⊂e(G)

(
y − 1

y

)|A|(1
y

)m−|A|(
(x − 1)(y − 1)

)k(G,A)
, (12)

provided that we set m = |e(G)| and make the natural identifications

p =
y − 1

y
and 1 − p =

1
y
. (13)

This kind of reinterpretation of the Tutte polynomial is bread-and-butter to the
theory of the correlated percolation model (cf. Fortuin and Kasteleyn (1972)), and
this specific form of the Tutte polynomial has also been useful in the study of the
computational complexity of the Tutte polynomial (cf. Welsh (1999) and especially
Lemma 1 of Alon, Frieze, Welsh (1994)).

On the other hand, the application of this formula to the problem of calculat-
ing the minimal spanning tree for uniformly distributed edges seems to be novel,

6



though admittedly easy and natural. We first note that the first factors under the
sum provide the probability under the uniform model that one has ξe ≤ p for
exactly those edges in the set A. If one then takes

A = ep(G) ≡ {e : e ∈ e(G), ξe ≤ p}

then one can write the moment generating function

ϕ(t) ≡ E
[
exp

(
tk(G, ep(G))

)]
in terms of T (G;x, y) as

ϕ(t) = pn−1(1 − p)m−n+1 et T

(
G; 1 + et 1 − p

p
,

1
1 − p

)
, (14)

and this formula gives us a natural way to calculate the expectation of k
(
G, ep(G)

)
.

Specifically, if we retain the abbreviations (13), we have

ϕ′(t) = ϕ(t)
{

1 + et 1 − p

p

Tx(G;x, y)
T (G;x, y)

}
,

so, when we let t = 0, we find for x = 1/p and y = 1/(1 − p) that

E[k(G, ep(G))] = 1 +
1 − p

p

Tx(G;x, y)
T (G;x, y)

. (15)

Finally, when we expand the abbreviations for x and y and recall the representa-
tion (8) for LMST(G) in as an integral of k(G, ep(G)), we find

E[LMST(G)] =
∫ 1

0

(1 − p)
p

Tx

(
G; 1/p, 1/(1 − p)

)
T

(
G; 1/p, 1/(1 − p)

) dp, (16)

just as we needed to complete the proof of Theorem 1.1.

2.4 Illustrations and Applications

There are some natural and easy checks one can make to familiarize the formula
(16). If we recall that for G = K2 we have T (G;x, y) = x, then the integral (16)
easily works out to be 1/2, just as it should. More generally, if G is a tree with n
vertices, then T (G;x, y) = xn−1 and the integral work out to be (n − 1)/2, and
again this is obviously the correct value of E[LMST(G)].

It is perhaps more informative to note that the form of the integrand as a
logarithmic derivative is quite natural. If G and H are two graphs that share a
common vertex, then the graph G ∪H has Tutte polynomial T (G;x, y)T (H;x, y)
so the formula (16) recaptures the obvious fact that in this case one also has

E[LMST(G ∪ H)] = E[LMST(G)] + E[LMST(H)].

For the complete graph on three vertices we have already seen that one has
T (K3) = x + x2 + y, and for this polynomial the integral (16) yields 3/4, and yet
again one can check independently that E[LMST(K3)] = 3/4. Nevertheless, for K4
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n E[LMST(Kn)] Numerical Value Forward Difference
2 1/2 0.50000 0.250000
3 3/4 0.75000 0.135714
4 31/35 0.88571 0.080735
5 893/924 0.96645 0.051864
6 278/273 1.01832 0.035400
7 30739/29172 1.05372 0.025342
8 199462271/184848378 1.07906 0.018843
9 126510063932/115228853025 1.09790 ———–

Table 1: The exact expected values of the MST of Kn for n = 2 to n = 9 under
the model of independent U [0, 1] edge lengths.

the situation is much more interesting. Hand computations become tedious, but
they still suffice for one to show

T (K4;x, y) = 2x + 2y + 3x2 + 3y2 + 4xy + x3 + y3.

When this polynomial is used in the integral formula (16), one then finds

E[LMST(K4)] =
31
35

,

and now we are on new ground. This appears to be the first time E[LMST(K4)]
has been computed, and one may be hard pressed to provide an independent
calculation that not pass through some integral like that provided by our basic
representation (16).

