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Abstract: We show how martingale techniques (both old and new) can be used
to obtain otherwise hard-to-get information for the moments and distributions
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1.1 Introduction

The martingale method for waiting times for patterns in an independent se-
quence was pioneered in Li (1980), and in the intervening time many variations
on the original idea have been developed. Our first aim here is to survey these
developments using the unifying language of gambling teams. We further show
how the martingale method can be extended to cover a great variety of prob-
lems in applied probability, including the occurrence of patterns in Markov
sequences. One of the key intermediate steps is the development of a clear un-
derstanding of the distribution of the first time of occurrence of a pattern from
a finite set of patterns. It is this general problem that leads to methods that
are applicable to the theory of scan statistics.
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1.2 Patterns in an Independent Sequence

By {Zn, n ≥ 1} we denote a sequence of independent identically distributed
random variables with values from a finite set Ω = {1, 2, ..., M} which we call
the process alphabet. To specify the distribution of Zn, we then set

p1 = P(Zn = 1) > 0, p2 = P(Zn = 2) > 0, ..., pM = P(Zn = M) > 0.

By a pattern A we mean a finite ordered sequence of letters a1a2 · · · am over
the alphabet Ω. The random variable that is of most interest here is τA, the
first time that one observes the pattern A as a run in the sequence {Zn, n ≥ 1}.
Our main goal is to provide methods — and often explicit formulas — for the
expected value, the higher moments, and the probability generating function of
τA.

1.2.1 A gambling approach to the expected value

We begin with a construction that originates with Li (1980) and which we frame
as a gambling scheme. Consider a casino game that generates the sequence
{Zn, n ≥ 1}, say as the out-put of a biased roulette wheel. Next consider a
sequence of gamblers who arrive sequentially so that the n’th gambler arrives
right before n’th round when Zn is generated. We also assume that this casino
pays fair odds, so that a dollar bet on an event that has probability p would
pay 1/p dollars to a winner (and zero to a loser).

Now we consider the strategy that is followed by the n’th gambler, the one
who arrives just before the n’th round of play. For specificity, we first consider
the gambler who enters just before the first round. This gambler bets one dollar
that Z1 = a1. If Z1 is not a1 the gambler stops betting after having lost one
dollar. If Z1 yields a1, the gambler wins 1/P(Z1 = a1). He then continues to
play, now betting his entire capital on Z2 = a2. If he loses, he stops gambling;
otherwise he increases his bet by the factor 1/P(Z2 = a2). The gambler then
continues in the same fashion until the entire pattern A is exhausted or until
he has lost his original dollar, which ever comes first.

If the first gambler is very lucky and pattern A is observed after m rounds,
the gambler stops and has total winnings of

(
P(Z1 = a1)P(Z2 = a2)× · · · ×P(Zm = am)

)−1

dollars. Otherwise, the first gambler simply loses his initial bet of $1.
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In the meanwhile, additional gamblers enter the casino at successive times
2, 3, ... and each of these gamblers uses the same strategy that was used by the
first gambler. That is, he bets successively on the letters of the pattern, each
time “letting his stake ride.” We then let Xn denote the total net gain of the
casino at the end of the n’th round of play. The game was fair at each stage,
so the stochastic process {Xn, σ(Z1, ..., Zn)} is a martingale.

Now consider the random variable XτA ; this is the casino’s net gain at the
time when the pattern A is first observed. This random variable is well-defined
since τA is finite with probability one. In fact, it is easy to show that τA is
bounded by a geometrically distributed random variable, so by Wald’s lemma
(or the optional stopping theorem, Williams (1991, p. 100)), we have the basic
relation

E(XτA) = 0.

Fortunately, we know more about XτA . Specifically, we know that

XτA = τA −W,

where W is the total amount of money that has been won by gamblers by time
τA. The key observation is that W is not a random variable. The value of W
is fully determined by the way in which the pattern A overlaps with itself.

Moreover, it is reasonably easy to calculate W . For a gambler to have
any capital left when pattern A is first observed, that gambler needs to still be
gambling, so in particular the gamblers who entered the game before τA−m+1
must have all lost their dollar. The gambler who enters the game at time
τA−m+1 is the lucky guy who wins the most, but also some of those gamblers
who entered after him may have some amount in their pockets.

The total amount of money that these few players have is represented by
a certain measure of the overlapping of pattern A with itself. To describe this
measure, we first consider 0 ≤ i, j ≤ m and set

δij =

{
1/P(Z1 = ai), if ai = aj ,
0, otherwise.

With this notation we then find the explicit formula

W = δ11δ22 · · · δmm + δ21δ32 · · · δmm−1 + · · ·+ δm1, (1.1)

so from our earlier observation that E(XτA) = 0, we find

E(τA) = δ11δ22 · · · δmm + δ21δ32 · · · δmm−1 + · · ·+ δm1. (1.2)

The relation (1.2) really is quite explicit, and it provides an easily applied
answer to our first question, say as one sees in the following:

Example 1.2.1 Let Ω = {1, 2} and consider the pattern 1121 of length 4. We
then have

E(τA) = W = (p1 × p1 × p2 × p1)−1 + (p1)−1
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1.2.2 Gambling on a generating function

By a natural modification of the preceding method, one can obtain a formula
for the generating function of τA. The trick is to change the initial bet for each
gambler. Now instead of $1, the n’th gambler starts his betting by placing a
bet of size αn, where 0 < α < 1. Let ατAW (α) be the total winnings of all
the gamblers by time τA. As before, we let Xn denote the casino’s gain at the
end of the n’th round, and as before {Xn} is a martingale. For convenience, we
denote the total accumulated winnings of the gamblers when the pattern A is
first observed by ατAW (α). Again, the key is that we have a nice relation for
the casino’s net gain XτA . Specifically, we have

XτA = α1 + α2 + · · ·+ ατA − ατAW (α)

= α
ατA − 1
α− 1

− ατAW (α)

= ατA

(
α

α− 1
−W (α)

)
− α

α− 1
.

As in previous subsection, W (α) is not a random variable, and it has an explicit
representation:

W (α) = δ11δ22 · · · δmm−1/αm−1 + δ21δ32 · · · δmm−1/αm−2 + · · ·+ δm1/1.

The optional stopping theorem implies

0 = E(XτA) = E(ατA)
(

α

α− 1
−W (α)

)
− α

α− 1
.

