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Moving Averages of Ergodic Processes

By A. del Junco, Toronto') and J. M. Steele, Vancouver?)

Abstract: A necessary and sufficient condition for the almost everywhere convergence of the “mov-
n

ing” ergodic averages (¢ (n))~! z Xg (fx) is given. The result is then generalized to ergodic
i=n-p(n)+1
flows, and finally constrasted with earlier results of Pfaffelhuber and Jain.

1. Introduction

The ergodic theorem of Birkhoff states that for an invertible measure preserving
transformation of the measure space (X, F, i) the sequence

nt -1%1 (T )

converges a.e. for all f€ L, (X, F, u). A natural direction for generalization of the
ergodic theorem is via a more general averaging process than (1). In particular one has
the basic question:
What are the necessary and sufficient conditions on the matrix (a,,;) so that the
sequence f,, (x) = Z a,; f (Tix) converges a.e. foreach fEL,.

The present work tackles only a special case of the basic question where definitive
results can be provided. In particular we consider the matrix (a,,;) defined by

/o (n) n—¢n)<i<n
0 otherwise

where ¢ (n) is a positive non-decreasing function on the integers. For this choice of
(a,,;) we provide necessary and sufficient conditions for the a.e. convergence of the
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This particular choice of (g,,;) is motivated, first of all, by its relevance to the gener-
al problem as pointed out in Akcoglu and del Junco [1975] (see also Belley [1974]).
The more direct purpose of (2) is, of course, to study the average of the last ¢ (n) of the
values £ (x), £ (Tx), f (T%x), . . ., £ (T™x). With the motivation of studying such aver-
ages one can just as well consider

i— fm<is<n+fn-—1

b= (€)
0 otherwise

and this study has been carried out by Pfaffelhuber [1975] for ergodic transformations
and by Jain [1975] for independent, Banach space valued random variables.

In the second section of this paper we prove our main result, Theorem 1, which
provides the desired necessary and sufficient conditions for the ergodic theorem under
the averaging process (2). In the same section we extend the result of Theorem 1 to
the physically interesting case of measure preserving flows.

The third section applies Theorem 1 to the counterexample to Belleys conjecture
and contrasts the present results to those of Pfaffelhuber [1975] and Jain [1975]. The
fourth section contains a result which contrasts two related summability methods of
the type (2) and (3) respectively.

2. Main Results
The basic result of the present paper is the following:
Theorem 1. Let 0 < ¢ (n) < n be a non-decreasing integer valued function and suppose

T is an ergodic measure preserving transformation on a non-atomic measure space. The
sequence

¢ (n)! n By ¥E (T'x) @

converges a. e. for all £ € F if and only if

¢(n)/n——c>0 (5)

n —) OO
Moreﬂover,’if £ is the limit a.e. of ythé sequence (4) then £ = u (E) ae.

Proof. We will first suppose that ¢ = 0 and proceed to construct a set E' € F for which
(4) fails to converge on a set B of measure 1. By our hypothesis (5) we can select a

subsequence n such that Z ¢ (n 3/ n; < 1/2. Next given a sequence e - with € + 0 we
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can apply Rohlin’s theorem (see Halrmos [1956], Theorem 8.1) to obtain for eachj
a set F; €F such that T ’F are disjoint fori =0, 1,2, . .., n; and such that

u U T’F >1—¢;. We now let

d)(ni)'l nj
E= U T', and B,= U T'F
I =0 y ' o) 7

One notes that

uE\qb(n)/n so setting £ = UE
=1

we have uE < 1/2. Also we have

> (1 —e.) (n.-q> (n.)) / (n. + 1) so

for B = lim supB = kﬂ Uk B. it follows that u (B) = 1.
1 7=
Finally we come to the crucial observation. If x € B; then there is an n thh
¢ (n)) <n<njsuch that T"x, T 1x, ..., T"-0(")*1x are elements of
o(n)

u'T ’F Since ¢ (1) < ¢ (n,) this nnphes that T"x Tl .., TPy are ele-
i=0

ments of E C E. We have thus established that for x EB ,thereisann>¢ (n ) so that

1 n .
Z T'x)=1. 6
¢ (n) i=n<¢>(n)+1 XE ( x) ( )

Now if ¢ (n) is unbounded (6) implies that for each x € B we have,

n
lim sup ——=

fy=1 ]
P2P B mgen e TO T ™

But, by the ergodicity of 7, if the series (6) converges on a set P of posmve measure
then the limit of (4) must be equal tou (F) <1 ae.onP,

We have thus established the first half of the theorem under the assumption that
¢ (n) is unbounded.