Naturally one can go further, but beyond n = 4 it would be masochistic not
to use symbolic calculation to determine the Tutte polynomials and to perform
the required integrations. In fact, a table of the Tutte polynomials T (Kn;x, y) for
the values n = 2, 3, ..., 8 is included in Gessel and Sagan (1996), and with help
from Maple this table has been extended by Gessel (personal communication) to
include all values up to n = 15. For convenience of display, we us just the first
nine of these polynomials in the construction of Table 1.

The numerical evaluations in the table and their successive differences sug-
gests two compelling conjectures; it seems inevitable that E[LMST(Kn)] is mono-
tone increasing and concave. This evidence is new and not fully digested, so it
is possible that these conjectures will follow from our basic formula (16) and the
known properties of the Tutte polynomial for Kn. On the other hand, if such an
approach is not successful, the conjectures may prove to be difficult. After all, the
analogous monotonicity conjecture for the assignment problem (cf. Steele (1997),
p. 94) has resisted all attempts for more than fifteen years.

A final feature of Table 1 worth noting is that the rate of convergence is
perhaps slower than one might guess. By the result of Frieze (1985) mentioned in
the introduction, we know that E[LMST(Kn)] converges to ζ(3) = 1.202 · · · , and
one might hope that the behavior of E[LMST(Kn)] would parallel that of the partial
sums of ζ(3) given by sn = 1+1/23 + · · ·+1/n3. Sadly, sn reaches 1.19 when n = 6
and reaches 1.20 when n = 16, while E[LMST(Kn)] lags far behind. By analogy with
the Parisi conjecture for the assignment problem (cf. Parisi (1998) and Aldous and
Steele (2002)), one suspects that under the exponential model the corresponding
expected values E[LMST(Kn)] will indeed be closer to sn. Nevertheless, such an
exploration will have to wait for another day.
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3 An Exact Calculation for an Infinite Tree

We now take up a second exact calculation, but this time it will be for a special
infinite graph. To explain why this graph deserves to be singled out requires some
background on the theory of the Poisson weighted infinite tree and the attending
theory of local weak convergence. This background is developed more fully in
Aldous (2001) and Aldous and Steele (2002), so the next two subsections recall
just the most essential facts.

3.1 An Infinite Tree of Special Significance

The Poisson weighted infinite tree — or the PWIT — is a simple object. Never-
theless, it provides one with a direct and effective understanding of many of the
problems of combinatorial optimization for large graphs with edge lengths that
are given by independent random variables.

Formally, a PWIT is a rooted tree that one defines recursively. One starts with
a single vertex r called the root, and one gives the root a countably infinite number
of children. The set of these children is called generation one, and the edges from
the root to the children are then labeled by the realizations of a Poisson process
on [0,∞) that has constant intensity µ > 0. That is, each edge from the root is
assigned a unique element of the set

P(µ) = {ξk : k = 1, 2, ...} where ξk = Y1 + Y2 + · · · + Yk

and the random variables {Yj : j = 1, 2, ...} are independent and

P(Yj > x) = exp(−µx) for all j = 1, 2, ... and x ∈ [0,∞).

After generation k has been defined, one defines generation k + 1 by taking each
element of generation k and applying the same construction that we applied to
the root to get the first generation. At each stage the Poisson process that is used
to label the edges is taken to be independent of all of the other Poisson processes
that have been introduced. This construction is then continued until there is a well
defined generation for each of the natural numbers k = 1, 2, ....

A tree T that is produced by this construction is said to be a PWIT with
intensity µ > 0, and, as shorthand, we will write

T d= PWIT(µ),

whenever T has the same distribution as the PWIT we have just constructed.
Shortly, we will be more precise about the metric space in which one understands
this distributional equality to take place.

3.2 Components of the PWIT

If G is any graph with a real number associated to each edge of G, then G is
called a weighted graph, and the numbers on the edges are called the edge lengths.
Given such a graph, we let G(x) denote the graph that one obtains when all of
the edges of length x or greater are delete, and if G is a rooted graph we also let
G�(s) denote the component of G(s) that contains the root. If T is a PWIT with
intensity µ and root r, then we may again view T�(s) as a rooted graph with root
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One View of a PWIT T
�

� � � � � � ��

� � � � � � ��

� � � � � � ��

� � � � � � �

Each vertex in T has
countably many children.
Here each triangle
represents an infinite
tree that is itself a PWIT.

Each edge of T
is assigned a length. The
lengths from a vertex to
its children are determined
by an independent
Poisson process.

Figure 1: The PWIT is arguably the most fundamental limit object in the theory
of randomly weighted graphs. It is the local weak limit of many different sequences,
and it offers a unified approach to limit theorems for matching, spanning trees,
and many other problems of combinatorial optimization.

r, and this graph turns out to be and old friend. It is nothing more than a Poisson
Galton-Watson tree.