When we solve this relation for E(ατA), we obtain

E(ατA) =
(

1 +
1− α

α
W (α)

)−1

.

Again, this is an explicit useable formula, as one sees in the following example.

Example 1.2.2 Let Ω = {1, 2} and again consider the pattern 1121. One then
has

W (α) =
α−3

p3
1p2

+
1
p1

,

so by substitution one has

E(ατA) =
p3
1p2α

4

1− α + α3(1− p2α)p2
1p2

= p3
1p2α

4 + p3
1p2α

5 + p3
1p1α

6 + p3
1p2(1− p2

1p2)α7 + o(α7).

As a check, one should note that this formula can be used to confirm the
calculation of the mean from our first example:

∂E(ατA)
∂α

∣∣∣
α=1

=
1

p3
1p2

+
1
p1

= EτA.
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1.2.3 Second and higher moments

In theory, the ability to compute the probability generating function also gives
one the higher moments, but in practice it is often useful to have an alternative
method. Here it also seems instructive to show how the method of sequential
gamblers can be used to find E(τ2

A).
This time the trick is that the gambler who joins the game in the n’th round

will bet n dollars. If, as always, we let Xn denote the casino’s net gain after
n rounds, then Xn is again a martingale. Moreover, in this case one can check
that at the stopping time τA we have

XτA = 1 + 2 + · · ·+ τA

−(τA −m + 1)δ11δ22 · · · δmm

−(τA −m + 2)δ21δ32 · · · δmm−1

· · ·
−(τA −m + m)δm1

= 1 + 2 + · · ·+ τA − τAW −N

=
τ2
A + τA

2
− τAW −N,

where

N = −δ11δ22 · · · δmm(m− 1)− δ21δ32 · · · δmm−1(m− 2)− · · · − δm10.

It is now time to apply the optional stopping theorem, but in this case the
increments of Xn are no longer uniformly bounded, so a more refined version
of Doob’s optional stopping theorem is needed. Here we can use the stopping
time theorem of Shiryaev (1995, p. 485) since we have Xn = O(n2) and since
P(τA > n) decays at an exponential rate. The application of this optional
stopping theorem leads us to

0 = E(XτA) = E(τ2
A)/2 + E(τA)/2−WE(τA)−N.

Solving this equation for E(τ2
A) gives us

E(τ2
A) = (2W − 1)E(τA) + 2N = 2W 2 −W + 2N,

and as a corollary we have the nice formula

Var(τA) = W 2 −W + 2N.

Naturally, variations of this technique can be applied to obtain formulas for
any moment. For example, to find an expression for the third moment, the n’th
gambler’s bet should now be taken to be n2.
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Example 1.2.3 For the traditional sample space Ω = {1, 2} and the pattern
1121 we now find

N = − 3
p1 × p1 × p2 × p1

,

and

Var(τA) =
(

1
p1

+
1

p3
1p2

)2

− 1
p1
− 7

p3
1p2

.

Here it is interesting to note that when either p1 → 0 or p2 → 0 one has the
limit relation

E(τA)
Var(τA)1/2

→ 1.

Moreover, there is an intuitive explanation for this limit. When either p1 → 0
or p2 → 0 the occurrence of the pattern 1121 becomes a rare event. By the
clumping heuristic [c.f. Aldous (1989)], one then expects the distribution of τA

to be well approximated by an exponential distribution, and for an exponential
X we have the equality E(X) =

√
Var(X).

1.3 Compound Patterns and Gambling Teams

In many important applications — such as scans — one is concerned about the
waiting time until the first occurrence of one out of many patterns from a finite
list of patterns. Here we call a finite collection of K patterns {A1,A2, · · · , AK}
a compound pattern and denote it simply by A. Now, if τAi denotes the first
time until the pattern Ai has been observed as a completed run in the i.i.d.
series Z1, Z2, ... then the new random variable of interest is

τA = min{τA1 , ..., τAK
}.

In words, τA is the first time when we observe a pattern from A, and one
should note that without loss of generality we assume that in A no pattern is
a subblock of another.

Gerber and Li (1981) studied compound patterns with help of an appropri-
ate Markov chain imbedding. We use an alternative method that has several
benefits. In particular, the new method gives us clear hints on how we should
extend the martingale approach to the case of Markov dependent trials. It also
guides us when we consider the case of highly regular patterns, such as those
associated with scans or structured motifs.



Martingale Methods 7

1.3.1 Expected time

It seems natural in the case of compound pattern A to introduce K gambling
teams. The gamblers from each gambling team will bet on a pattern from the
list A. But now the problem is that the total amount of winnings of all the
gamblers at time τA is a random variable. It depends on how the game is
stopped.

However, if one knows which simple pattern from A triggered the stop,
then the winnings of a gambling team are not random. This amount is fully
determined by overlapping of two patterns: (1) the pattern associated with the
gambling team, and (2) the pattern associated with the ending scenario. An
explicit expression for this amount will be given a bit later.

As we will demonstrate in a moment it is beneficial to allow every gambling
team to have their own size for an initial bet. More specifically, let yj will be
an amount with which the gambler from the j’th gambling team (the team that
bets on Aj) starts his betting. Let Wijyj be total winnings of the j’th gambling
team in case when game was ended by the i’th scenario (i.e., the pattern Ai is
observed at time τA). If Xn is as before the net casino gain, then it is clear that
it forms a martingale, because a weighted sum of martingales is a martingale.
The stopped martingale XτA is given by

XτA =
K∑

j=1

yjτA −
K∑

i=1

K∑

j=1

Wijyj1Ei ,

where 1Ei is the indicator that the game is ended by the i’th scenario.
There is an analogy between the way gambling teams are used here and the

notion of hedging in finance. The trick, analogous to arbitrage constructions,
is to choose weights yj in such a way that the total winnings of all the teams∑K

j=1 Wijyj is equal to 1 regardless of an ending scenario. Now, if the vector
{yj}1≤j≤K is a solution of the linear system

K∑

j=1

Wijyj = 1, 1 ≤ i ≤ K, (1.3)

then the stopped martingale is given by

XτA =
K∑

j=1

yjτA − 1.

This puts us on familiar ground. By another application of the optional stopping
theorem we obtain a computationally effective representation of E(τA).
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Theorem 1.3.1 If vector {yj}1≤j≤K solves the linear system (1.3), then ex-
pected value of τA is given by

E(τA) =
1∑K

j=1 yj

.