To deal with the case when ¢ (n) is bounded we note that ¢ (n) must be constant,
say equal to k, for all n = ny for some ng. Then by Rohlin’s theorem one can choose a

k-1 .
set E such that the function f (x) defined by f(x) =k~ _20 Xg (T'x) is larger than 3/4
t:
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on a set of positive measure and less than 1/4 on a set of positive measure. Now to show
(1) fails to converge we note that forn =ng

n , ,
n)~! = Tix) = ¢ (ng) ™" z T'x
o () i=n-¢(n)+1XE (T'x)=¢ (no) i=n-¢(iz°)+1XE (T'x)

n .
=kt T xg(T%)

i=n-k+1

=f (@),

But since T is ergodic one has by the Poincaré recurrence theorem that

lim sup F(T"**1x)>3/4 ae.

>0
and

lim inf £(T"*"1x) < 1/4 ae.

n-roo

Consequently the sequence (1) fails to converge a.e.
To prove the second half of the theorem, we may assume by symmetry that

1 .
im — = Tix) > +3 8
Jim S5 ion. 2o Xg (T'x) > 1 (E) 3)

for some & >0 and a.e. x. By the ergodic theorem one naturally has

tm (n— _ -t n-%n)-l ;
n-l-{?e n—¢m-—1) i=1 Xg (T'x) = u(E) ©)

for a.e. x. Moreover for fixed x we can choose a subsequence #; so that (8) and (9)
hold along n; and such that ¢ (n n;) /n converges to d, d = ¢ # 0. But inequalities (8)
and (9) immediatly show that

hm'-—zxE(T'x)>d<n(E3+a)+(1—d)u(E) - (10)

nl-) o ] l_

This shows that for a.e. x one has

1un—1—>:xE(T"x)>.u(E)+5c | Lo | an

n—o N =1
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and this is in contradiction to the ergodic theorem. We have thus proved that for
¢ # 0 we have a.e. convergence in (4).

The first application of Theorem 1 will be to show that a completely analogous
result holds for ergodic flows.

Theorem 2. Let 0 < ¢ () < 1 be a non-decreasing real valued function, and suppose

T, is an ergodic, measure preserving flow on a non-atomic Lebesque space X. Then as
{ >0

1 ! :
— 2
Y0 t‘i(t) xg (T, x)dt (12)

converges for a.e. x and all £ € F if and only if

tlim o)/ t=c>0. (13)

Proof. If f (x) is a real valued function on [0, 1] we can define a flow on
{x, y): 0<x <1,0<y<f(x)} by allowing the point (x, y) to move vertically at unit
speed until (x, f (x)) and then jump to (Sx, ) where S is an ergodic transformation of
[0, 1]. According to the Ambrose and Kakutani [1942] representation theorem, any
ergodic, measure preserving flow on a Lebesgue space is isomorphic to a flow “built
under a function” as just described. Further by Rudolf’s Theorem [1975] the function
can be assumed to be a step function f (x) which takes on only values & and § where
0 <a<p.

We can thus assume that T, is a flow built under a step function f (x) as above. Now

by Theorem 1 we can construct a set E C [0, 1] such that E has measure less than §
and such that : : :
ol %
- lim
ne (D] n- [¢(n)]+1 XE

xg 6= 1 B

forae. x€[0,1}. NowletE' = {(x,») :x €E, 0<y <f(x)}
If ¢ (£) > o0 as t = =, we easily obtain

1t ;
‘li‘,;rm r—i o Xg' (T,z)>a ‘ : (15)

for ae.z€ {(x ¥):0<x<1,0<y <f(x)}. By the ergodicity of T, if (12) converges
on a set P of positive measure then the limit must be less than the measure of E'forae.
Z €P, Since & can be chosen so that §§ < a, we have by (15) that (12) cannot converge
on any set of positive measure.

To complete the proof we observe that if ¢ (t) is bounded Theorem 2 is proved
essentially as in Theorem 1. Also the sufficiency of (13) for convergence of (12) is
proved almost without change from the proof of Theorem 1. ~
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3. An Application of the Main Result

As was noted in the introduction, one would certainly like to know conditions on
(al.].) such thatf, () = X a,; F(T'x) converges a.e. On the basis of spectral consid-
i=1

erations the following conjecture has been advanced:

fp,@=Zay 21 are uniformly bounded and pointwise convergent on the unit
circle then f,, converges a.e.

An attempt to prove this conjecture was made by Belley [1974] but the question
was settled by Akcoglu and del Junco [1975] where the coice

1
i< +
NoET R
Qpi = (16)
0 otherwise

was shown to be a counter-example to the conjecture. I "
We note here that for the choice (a,,;) given in (2) we have p, (z) = m 2( ) 1z" .
i=n-¢p(n)-

These functions are also bounded uniformly by 1 on |z| = 1 and converge pointwise to
the function on |z| = 1 which is 1 at z =1 and 0 for z # 1. Hence we have that the class

of matrices (a,;) given by (2) provides an uncountable class of counter examples to the
conjecture quoted above.