More precisely, if PGW (s) denotes the distribution of the random tree deter-
mined Galton-Watson branching process with a single progenitor and an offspring
distribution that is Poisson with mean s, then we have

T d= PWIT(µ) ⇒ T�(s)
d= PGW(sµ).

Many pleasing computations may be based on this simple observation.
In particular, we will need a qualitative understanding of the size of T�(s)

when µ = 1, but everything we need has been known for 120 years or more.
Specifically, the probability p = p(s) that a PGW (s) branching process is finite
(the so-called extinction probability) is one if 0 ≤ s ≤ 1 and for s > 1 the value of
p is given by the unique root in (0, 1) of the equation.

p = exp(−s(1 − p)).

Lagrange-Bürmann inversion provides an explicit formula

p(s) =
1
s

∞∑
k=1

k−k (ses)k

k!
for s > 1,

but, despite its charm, this sum does not always provide the best way to understand
p(s), or the complementary probability q(s) = 1 − p(s). Here we will rely more
directly on the fact that q(s) is the unique strictly positive solution of

1 − q(s) = exp(−sq(s)) when s > 1, (17)

and the obvious inverse relationship

s(q) = − log(1 − q)
q

. (18)
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s = ξe

v1

v2

Either c(G, v1; s) is finite

or c(G, v2; s) is finite, or both are finite.

Figure 2: The edge e = (v1, v2) of G is in the minimal spanning forest if and only
if at least one of the trees c(G, v1; s) and c(G, v2; s) is finite when s = ξe.

that gives us the value of s for which we have we have probability 0 < q < 1 that
the total PGW(s) population is infinite.

3.3 Minimal Spanning Forests

The minimal spanning forest of an infinite graph G that has all distinct edge
lengths is the subgraph MSF(G) of G with the same vertex set as G and with an
edge set that contains each edge e = (v1, v2) of G for which

(1) c(G, v1; s) and c(G, v2; s) are disjoint, and
(2) c(G, v1; s) and c(G, v2; s) are not both infinite

when s is taken to be the length of the edge e = (v1, v2) ∈ G. An illustration of
this definition is given in Figure 2 from Aldous and Steele (2002).

The real utility of this definition can only be brought out by the PWIT Limit
Theorem (Theorems 4.2), but a good exercise with the definition is first to show
that each component of MSF(G) must be infinite and then to argue that MSF(G)
is indeed free of cycles.

3.4 Zeta Meets a PWIT

Let T be a PWIT with intensity µ = 1, and let r denote its root. If MSF(T ) is the
minimal spanning forest of T , then by a natural extension of our earlier notation
we denote the sum of the edges incident to the root by

Y (T ) =
∑

e:r∈e

ξeI(e ∈ MSF(T )),

and denote the associated power sum by

Yα(T ) =
∑

e:r∈e

ξα
e I(e ∈ MSF(T )).

11



The next lemma exploits the method of Lemma 4 of Aldous and Steele (2002)
to obtain a slightly more general result. Although the innovation is minor, there
do seem to be genuine benefits to having the parameter α at one’s disposal. At a
minimum, the joint presence of the gamma and zeta functions is amusing.

Lemma 3.1 The sum of the αth powers of edges of the PWIT that are incident
to the root has expectation

E[Yα(T )] = 2Γ(1 + α)ζ(2 + α) for α ∈ (−1,∞), (19)

and by analytic continuation the same formula holds for all complex α for which
the left-hand side is well defined; consequently, one has the Mellin integral repre-
sentation

E[Yα(T )] =
2

1 + α

∫ ∞

0

xα+1

ex − 1
dx for all Re α > 0. (20)

Proof: If one conditions a Poisson process P on [0,∞) to have a point at s, then
P \ {s} is again a Poisson process, so, if we condition on the event that there is
an edge e of length s incident to the root, then the subtrees obtained by cutting
that edge are again independent PGW(s) trees.

Now, since the probability that at least one of these is finite is equal to
1− q2(s), we see that this is also the probability that the edge e is in the minimal
spanning forest of T and we have

E[Yα(T )] =
∫ ∞

0

sα(1 − q2(s)) ds. (21)

To compute the integral, we apply integration-by-parts, the implicit formula
for (17) for q(s), and the fact that q(s) vanishes on [0, 1] to find

(1 + α)E[Yα(T )] = 2
∫ ∞

0

s1+αq(s)q′(s) ds = 2
∫ ∞

1

s1+αq(s)q′(s) ds

= 2
∫ 1

0

log2(1 − q)
qα

dq.