Here we should make two technical comments. First, in the course of their
Markov embedding method, Gerber and Li (1981) showed that the matrix Wij

is nonsingular if no pattern from A is a subpattern of another. Consequently,
the solution {yj}1≤j≤K always exists.

Second, there is an explicit formula for Wij . For example, consider two
patterns A = a1a2 · · · am and B = b1b2 · · · bl. Next, we consider the measure of
t-overlap of a suffix of A with a prefix of B that is given by the formula

δt(A,B) =





1∏t
s=1 P(Z1 = bs)

, if b1 = am−t+1, b2 = am−t+2, ..., bt = am,

0, otherwise.

Now, if the j’th gambling team bets on A, and the i’th ending scenario is
associated with pattern B then

Wij =
min(m,l)∑

t=1

δt(A,B).

1.3.2 The generating function and the second moment

The method of gambling teams can be used to obtain a formula for the prob-
ability generating function E(ατA), 0 < α < 1, for any compound pattern A.
The solution is a little more complicated, but it mainly calls for the systematic
elaboration of ideas that we have already seen. Here we consider the same
number of gambling teams and ending scenarios that we used before, but now
the gambler from the j’th team who joins the game in the n’th round will place
an initial bet of size of yjα

n where the weights {yj}1≤j≤K will be chosen later.
Let Wij(α)yjα

τA denote the winnings of the j’th gambling team when the
game ends by the i’th ending scenario. If Xn denotes the martingale that gives
us the casino’s net gain at time n, then the stopped martingale XτA is given by

XτA = α
ατA − 1
α− 1

K∑

j=1

yj −
K∑

i=1

K∑

j=1

Wij(α)yjα
τA1Ei ,

where as before 1Ei is the indicator of the i’th ending scenario.
Again, the key fact is that Wij(α) is not a random variable. If the j’th

gambling team bets on pattern A, and the i’th ending scenario is linked with
pattern B, then

Wij(α) =
min(m,l)∑

t=1

δt(A,B)α1−t, (1.4)
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where δt(A,B) is define as in the preceding section. If weights {yj(α)}1≤j≤K

are chosen such that
K∑

j=1

Wij(α)yj(α) = 1, 1 ≤ i ≤ K, (1.5)

then the stopped martingale XτA is given by

XτA = α
ατA − 1
α− 1

K∑

j=1

yj(α)− ατA .

After taking the expectation, a little algebra leads one to a strikingly simple
formula for the generating function for τA.

Theorem 1.3.2 If the vector {yj(α)}1≤j≤K solves the linear system (1.5), then

E(ατA) = 1− 1
1 +

∑K
j=1 yj(α)α/(1− α)

.

We can use Theorem 1.3.2 to obtain the higher moments of τA, but it is also
possible to use the method of gambling teams more directly. For example, to
compute the second moment of τA we ask the gambler from the j’th team that
starts gambling in n’th round to place an initial bet of yj + nzj dollars on the
first letter of Aj and to continue betting his fortune on the subsequent letters
of Aj until he either loses or until some gambler observes a pattern from A.

This time we write the winnings of the j’th team in the case of the i’th
ending scenario by the sum

Wijyj + τAWijzj + Nijzj

where Wij is as before but where Nij is a new quantity for which we will give
an explicit formula shortly. The casino’s net gain at time XτA then is given by

XτA =
K∑

j=1

yj
τA(τA + 1)

2
+

K∑

j=1

zjτA

−
K∑

i=1




K∑

j=1

WijyjτA +
K∑

j=1

Nijyj +
K∑

j=1

Wijzj


 1Ei .

Now, if weights {yj}1≤j≤K and {zj}1≤j≤K are such that

K∑

j=1

Wijyj = 1, 1 ≤ i ≤ K,

(1.6)
K∑

j=1

(Nijyj + Wijzj) = 1, 1 ≤ i ≤ K,
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then the stopped martingale is equal to

K∑

j=1

yj
τA(τA + 1)

2
+

K∑

j=1

zjτA − τA − 1.

After the application of the optional stopping theorem we obtain a formula
for the second moment.

Theorem 1.3.3 If {yj}1≤j≤K and {zj}1≤j≤K solve the linear system (1.6),
then

E(τ2
A) =

1 + (1−∑K
j=1 zj −

∑K
j=1 yj/2)E(τA)

∑K
j=1 yj/2

.

As we mentioned above, Nij is just another measure of the overlap of two
patterns. Specifically, if the j’th gambling team bets on pattern A and the i’th
ending scenario corresponds to pattern B, then we have the explicit recipe:

Nij =
min(m,l)∑

t=1

δt(A,B)(1− t).

Here one should also note that from the representation (1.4) for Wij(α) one
also has the nice alternative formulas

Wij(1) = Wij ,
∂Wij(α)

∂α

∣∣∣
α=1

= Nij .

As before, an example shows that these representations are all quite explicit.

Example 1.3.1 As usual we take Ω = {1, 2}, but now we consider the com-
pound pattern A = {11, 121}. If we further assume that

P(Z1 = 1) = P(Z1 = 2) = 1/2,

then we find

Wij =

[
6 2
2 10

]
,

Wij(α) =

[
4α−1 + 2 2

2 8α−2 + 2

]
,

and

Nij =

[
−4 0

0 −16

]
.

The theorems of this section then give us the concrete answers:

E(τA) =
8
3
, and Var(τA) = 10,
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and

E(ατA) =
α2(α + 2)

8− 4α− α3
=

α2

4
+

α3

4
+

α4

8
+

3α5

32
+

5α6

64
+

7α7

128
+ o(α7).

1.4 Patterns in Markov Dependent Trials

Gambling teams provide a handy way to deal with many questions about se-
quences of independent symbols, but, when the symbols are generated by a
Markov chain, one finds that the method of gambling teams is especially pow-
erful — even though some new subtleties are introduced. For example, in the
Markov case one typically needs to introduce multiple teams of gamblers who
gamble according to different rules. To illustrate the basic ideas in the simplest
non-trivial case, we first apply the gambling team method to the calculation of
the expected time until one observes a specified pattern in a sequence generated
by a two-state Markov chain.