4. Related Results

As we have already mentioned the summability method (3) represents an average
over a moving block as well as (2). If fin (3) is taken to be an increasing positive func-
tion defined for all real x > 0, the ¢ (1) which gives the corresponding method in 2)
is £ (n), or more precisely [f ! (n)], since f™* (n) is not an integer in general. Thus we
have the two sequences

g 1 f(n)z‘;l-n-l (Ti )
= X X),
non iy P
17
5 = 1 n+¢z(n)-1 (Ti) ( )
n ¢(n) Si=n XE . *

and one might suppose that S,, converges a.e. if and only if S—n converges a.e. In fact
S,, is a subsequence of S, , so the convergence of §,, implies the convergence of S,,.
However the converse is not true as can easily be seen from the following result by
taking T to be the appropriate Bernoulli shift.
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Theorem 3. Suppose X;, i=1,2, ... are ii.d. random variables taking values O and 1
with probability % .Letf(n)=22" and ¢ (n) = [log , log ; n]. Then

1 n+ep(n)-1 1 n+p(n)-1
lim —— £ X;=landlim—— X X, =0, (18)
n—lf?o ¢ (n) = ¢ () i=n :

but

N W O 1
lim - X X,=7.
n—e M i=f(n) 2

Proof: Let nj, = 2K and note that

P{X,=1,n <i<nm +¢(n)—1}=2°0k )>% :

Furthermore since ny. + ¢ () — 1 <mp .y, the events
Ak= {Xz‘= l,nk<i<nk+¢(nk)—-1}

are independent. Thus by the:BoreIQCantelli lemma for independent events one has
P (A i.0) = 1, which shows that the first equality in (17) holds. The second equality
of (17) is proved identically. To prove the third equality note that

fln)+n-1
PUS -2 X 1>em= P{I——EX!>€n} =p,
i=f(n)

Since the p,, are summable by the usual estimates (e.g. Bahador, Rao [1960]) one has
the third equality by the (unrestricted) Borel-Cantelli lemma.

A most notable virtue of the summablhty method (b,,;) of (3) is the number of
occasions it produces convergence. This is reflected in a small way by (17), and more
powerfully by the result of Jain [1975], where simple necessary and sufficient conditions
are given for independent Banach space valued random variables to converge a.€. under
(B)-

nThe possibility that the functions X; =xg (T’x) constructed in Theorem 1 are in-
dependent cannot be ruled out a priori. Thls would, in fact, correspond to the situation

where T is a Benoulli shift with respect to the partition (E, E€ ) Nevertheless, we have
the followmg fact.

R n. P
Theorem 4. If ¢ (n)/log n->o aspn > and 1 z Xg (T*x) fails to con-
¢ (n) i=n-¢p(n)+1 .
verge ae., then the functions X XE (T%x) cannot be independent.
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Proof WeletY;=X;—u (E) and note Y, are bounded with mean 0. We will suppose
for now that the X, are independent. By elementary estimates of the binomial distri-
bution, we have

13
Wi T Y IZeg(m)<ce® (19)
i=n-p(n)+1

for some constants C and & > 0, (for even more precise estimates see (Bahadur, Rao
[1960] or Cramer [1938]). Now, easy estimates and the Borel-Cantelli lemma show

that Xg (Tix) converges.

z
6 () i=n-p(m)+1 )
One reason for noting this property of the xg (T'x) is to contrast the present
method with that of Pfaffelhuber [1975], where the following is proved:

If ¢ (n + 1) — ¢ (n) > n for infinitely many then there is a measure space
(2,F,p) a_nd an ergodic, measure preserving transformation T sucht that
Z b,; f (T*x) converges at most on a set of p measure 0.

This result was obtained by taking T so that f (T*x) are independent with finite mean
and infinite variance. The particularly simple choice ¢ (n) = n? will thus provide an
example where the X; = xg (T’x) of Theorem 1 cannot be taken independent and the

procedure of Pfaffelhuber [1975] be to take the X; =f (T'x) independent.

5. A Valuable Problem

One is more often confronted with a plethora of problems than a paucity. We are
fortunate in the present circumstance to be able to pinpoint a single problem of par-
ticular significance.

Quite without hesitation one can now point to the value of providing necessary and
sufficient conditions for the a.e. convergence of Z a,; f (T'x). The results given here,
and contrasted to earlier ones, show that this problem coitains cases of variety and
interest. In fact, the purpose of this report is 'well served, if greater attention is brought
to focus on this central open problem. ‘ s o
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