A good table would now suffice, but it is as easy to substitute u = − log(1− q) to
find

(1 + α)E[Yα(T )] = 2
∫ ∞

0

u1+α e−u

1 − e−u
du = 2

∫ ∞

0

u1+α
∞∑

k=1

e−ku du

= 2
∞∑

k=1

1
k2+α

Γ(2 + α) = 2Γ(α + 2)ζ(α + 2).

Since one has (1 + α)Γ(1 + α) = Γ(2 + α), the proof of formula (19) is complete.
Finally, the analytic continuation of the identity (19) follows from the general

principles of function theory, and the validity of the Mellin integral representation
(20) is embedded in our calculations. Alternatively, one can note that the repre-
sentation (20) follows from formula (19) and the well known formula

Γ(z)ζ(z) =
∫ ∞

0

xz−1

ex − 1
dx Re z > 1,

which one can prove by expanding (ex − 1)−1 as a geometric series. �
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4 Local Weak Convergence Theory

We now need to recall (and to modestly extend) some basic facts from the theory
of local weak convergence. The main results in this section are the PWIT Con-
vergence Theorem (Theorem 4.2) and the MST Convergence Theorem (Theorem
4.4). The first of these is implicit in Aldous (1992) and Aldous (2001), and, al-
though Theorem 4.2 is nominally more general than the results that were needed
in Aldous (1992) and Aldous (2001), no essentially new ideas are needed. Finally,
the MST Convergence Theorem is a direct import from Aldous and Steele (2002).

The real benefit of the present development of the PWIT Limit Theorem
is that it is reasonably self-contained. Thus, with very little overhead, one gains
direct access to the single most important fact about the PWIT.

4.1 A Poisson Convergence Lemma

We begin with a lemma that is surely part of classic folklore, but the snappy
proof via Rényi’s characterization of the Poisson process appears to be new. At
a minimum, this proof draws the straightest possible line between the hypotheses
on F and the required Poisson limit.

Lemma 4.1 Let F denote a distribution function such that

F (0) = 0 and F (x) = µx + o(x) as x → 0. (22)

If the random variables of the triangular array { ξi,n : 1 ≤ i ≤ dn} are independent
within each row and if one has

P
(
ξi,n ≤ x

)
= F (x/dn) for all 1 ≤ i ≤ dn,

where dn → ∞ as n → ∞, then one has the weak convergence

Sn =
{

ξi,n : 1 ≤ i ≤ dn

} d−→ P(µ) as n → ∞

in the sense of point processes.

Proof: By Rényi’s characterization of the Poisson process (cf. Rényi (1967) or
Kingman (1993), pp. 34–37), it suffices to show that for each union of disjoint
intervals A = (a1, b1] ∪ (a2, b2] ∪ · · · ∪ (an, bn] one has

P
(
|Sn ∩ A| = 0

)
→ e−λ(A)µ, (23)

where λ(A) denotes the Lebesgue measure of A. By our hypothesis on F and the
independence of the {ξi,n : 1 ≤ i ≤ dn}, we have

P
(
|Sn ∩ A| = 0

)
=

(
1 −

k∑
i=1

{F (bi/dn) − F (ai/dn)}
)dn

=
(
1 − µλ(A)/dn + o(µλ(A)/dn)

)dn
,

so the limit (23) follows instantly. �

There is a sense in which Rényi’s criterion is modestly magical; it provides
us with independence of a different sort than we assume at the beginning. Also
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one should note that the only sly aspect of Rényi’s Theorem is the requirement
that one deal with all A that can be written as finite unions of disjoint intervals;
in fact, Moran (1967) shows by example that one cannot get by with less. Finally,
there is one small technical point; we have used Rényi’s characterization of the
Poisson process to provide convergence criterion for of a sequence of processes.
Naturally, one only needs to apply the usual subsequence argument to pass from
the characterization to the convergence criterion.

4.2 Local Weak Convergence Defined

We now need to extend the classical notion of weak convergence for point processes
to a larger domain that is more directly connected with the convergence of weighted
graphs. The treatment given here follows the exposition of Aldous and Steele (2002)
which was designed in part to systematize the basic constructions used in Aldous
(1992) and Aldous (2001).