1.4.1 Two-state Markov chains and a single pattern

In next two sections we take {Zn, n ≥ 1} to be a Markov chain with state space
Ω = {1, 2}. We suppose the chain has the initial distribution P(Z1 = 1) = p1,
P(Z1 = 2) = p2 and the transition matrix

[
p11 p12

p21 p22

]
.

Here, as usual, pij is shorthand for P(Zn+1 = j |Zn = i). Given a pattern
A = a1a2 · · · am, we then let τA denote the first time that the pattern is observed
in the sequence generated by the Markov chain.

Next, we need to make explicit the Markov version of a fair casino where a
gambler who bets on the event {Zn+1 = a} is assumed to have first observed
Zn. Here, if one first observes Zn = 1, then the bettor of $1 dollar on the
event {Zn+1 = a} receives p−1

1a dollars if Zn+1 = a occurs; otherwise the bettor
receives 0. Similarly, if one first observes Zn = 2 and then bets that Zn+1 = a
the payoffs are p−1

2a and 0 respectively.
There are now three distinct scenarios under which the pattern A can be

observed. Either

• the pattern A occurs at the beginning of the sequence {Zn, n ≥ 1}, or

• the pattern 1A occurs at the end of the sequence, or
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• the pattern 2A occurs at the end of the sequence.

The probability of the first scenario is easy to find, but to determine the indi-
vidual probabilities of the last two scenarios would be more subtle. Instead we
will use another gambling team trick to avoid such calculation. The new trick
is to consider two gambling teams and to allow by teams to bet differently on
the pattern A. The added flexibility will permit us to set things up so that
teams total winnings are known if we know how the game ended.

For each time n two new gamblers are ready to take action, one from each
team. The gamblers now follow the two rules:

1. For each n a gambler from the first team arrives before round n and
watches the result of the n’th trial. He then bets y1 dollars on the first
letter of the sequence A and continues to bet his accumulated winnings on
the successive letters in the successive rounds until either he loses or until
the patten A is observed, either by himself or by some other gambler from
one of the two teams. We call the gamblers on this team straightforward
gamblers.

2. Gamblers from the second team bet differently. If Zn 6= a1 then the
n’th gambler from the second team bets y2 dollars on the round n + 1
on the first letter of the pattern A. This gambler then continues to “let
his fortune roll” until either he loses or until A is observed, either by
himself or by some other gambler. On the other hand, if Zn = a1 then
this gambler (intelligently!) bets y2 dollars on a2 on round n+1 and then
he continues to bet on the remaining letters of the pattern a3 · · · am until
he loses or until the pattern A is observed by himself or by some other
gambler. We call the gamblers of the second team smart gamblers.

Now, we let Wijyj , i = 1, 2, 3, j = 1, 2 be amount of money that the j’th
team wins if the game ends in the i’th scenario. It is vital to note that the
deterministic quantities Wij are easy to compute. The stopped martingale XτA

that represents the net casino gain at time τA is given by

XτA = (y1 + y2)(τA − 1)−
3∑

i=1

2∑

j=1

Wijyj1Ei ,

where 1Ei is the indicator of i’th ending scenario. To see this note that no
money was bet on the first round, and y1 + y2 was the amount bet by each of
the first time bettors at each of the subsequent rounds.

Now, we assume that we can find {yj}1≤j≤2 such that

2∑

j=1

Wijyj = 1, 2 ≤ i ≤ 3.
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The existence of y1 and y2 depends on the computed values {Wij}, but they
will exist except in isolated, degenerate cases. The stopped martingale is then
given by the simpler formula

XτA = (y1 + y2)(τA − 1)− (W11y1 + W12y2)1E1 − 1Ec
1
,

where 1Ec
1

is the indicator of the complement of the 1st ending scenario. Taking
the expectation and employing the optional stopping theorem we obtain

0 = (y1 + y2)(E(τA)− 1)− π1(W11y1 + W12y2)− (1− π1),

where π1 is the probability of the first scenario. As we noted earlier, it is always
easy to compute π1, so at the end of the day one just solves for E(τA) to find

E(τA) = 1 +
π1(W11y1 + W12y2) + (1− π1)

y1 + y2
.

Example 1.4.1 To see that this is indeed an explicitly computable formula,
consider the pattern A = 121. The straightforward gamblers start with a
fortune of y1 dollars and successively bet their accumulated fortunes on the
successive values of 121. On the other hand, the smart gamblers start with
y2 dollars and bet their accumulated fortune one the successive values of 121
if they observed 2 before placing their first bet, but they bet their money on
the successive values of 21 if they observed 1 before placing their first bet. The
three scenarios are (1) the game ends with 121 at the beginning, or (2) the game
ends with 2121 at the end of some indeterminate number of rounds, or (3) the
game ends with 1121 at the end of some indeterminate number of rounds. The
3× 2 (scenarios by teams) matrix {Wij} is then given by




1
p21

1
p12p21

+ 1
p21

1
p21p12p21

+ 1
p21

1
p21p12p21

+ 1
p12p21

+ 1
p21

1
p11p12p21

+ 1
p21

1
p12p21

+ 1
p21




.

To determine the initial bet sizes y1 and y2 we then just solve the relations

y1

( 1
p21p12p21

+
1

p21

)
+ y2

( 1
p21p12p21

+
1

p12p21
+

1
p21

)
= 1,

y1

( 1
p11p12p21

+
1

p21

)
+ y2

( 1
p12p21

+
1

p21

)
= 1,

to find

y1 =
p11p12p21

p12 + p21 + p12p21
and y2 =

p12p21(p21 − p11)
p12 + p21 + p12p21

.
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The probability π1 of the first scenario is just p1p12p21, so after substitution
and simplification we obtain the pleasingly succinct formula

E(τA) = 1 +
p2

p21
+

1
p2
21

+
1

p12p21
.

1.4.2 Two-state Markov chains and compound patterns

The next natural challenge is to compute the expected value of τA the fist time
that one observes a pattern from the set A = {A1, A2, · · · , AK}. The gambling
teams method again applies, but one more nuance emerges. In particular, it is
useful to refine the split notion of ending scenarios into initial-ending scenarios
and later-ending scenarios. Specifically, we consider K initial-ending scenarios
where in the i’th initial-ending scenario the pattern Ai, 1 ≤ i ≤ K occurs in
the beginning of the sequence {Zn, n ≥ 1}, and we consider 2K later-ending
scenarios where either the pattern 1Ai for some 1 ≤ i ≤ K occurs or else the
pattern 2Ai for some 1 ≤ i ≤ K occurs after some indeterminate number of
rounds.