To begin, we consider a graph G with a vertex set v(G) that may be finite
or countable. We further suppose there is a function � from the edge set e(G) to
(0,∞], and we call �(e) the length of the edge e. We then use � to define a metric
on v(G) by taking the distance from u to v as the infimum over all paths between
u and v of the sum of the lengths of the edges in the path. Naturally, the distance
from any vertex v to itself is taken to be zero.

Now, if G is a connected graph with a countable or infinite vertex set and if
� is an edge length function that makes G locally finite in the sense that for each
vertex v and each real ρ < ∞ the number of vertices within distance ρ from v is
finite, then we call G a geometric graph. Also, when there is a distinguished vertex
v, we say that G is a rooted geometric graph with root v, and to save space, we
denote the set of geometric graphs by G and the set of rooted geometric graphs
by G�.

The key issue is to say what one means for a sequence {Gn} of elements of G�

to converge to a G in G�. The driving idea is that for large n, the rooted geometric
graph Gn should look very much like G in a neighborhood of the root of G that is
as large as we like.

Formally, we take ρ > 0 and let Nρ(G) denote the graph whose vertex set
Vρ(G) is the set of vertices of G that are at a distance of at most ρ from the root
of G and whose edge set consists of just those edges of G that have both vertices
in Vρ(G). One again views Nρ(G) as an element of G� with edge length function
and root given by those of G. Also, ρ > 0 is called a continuity point of G if no
vertex of G is exactly at a distance ρ from the root of G.

Now, at last, we say that Gn converges to G∞ in G� provided that for each
continuity point ρ of G∞ there is an n0 = n0(ρ,G∞) such that for all n ≥ n0

there exists a isomorphism2 γn,ρ from the rooted geometric graph Nρ(G∞) to the
rooted geometric graph Nρ(Gn) such that for each edge e of Nρ(G∞) the length
of γn,ρ(e) converges to the length of e as n → ∞.

This definition determines a topology that makes G� into a complete separable
metric space. As a consequence, and it gives us access to the usual tools of weak
convergence theory. Here, if {Xn} is a sequence of G�-valued random variables and
X is a G�-valued random variable we write

Xn
d−→ X to mean that E[f(Xn)] → E[f(X)]

2Graphs G and G′ are isomorphic provided that is a bijection φ : v(G) → v(G′) such that
(φ(u), φ(v)) ∈ e(G′) if and only if (u, v) ∈ e(G).
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for each bounded continuous function f : G� → R. This is just plain vanilla weak
convergence Gstar-valued random variables, but to emphasize the special attention
that is paid to the neighborhood of the root we also say that we have the local
weak convergence of Xn to X.

From examples one finds that local weak convergence is a perfectly natural
notion, despite the fact that it takes a while to make precise. In fact, the only
subtle feature about local weak convergence is the way in which it force one to
focus so myopically on the neighborhoods of the root.

4.3 The PWIT Limit Theorem

We now have the background in place to prove the theorem that makes us inter-
ested in PWIT; it shows that the PWIT is arises as the limit of a very natural
sequence of geometric graphs. As noted earlier, this particular version of the PWIT
limit theorem is intended to make the PWIT limit ideas from Aldous (1992) and
Aldous (2001) more explicit, more accessible, and modestly more general

Theorem 4.2 (The PWIT Limit Theorem) Let Gn, n = 1, 2, ..., denote a se-
quence of graphs such that the vertex set v(Gn) has cardinality n for each n = 1, 2, ..
and such that the maximum and minimum degrees satisfy the degree conditions

∆(Gn) ∼ dn and δ(Gn) ∼ dn as dn → ∞. (24)

Also, let F denote a distribution function that satisfies the conditions (22) and
associate to each e ∈ v(Gn) an independent edge length ξe with distribution

P (ξe ≤ x) = F (x/dn) for all x ≥ 0.

Next, independently choose an element of v(Gn) according to the uniform distribu-
tion, and let Gn denote the rooted geometric graph produced by this construction.
One then has

Gn
d−→ PWIT(µ).

As one often does in the theory of weak convergence, we prove this limit
theorem by passage to an equivalent characterization theorem. Specifically, one
first argues (in a step that we leave as an exercise) that the sequence of G�-valued
random variables {Gn} is tight. Then we consider an arbitrary subsequence, say
{nk : k = 1, 2, ...}, and we note by tightness that there must exist a further
subsequence {mk : k = 1, 2, ...} and a G�-valued random variable G such

Gmk

d−→ G as n → ∞.

Next, we observe by Skorohod’s theorem (cf. Dudley (1989), pp. 325–327) that one
can assume without loss of generality that

Gmk
→ G almost surely as n → ∞,

and now all we have to do is to prove that G is actually a PWIT.
From the definition of the topology of local weak convergence, we know au-

tomatically that G is connected, so G will be a tree provided that we show that
it has no cycles. This will follow from the next lemma.
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For the statement of the lemma, we note that a path-plus-cycle is a graph that
can be written as a path plus one additional edge that makes a cycle by joining
two vertices on the path. Also, to anticipate the application of the lemma, one
should recall that the root of Gn is randomly chosen uniformly from the vertex
set v(Gn), so the lemma immediately implies that with probability one the limit
graph G has no cycles in any ρ neighborhood of its root.

Lemma 4.3 Let S(n, ρ) the set of all vertices v ∈ v(Gn) for which there exists a
path-plus-cycle H = H(v) ⊂ Gn such that

v ∈ H and
∑

e∈e(H)

ξe ≤ ρ.

One then has
|S(n, ρ)|/n

p→ 0 as n → ∞.

Proof: We first note that the number of path-plus-cycle subgraphs of Gn with k
vertices cannot be larger than

n · ∆(Gn)k−1

(
k

2

)
<

1
2
nk2∆(Gn)k−1.

Also, by our hypothesis on F , we know there is an x0 such that F (x) ≤ 2µx for
all 0 ≤ x ≤ x0, and from this bound, integration by parts, and induction one finds
a corresponding bound for the k-fold convolution is given by

F (k)(x) ≤ (2µ)k xk

k!
for all 0 ≤ x ≤ x0.

Thus, for any k edges e1, e2, ..., ek of Gn we find from the distributional assumption
P(ξe ≤ x) = F (x/dn) that

P (ξe1 + ξe2 + · · · + ξek
≤ ρ) ≤ (2µ)k ρk

dk
nk!

for all 0 ≤ ρ/dn ≤ x0.

The expected number vertices of Gn that are contained in path-plus-cycle sub-
graph Gn with k vertices and total length bounded by ρ is therefore no larger
than

(2µ)knk2 ∆(Gn)k−1ρk

dk
nk!

provided that 0 ≤ ρ ≤ x0dn.

Now, since ∆(Gn) ∼ dn, we may chose a constant C = C(µ, ρ) such that this
bound is not larger than nCk/dnk!, and, thus, one finds

E
(
|S(n, ρ)|) ≤ eCn/dn, for all n such that dn ≥ ρ/x0.

Since we assume dn → ∞, this bound is more than one needs to complete the
proof of the lemma. �

Now that we know G is a tree, the proof of Theorem 4.2 will be complete
provided that we confirm that the edge lengths from each vertex to its children are
given by the realization of an independent Poisson process. For the root of G this
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is quite easy. When we look at the edges incident to the root of Gn for large n, we
see by Lemma 4.1 that the lengths of these edges are approximately the points of
a Poisson process, and consequently the lengths of the edges incident to the root
of G must exactly follow a Poisson process.

Now consider a fixed ρ and an n so large that the probability that Gn contains
a cycle in the ρ-neighborhood of the root of Gn is small. We know that the distances
to the children of the root approximately follow the initial segment of a Poisson
process, and now we consider the second generation. Let c be a fixed child of
the root r, and consider the set S of edges incident to c. The set of edge lengths
{ξe : e ∈ S and e 
= (r, c)} again satisfy the assumptions of Lemma 4.1, so the
distribution of the lengths of the descendants of c will again follow a Poisson
process as closely as we like. This argument shows that the first two generations
of G are consistent with the construction of the PWIT. There is no change to the
argument as one moves from the kth to the k + 1st generations, so one finds that
G is indeed a PWIT and the proof of Theorem 4.2 is complete.

4.4 Convergence of MSTs

We now need a general result from Aldous and Steele (2002) that tells us that the
local weak convergence of a sequence of randomly rooted graphs automatically
gives us the local weak convergence of their associated MSTs.