This gives us complete coverage of how the one of the patterns from A can
appear; in fact the coverage is over complete since it is possible that some of
the later-ending scenarios need not be achievable as final blocks of the Markov
sequence at time τA. For example, if A = {212, 22}, then doubling step formally
gives us four later-ending scenarios: {· · · 1212, · · · 2212, · · · 122, · · · 222}, but 221
and 222 cannot occur as a substring of the string Z1, Z2, ..., ZτA . Similarly, if
the initial collection is A = {21, 111}, then the only observable later-scenarios
are {· · · 121, · · · 221}.

Thus, one typically needs to do some cleaning of the initial list of later-
ending scenarios, and, if a later-ending scenario cannot be observed in a se-
quence that ends at time τA, then the scenario is eliminated from the original
list of 2K later-ending scenarios. The final list of ending scenarios is then the
set of initial-ending scenarios and later-ending scenarios that have not been
eliminated. We let N ′ denote the number of later-ending scenarios in the final
list.

Now we introduce N ′ gambling teams, one for each of the later-ending sce-
narios. The rule is simple. If in the final list of scenarios there are two later-
ending scenarios associated with the pattern Ai, then we introduce two gambling
teams. One bets on Ai in a straightforward way, and one team bets on Ai in
the smart way of the previous section. On the other hand, if in the final list we
have only one later-ending scenario associated with the pattern Ai we will use
only one gambling team of straightforward gamblers. Finally, if there are no
later-ending scenarios in the final list associated with Ai, no gambling teams
linked with Ai are needed.

We let Xn denote the casino’s net gain at time n. We take yj , 1 ≤ j ≤
N ′ to be the initial bet with which a gambler from the j’th gambling team
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starts his betting, and we let Wijyj , 1 ≤ i ≤ K be total winnings of the j’th
gambling team in the case of the i’th initial-ending scenario. Finally, we let
yjWij , K + 1 ≤ i ≤ K + N ′ be total winnings of the j’th gambling team in
the case when the game is ended by the i’th later-ending scenario. Then the
stopped martingale XτA is given by

XτA =
N ′∑

j=1

yj(τA − 1)−
K∑

i=1

N ′∑

j=1

Wijyj1Ei −
K+N ′∑

i=K+1

N ′∑

j=1

Wijyj1Ei ,

where Ei is the event that the i’th scenario occurs. Again, the Wij are not
random, and, parallel to our earlier calculations, we assume that one can find
{yj}1≤j≤N ′ such that

N ′∑

j=1

Wijyj = 1, for all K + 1 ≤ i ≤ K + N ′. (1.7)

We then have the representation

XτA =
N ′∑

j=1

yj(τA − 1)−
K∑

i=1

N ′∑

j=1

Wijyj1Ei −
K+N ′∑

i=K+1

1Ei ,

so the optional stopping theorem tells us that

0 = E(XτA) =
N ′∑

j=1

yj(E(τA)− 1)−
K∑

i=1

N ′∑

j=1

Wijyjπi − (1−
K∑

i=1

πi),

where πi is the probability that the i’th initial-ending scenario occurs. Solv-
ing this equation, we obtain a slightly untidy but still completely computable
formula for E(τA).

Theorem 1.4.1 If {yj}1≤j≤N ′ solves the linear system (1.7), then

E(τA) = 1 +
(1−∑K

i=1 πi) +
∑K

i=1 πi
∑N ′

j=1 yjWij∑N ′
j=1 yj

. (1.8)

Example 1.4.2 For the collection of patterns A = {11, 212} we find after
the doubling and cleaning steps that the final list of later-ending scenarios is
{211, 1212, 2212}. Together with our initial-ending scenarios, so we have a total
of five ending scenarios which we order as

{11, 212, 211, 1212, 2212}.

The scenario-by-team win matrix {Wij} is then given by
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


1
p11

0 0

0 1
p12

1
p21p12

+ 1
p12

1
p21p11

+ 1
p11

0 0

0 1
p12p21p12

+ 1
p12

1
p12p21p12

+ 1
p21p12

+ 1
p12

0 1
p22p21p12

+ 1
p12

1
p21p12

+ 1
p12




,

and, after solving the corresponding linear system, we find that the appropriate
initial team bets are given by

y1 =
p21p11

1 + p21
, y2 =

p22p21p12

p21 + p12 + p21p12
, y3 =

p21p12(p12 − p22)
p21 + p12 + p21p12

.

The probabilities π1 and π2 that 11 and 212 are initial segments of the process
{Zn, n ≥ 1} are given by p1p11 and p2p21p12 respectively, so the formula (1.8)
leads one to the following result

E(τA) = 2 + p1p12 +
1− p1p11

p21
,

which we see was not so complicated after all.

Finally, one should note that when a martingale method for the expected
waiting time is developed, it is usually straightforward to extend the method to
obtain formulas for higher moments or generating functions. We have already
seen how this can be done in the independent model, and Glaz et. al. (2006)
give a more detailed exposition that covers the case of the two-state Markov
chains.

1.4.3 Finite state Markov chains

Now consider a temporally homogeneous Markov chain {Zn, n ≥ 1} with a finite
state space Ω = {1, 2, ..., M}, initial distribution P(Z1 = m) = pm, 1 ≤ m ≤ M ,
and transition matrix P = {pij}1≤i,j≤M where as always

pij = P(Zn+1 = j|Zn = i).

We let A = {A1, A2, ...,AK} denote a compound pattern, and let

τA = min{τA1 , ..., τAK
}

denote the first time when we observe a pattern from A in the Markov sequence.
We also assume that the Markov chain has the following normalization and
regularization properties:
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• We assume that no pattern of A contains another pattern of A as a
subpattern. This property holds without loss of generality since if one
pattern is a subpattern of another the longer one can be excluded from
our list.

• We assume that P(τA = τAi) > 0 for all 1 ≤ i ≤ K. If to the contrary
one were to have P(τ = τAi) = 0 for some i then Ai could simply be
excluded from the list. This possibility is excluded by the first assumption
for independent sequences, but for Markov sequences it often needs our
attention. For example, if the pattern Ai contains subpattern km and
pkm = 0, then Ai can not happen as a run of {Zn, n ≥ 1}.