Theorem 4.4 (MST Convergence Theorem) Let G∞ denote a G�-valued ran-
dom variable such that with probability one G∞ has infinitely many vertices and no
two of the edges of G have the same length. Further, let {Gn : n = 1, 2, ...} denote
a sequence of G�-valued random variables such that for each n the distribution of
Gn is given by the standard construction and such that for each n the vertex set
of Gn has cardinality n with probability one. If

Gn
d−→ G∞ as n → ∞, (25)

then one has the joint weak convergence in G� × G�,

(
Gn, MST(Gn)

) d−→
(
G∞, MSF(G∞)

)
. (26)

Further, if Nn denotes the degree of the root of MST (Gn) and N denotes the
degree of the root of MSF(G∞)

Nn
d−→ N and E[Nn] → E[N ] = 2, (27)

and, if Ln denotes the sum of lengths of the edges incident to the root of MST (Gn)
and L denotes the corresponding quantities for MSF(G∞), then

Ln
d−→ L. (28)

4.5 Closing the Loops

Theorems 1.2 is now a remarkably easy corollary of the PWIT Limit Theorem,
the MST Convergence Theorem, and the exact PWIT calculation developed in
Section 3. The first step is simply to make the link between Lα

MST(Gn) and Yα(Gn)
more explicit.
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Here it is useful to let ER[f(Gn)] denote the conditional expectation of f(Gn)
given {ξe : e ∈ v(Gn)}; in other words, we just average f(Gn) over the possible
values of the random root R. We now just compute

Lα
MST(Gn) = d−α

n

∑
e

(dnξe)α
I
(
e ∈ MST(Gn)

)

= d−α
n

1
2

∑
v

∑
e

(dnξe)α
I
(
e ∈ MST(Gn)

)

=
1
2
d−α

n |v(Gn)|ER

[∑
e

(dnξe)α
I
(
e ∈ MST(Gn) and R(Gn) ∈ e

)]

=
1
2
d−α

n |v(Gn)|ER[Yα(Gn)].

Finally, if one takes expectations in this representation one finds the basic identity

E[Lα
MST(Gn)] =

1
2
d−α

n |v(Gn)|E[Yα(Gn)]. (29)

Now, by the PWIT limit theorem we already know that Gn
d−→ T , and by

the MST Convergence Theorem this automatically entails MST(Gn) → MSF(T ).
From the defining topology of local weak convergence, we then have

∑
e∈e(Gn)

ξα
e I(e ∈ MST(Gn) and R ∈ e) d−→

∑
e∈e(T )

ξα
e I(e ∈ MSF(T ) and R ∈ e),

or in other words
Yα(Gn) d−→ Yα(T ). (30)

Now, if {Y (Gn) : n = 1, 2, ..} uniformly integrable, we can take expectations
in the limit (30) and apply our earlier calculation of E[Yα(T )] to find

E[Yα(Gn)] → 2Γ(1 + α)ζ(2 + α),

but by the introductory identity (29), this is equivalent to

E[Lα
MST(Gn)] ∼ d−α

n |v(Gn)|Γ(1 + α)ζ(2 + α), (31)

so the direct part of Theorem 1.2 is complete.
The converse now comes almost for free. One first notes that we may reverse

the path from the limit (31) to the convergence of the expectations E[Yα(Gn)],
so when one pairs this fact with the limit (30), the loop is closed by applying the
following simple lemma.

Lemma 4.5 If a sequence of nonnegative random variables Xn, n = 1, 2, ... con-
verges to X in distribution, then one has

E[Xn] → E[X] if and only if {Xn : n = 1, 2, ...} is uniformly integrable.

18



Proof: If we assume that the sequence {Xn : n = 1, 2, ...} is uniformly integrable
then convergence in probability implies Xn convergence in L1 and this certainly
implies that one has the convergence of the expectations. For the converse, we
first note that by the Skorohod embedding theorem (Dudley (1989), pp. 325–327),
there is no loss of generality if we assume that Xn converges almost surely to X.
In this case, the nonnegativity and convergence of the expectations implies that
Xn converges to X in L1 by Sheffé’s lemma (Williams (1991), p. 55). Since L1

convergence is stronger than uniform integrability of {Xn : n = 1, 2, ...}, the proof
of the lemma is complete. �

4.6 An Illustrative Example

Theorem 1.2 tells us that the limit behavior of E[Lα
MST(Gn)] is determined once

one shows the uniform integrability of the sequence {Yα(Gn)}. The systematic
treatment of this question will be left for another time, but one should note that
this reasonably crude and qualitative property of {Yα(Gn)} often follows from
known results. Nevertheless, there are certainly many situations where uniform
integrability fails or where the proof of uniform integrability can be subtle.