• We assume that P(τA < ∞) = 1. If the patterns of A all contain transient
states this condition can easily fail even for a finite Markov chain. Here
we should note that for finite Markov chains the basic finiteness condition
P(τA < ∞) = 1 already implies the formally stronger condition E[τA] <
∞.

The Multi-state Chain Martingale Construction

When M = |Ω| > 2 the critical martingales require a more elaborate de-
scription. We begin by decomposing the possible occurrence of a single pattern
Ai into an initial list of 1 + M + M2 ending scenarios:

• Either the sequence Ai occurs as an initial segment of {Zn, n ≥ 1}, or

• for some 1 ≤ k ≤ M , the pattern kAi occurs as an initial segment of the
sequence {Zn, n ≥ 1}, or

• for some pair (k, m), 1 ≤ k,m ≤ M , the pattern kmAi occurs after some
indeterminant number of rounds.

The first 1 + M ending scenarios are called initial scenarios. The last M2

scenarios are called later scenarios. Since we have K patterns, we have an
initial list of (1 + M + M2)K scenarios.

For every later scenario associated with the pattern kmAi we introduce a
team of gamblers that we call the kmAi-gambling team. Gambler n + 1 from
the kmAi-gambling team arrives before round n + 1 to observe the result of
n’th trial, Zn.

This gambler then starts his betting. If Zn = k he bets a certain amount of
money (which is the same for all gamblers from the kmAi-gambling team) on
the pattern mAi. If Zn 6= k he bets on Ai. Here, of course, by “betting $1 on
the pattern A = a1a2 · · · am, when Zn = a0” we mean the following:

• After observing Zn the gambler bets a dollar that the next trial yields
a1. If Zn+1 6= a1 he loses his dollar and leaves the game. If Zn+1 = a1,
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he gets 1/pa0a1 . Note that the odds are fair. If he wins he continues his
betting.

• Now he bets his entire capital that the n+2 round yields a2. If it is a2 he
increases his capital by factor 1/pa1a2 , otherwise he leaves the game with
nothing. He continues to bet his full fortune on the successive letters of
the pattern A until either the pattern A is observed, or until some other
gambler has succeeded.

Now recall that it can happen that some of the scenarios on our initial
list simply cannot occur before the waiting time τA. Moreover, some ending
scenarios are impossible simply because some new patterns associated with
some ending scenarios cannot be observed at all in the Markov chain. Thus we
need to clean the initial list of ending scenarios.

Those scenarios that cannot occur at all and those that can occur only
after the time τA must be eliminated. Let K ′ denote the number of initial
scenarios, and let N ′ denote the number of later scenarios that we have in our
list after cleaning. For each j’th later scenario in the new list, we introduce
the corresponding gambling team, and we assume that the inial amount with
which the gamblers of the j’th team start their betting is yj . The values {yj}
will be chosen later.

Let yjWij , 1 ≤ i ≤ K ′ + N ′, 1 ≤ j ≤ N ′ be the amount of money that the
j’th team wins in the i’th ending scenario. Let Xn denote the casino’s net gain
from all teams at time n. The sequence {Xn} forms a martingale with respect
to the filtration generated by the Markov chain {Zn, n ≥ 1}. Indeed, for every
gambler in the game the bet size at a current round is fully determined by
previous rounds, and odds—as we have seen—are fair. By bookkeeping, one
finds for the stopped martingale XτA that

XτA =
N ′∑

j=1

yj(τA − 1)−
K′∑

i=1

N ′∑

j=1

Wijyj1Ei −
K′+N ′∑

i=K′+1

N ′∑

j=1

Wijyj1Ei ,

where Ei is the event that the i’th scenario occurs. Here, again Wij is not a
random variable; it depends only on overlap properties of the pattern associated
with the i’th scenario and the pattern associated with the j’th gambling team.

If we now assume that we can find {yj}1≤j≤N ′ such that

N ′∑

j=1

Wijyj = 1, for all K ′ + 1 ≤ i ≤ K ′ + N ′, (1.9)

then XτA has the more tractable representation

XτA =
N ′∑

j=1

yj(τA − 1)−
K′∑

i=1

N ′∑

j=1

Wijyj1Ei −
K′+N ′∑

i=K′+1

1Ei .
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Since {Xn}n≥1 has bounded increments and E[τA] < ∞, the Doob’s optional
stopping theorem gives us

0 = E(XτA) =
N ′∑

j=1

yj(E(τA)− 1)−
K′∑

i=1

N ′∑

j=1

Wijyjπi − (1−
K′∑

i=1

πi),

where πi is the probability that the i’th initial scenario occurs. Solving the
equation with respect to E(τA) we obtain the main result of this section.

Theorem 1.4.2 If {yj}1≤j≤N ′ solves the linear system (1.9), then

E(τA) = 1 +
(1−∑K′

i=1 πi) +
∑K′

i=1 πi
∑N ′

j=1 yjWij∑N ′
j=1 yj

. (1.10)

Example 1.4.3 Let Ω = {1, 2, 3} and A = {323, 313, 33}. Let the initial
distribution be given by

p1 = 1/3, p2 = 1/3, p3 = 1/3,

and let the transition matrix P be given by

P =




3/4 0 1/4
0 3/4 1/4

1/4 1/4 1/2


 .

After the eliminating impossible scenarios we get 9 initial scenarios:

323 · · · , 313 · · · , 33 · · · , 1323 · · · , 2323 · · · , 1313 · · · , 2313 · · · , 133 · · · , 233 · · ·

and because transitions 1 → 2 and 2 → 1 are impossible we get just six later
scenarios:

· · · 11323, · · · 22323, · · · 11313, · · · 22313, · · · 1133, · · · 2233.

Now we need to calculate the matrix W and we first consider some sam-
ple entries. For instance, the 11323-gambling team in the initial scenario
323 · · · wins 1/p23 = 4. The same team in the later scenario · · · 11323 wins
1/(p11p13p32p23) + 1/p23 = 268/3, and in the later scenario · · · 22323 it wins
1/(p23p32p23) + 1/p23 = 68. Finally, the entries of matrix W that correspond
to the later scenarios — the ones that are needed for linear system (1.9) — are
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given by 


268/3 64 4 0 4 0

68 256/3 4 0 4 0

0 4 256/3 68 0 4

0 4 64 268/3 0 4

2 2 2 2 38/3 10

2 2 2 2 10 38/3




.

Finally, from formula (1.10) we have the bottom line:

E(τA) = 8
7
15

.

Higher Moments, the Generating Functions, and Efficiency

In parallel with our earlier examples, one can now take initial bets of size
yj + zjn to obtain a formula for the second moment, or take initial bets of size
yjα

n to obtain the corresponding generating function, c.f. Pozdnyakov (2008).
Here we should note that while the method of this subsection is also ap-

plicable to two-state Markov chains, it is certainly less efficient than the one
given in the Subsection 1.4.2. Here, in the case of two-state Markov chains we
would have 4K ending scenarios but the method of Subsection 1.4.2 needs only
2K.

Finally, one should remark some of the computational differences between
the martingale technique to the Markov chain imbedding method. To find the
expected time E(τA) via an appropriate Markov chain imbedding one needs
to solve a linear system associated with the transition matrix of imbedded
Markov, c.f. Fu and Chang (2002, p. 73). The size of the matrix depends on
the cardinality K of the compound pattern A and lengths of single patterns in
A. Our matrix depends on K and cardinality M of the alphabet. Thus, there
are situations when the martingale approach is computationally more effective.
For a very simple example, one can take A to consist of just one very long
pattern.

1.5 Applications to Scans

In its simplest form [c.f. Naus (1965)], the scan statistic is the largest number
of “events that occur” in a window of a given fixed length when we scan the
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window over a realization of a temporally homogeneous process up to a specified
terminal time. For a concrete example, consider a sequence of independent
Bernoulli trials {Zn, n ≥ 1} with

P(Zi = 1) = p = 1−P(Zi = 0).

Now given 1 ≤ w ≤ T and 1 ≤ i ≤ T − w + 1, we consider the sums

Yi,w =
i+w−1∑

j=i

Zj ,

and we define the scan statistic Sw,T to be the maximum of Yi,w; that is,

Sw,T = max
1≤i≤T−w+1

Yi,w.

If τk,w denotes the first time when one first observes at least k occurrences of
the value 1 in a window of length w, then τk,w is related to the scan statistic by

P(Sw,T ≥ k) = P(τk,w ≤ T ).

For us, the key observation is that the waiting time τk,w can as be viewed as
the waiting time τA for an appropriate compound pattern A. For example, for
k = 3 and w = 5 the compound pattern A is given by

{111, 1101, 1011, 11001, 10101, 10011}.

The bottom line message is that knowledge of the distribution of τA gives us
distribution of associated scan statistics. Moreover, this method of association
goes well beyond the simple scan of this example. Analogous transformations
permit one to treat the variable window scans of Glaz and Zhang (2006) or the
double scans considered by Naus and Stefanov (2002) and Naus and Wartenberg
(1997).

1.5.1 Second moments and distribution approximations

Since martingale methods yield effective computations of the moments of the
waiting time τA, it is natural to ask if martingales methods also suggest ap-
proximations of the distribution of τA that use the first two (or perhaps more)
moments of the waiting time.

It is reasonable from the clumping heuristic that the stopping time τA that
one associates with a scan statistic should have tail probabilities P(τA ≤ n) that
are close to those of the exponential distribution. Still, when one considers the
whole distribution, there are natural competitors to the exponential such as the
Gamma, the Weibull and the shifted exponentials. The main finding in Pozd-
nyakov et al. (2005) was that in many natural situations it is in fact the class
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of shifted exponential distribution provides the most accurate approximation
to the distribution of τA.

To make this approximation explicit, we first recall that X ′ called a shifted
exponential provided that X ′ = X +c where X has an exponential distribution.
We take X ′ as our moment matching approximation to τA provided c is chosen
so that

E(X + c) = E(τA), Var(X + c) = Var(τA).

For the tail probabilities this approximation gives us the relation

P(τA ≤ n) ≈ 1− exp(−(n + 0.5 + σ − µ))/σ), (1.11)

where µ = E(τA), σ = Var(τA), and the 0.5 term provides a continuity correc-
tion. As following examples demonstrate, this approximation works remarkably
well for a wide variety of scan statistics.

Example 1.5.1 (Fixed window scans). Here {Zn, n ≥ 1} is a sequence of
Bernoulli trials. We consider two scans: at-least-3-out-of-10 (Table 1.1) and
at-least-4-out-of-20 (Table 1.2).

For the fixed window scan statistics, Glaz and Naus (1991) developed tight
lower and upper bounds which are provided in Tables 1.1 and 1.2 along with the
approximations based on the exponential, shifted exponential, and gamma dis-
tributions. The Weibull distribution based approximation is omitted, because
the performance of Weibull approximations are significantly worse than those
of the exponential and the gamma. As it can be seen, the shifted exponential
approximation does consistently well. In the easy case when µ is large and σ
is close to µ, the differences between the various approximations are marginal,
and all of the estimates are close to the true probability. On the other hand,
if µ is relatively small and σ differs from µ, then the approximations based on
the exponential and gamma distributions do not perform nearly as well as the
shifted exponential approximations.

Example 1.5.2 (Variable window scans). Again we let {Zn, n ≥ 1} be a se-
quence of Bernoulli trials, but this time we scan for the occurrence of either of
two situations: either we observe at least 2 failures in 10 consecutive trials, or
we observe at least 3 failures in 50 consecutive trials. Here are interested in
the approximation for the distribution of the waiting time τ until one of these
two situations occurs. In this case we need a compound pattern A with 224
patterns in order for τ and τA to have the same distribution.