The example we consider here is illustrated in Figure 3, and it has also
been used for illustration in Beveridge, Frieze, and McDiarmid (1998) and Frieze,
Ruzinkó, and Thoma (2000). If one takes Gn = C(mn,K−1

n ), then one can see
just from Frieze’s ζ(3) theorem that under the model of uniformly distributed
costs that one has

E[LMST(Gn)] ∼ mn(ζ(3) + 1) as n → ∞

for any choice of the sequence 2 ≤ mn < ∞. On the other hand, uniform integra-
bility of {Y (Gn) : n = 1, 2, ...} would imply that

E[LMST(Gn)] ∼ mnζ(3),

so in this case we certainly know {Y (Gn) : n = 1, 2, ...} is not uniformly inte-
grable. Nevertheless, one might want to check this directly, and, in fact, a moment’s
thought about the impact of a random root is all one needs to show

lim sup
n→∞

E[Y (Gn)I(Y (Gn) ≥ t)] ≥ 1 for all 0 ≤ t < ∞.

The situation is more interesting in case one takes 0 < α < 1, in which case
one may now show that

lim
t→∞

lim sup
n→∞

E[Yα(Gn)I(Yα(Gn) ≥ t)] = 0,

so the sequence {Yα(Gn)} is uniform integrable. As a consequence, one obtains a
positive result for C(mn,K−1

n ) that asserts

E[Lα
MST(C(mn,K−1

n )] ∼ Γ(α + 1)ζ(α + 2)mnn1−α,

a fact which is perhaps more amusing when made more concrete. If one takes
mn = �nα� and α = 0.99, then Γ(1.99) = 0.995 · · · and ζ(2.99) = 1.204 · · · , so one
finds

E[L0.99
MST(C(n,K−1

n )] ∼ cn where c = Γ(1.99)ζ(2.99) = 1.1990 · · · .
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C(6,K−1
4 )

C(m,K−1
n ) has mn vertices

and mn(n − 1)/2 edges.

C(m,K−1
n ) is regular

with degree n − 1; a dotted
edge is as honest as any other.

Figure 3: The graph C(6,K−1
4 ) is built out of 6 copies of K4 that have had one

edge removed. These altered graphs — called K−1
4 s — are then chained together

in a cycle. The result is a regular graph with degree 3 and 6 · 4 = 24 vertices; in
grocer’s terms one has a cubic graph with two dozen vertices.

5 Concluding Observations

As noted earlier, this is a report on work-in-progress and there are many loose
ends that time and diligence may suffice to resolve. Perhaps the most compelling
questions that have been left open concern the monotonicity and concavity of
E[LMST(Kn)] under the uniform model. Next on the list would be the possible
analog of Parisi’s conjecture and an exploration of the relationship of E[LMST(Kn)]
to sn = 1 + 1/23 + · · · + 1/(n − 1)3 under the exponential model.

More generally, the exact formula (2) for E[LMST(G)] provides one with con-
siderable motivation to work out detailed representations for the Tutte polynomials
for those graphs that are of most interest in probability theory. One also suspects
that interesting consequences may flow from the interpretation of formula (2) in
the light of general results for the Tutte polynomial. Specifically, one might spec-
ulate that results like the Negami Splitting Formula (Negami (1987)) could lead
to interesting inferences. Finally, the appearance of the logarithmic derivative of
the Tutte polynomial in formula (2) suggests that this rational function may have
informative properties beyond those it inherits from the Tutte polynomial.

The questions that are left open from the second part of the report are less
well formed. Certainly, the question of uniform integrability of {Yα(Gn)} deserves
more systematic thought. Right now the easiest paths to uniform integrability
freeload on the efforts of the more direct approaches to E[LMST(G)], especially
the recent arguments of Frieze, Ruzinkó, and Thoma (2000) that exploit the lovely
bound of Karger (1999) on the number of approximately minimal cuts. Neverthe-
less, as the easy example of Subsection 4.6 suggests, the sequence {Yα(Gn)} does
have an independent character. One suspects that in time the direct investigation
of its uniform integrability will lead to arguments that do not poach on other
approaches.

Finally, the second part of the report suggests several overarching questions
from the theory of local weak convergence. One major line of investigation that
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surely deserves a sustained effort is the extension of the MST Convergence Theo-
rem. There are many other classes of subgraphs from combinatorial optimization
for which one expects an analogous result, and the class of confirmed examples is
growing. Nevertheless, the final form of this theory is nowhere in sight.

Acknowledgements: It is a pleasure to thank David Aldous for continued coach-
ing in the theory of local weak convergence and to thank Ira Gessel for providing
an electronic extension to n = 15 of the table of Tutte polynomials for Kn given
in Gessel and Sagan (1996).
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