The numerical results are given in Table 1.3. Since analytical bounds for this
type of scans are not available, the performance of the approximation is judged
by comparison with estimated probabilities based on 100, 000 replications. Here,
again, we see that the shifted exponential distribution approximation that is
calibrated by two moments performs quite well.
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Table 1.1: Fixed window scans: at least 3 failures out of 10 consecutive trials,
P(Zn = 1) = .01, µ = 30822, σ = 30815

shifted upper lower
n exponential exponential gamma bound bound

500 0.01600 0.01589 0.01597 0.01588 0.01589
1000 0.03183 0.03173 0.03179 0.03171 0.03174
1500 0.04741 0.04731 0.04736 0.04729 0.04733
2000 0.06274 0.06265 0.06267 0.06262 0.06267
2500 0.07782 0.07773 0.07775 0.07770 0.07776
3000 0.09266 0.09258 0.09258 0.09254 0.09261
4000 0.12162 0.12155 0.12154 0.12150 0.12169
5000 0.14966 0.14960 0.14957 0.14954 0.14965

Table 1.2: Fixed window scans: at least 4 failures out of 20 consecutive trials,
P(Zn = 1) = .05, µ = 481.59, σ = 469.35

shifted upper lower
n exponential exponential gamma bound bound
50 0.09110 0.07827 0.08268 0.07713 0.07940
60 0.10977 0.09770 0.10059 0.09543 0.09989
70 0.12807 0.11672 0.11828 0.11337 0.11991
80 0.14599 0.13534 0.13573 0.13095 0.13949
90 0.16354 0.15357 0.15292 0.14819 0.15864
100 0.18073 0.17141 0.16985 0.16508 0.17736
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Example 1.5.3 (Double scans). Let {Zn, n ≥ 1} be an i.i.d. sequence of ran-
dom variables with the three valued distribution specified by

P(Zn = 1) = .04, P(Zn = 2) = .01, and P(Zn = 0).

Now we consider two types of “failures”; a type 1 failure corresponds to observ-
ing a 1 and a type 2 failure corresponds to observing a 2. Further, we assume
that we scan with a window of length 10 for until we observe at least 2 failures
of type 2 or observe at least 3 failures (of any combination of kinds). Table 1.4
shows that the shifted exponential approximation works well even when µ and
σ are relatively small and significantly different.

The initial arguments of Pozdnyakov et al. (2005) in favor of the shifted
exponential approximation were predominantly empirical, but subsequently a
more theoretical motivation has emerged from work of Fu and Lou (2006, p.
307) which shows that for large n one has

P(τA ≥ n) ∼ C∗ exp(−nβ),

where the constants C∗ and β are defined in terms of the largest eigenvalue
(and corresponding eigenvector) of what Fu and Lou (2006) call the essential
transition probability matrix of the imbedded finite Markov chain associated
with compound pattern A. One should note that this matrix is not a proper
transition matrix; rather it is a restriction of a transition matrix.

Now, if omit the continuity factor correction in our shifted exponential ap-
proximation (1.11) we have an approximation of exactly the same form:

P(τA ≥ n) ≈ exp(−(n + σ − µ)/σ) = exp((µ− σ)/σ) exp(−n/σ).

These relations suggest that there is a strong connection between the largest
eigenvalue of the essential transition matrix of the imbedded Markov chain and
the first and second moments of τA. In particular, we conjecture that (in the
typical case at least) the largest eigenvalue λ[1] of the essential transition prob-
ability matrix of the imbedded finite Markov chain associated with compound
pattern A will satisfy the approximation

λ[1] ≈ exp(−1/σ). (1.12)

1.5.2 Scan for clusters of a certain word

Let {Zn, n ≥ 1} be a sequence of independent identically distributed random
variables that takes values over the alphabet Ω = {1, 2, ..., M} and let the
distribution be given by

p1 = P(Zn = 1) > 0, p2 = P(Zn = 2) > 0, ... , pM = P(Zn = M) > 0.
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Table 1.3: Variable window: at least 2 failures out of 10 trials or at least 3
failures out of 50 trials, P(Zn = 1) = .01, µ = 795.33, σ = 785.85

shifted simulated
n exponential exponential gamma N=100000
50 0.05857 0.05085 0.05542 0.05029
60 0.07033 0.06285 0.06685 0.06187
70 0.08195 0.07470 0.07817 0.07404
80 0.09342 0.08640 0.08939 0.08623
90 0.10474 0.09796 0.10050 0.09718
100 0.11593 0.10936 0.11150 0.11058

Table 1.4: Double scans: at least 2 type II failures out of 10 trials or at least
3 failures of any kind out of 10 trials, P(Zn = 1) = .04, P(Zn = 2) = .01,
µ = 324.09, σ = 318.34

shifted simulated
n exponential exponential gamma N=100000
10 0.02438 0.01480 0.02175 0.01401
15 0.03932 0.03015 0.03568 0.03084
20 0.05403 0.04527 0.04959 0.04508
25 0.06851 0.06015 0.06342 0.06169
30 0.08277 0.07479 0.07714 0.07590
35 0.09681 0.08921 0.09074 0.09134
40 0.11064 0.10340 0.10419 0.10529
45 0.12425 0.11738 0.11749 0.11878
50 0.13766 0.13113 0.13063 0.13342
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Given a pattern A = a1a2 · · · am over the alphabet Ω, we then take a window
of length w ≥ m and scan the sequence until the time τ when in the window of
width w we have k (possibly overlapping) occurrences of pattern A.

One can show that τ is equal to the waiting time until the occurrence of a
certain compound pattern A, so formally the moments of τ follow from our pre-
vious results. Unfortunately, this approach runs into computational problems
since the cardinality of compound pattern A grows exponentially as window
width w increases. There seems to be no way to circumvent this problem en-
tirely, but given that A can be computed we can greatly cut down on much of
the other work.

A New Betting Scheme

The basic idea is to bet only on the pattern A and to pause the betting
between non-overlapping occurrences of A. To make this explicit, we first take
A as given and consider a certain equivalence relation on the patterns from A.
Specifically, we say that elements Ai and Aj from A are similar provided that

• lengths of Ai and Aj are the same,

• Ai and Aj have the same number of overlapping occurrences of A and,

• the patterns Ai and Aj have copies of A’s at the same positions.

Now, to each equivalence class under this relation, we can associate a unique
pattern over the extended alphabet Ω̄ = {1, 2, ..., M, ∗} by a simple rule. If the
simple pattern Ai ∈ A is a representative of an equivalence class, then to
construct what we will call the “star-pattern” for the class we replace each
symbol of Ai that is not part of a block equal to A by the symbol ∗. This recipe
is made clear with an example.

Example 1.5.4 Let Ω = {1, 2, 3} and let A = 121. Suppose we want to scan
until we find the occurrence of at least two copies of A’s in a window of 8
symbols. The compound pattern A associated with this scan consist of 11
simple patterns, none of which is subpattern of another):

1. exactly-2-in-5: 12121,

2. exactly-2-in-6: 121121,

3. exactly-2-in-7: 1211121 and 1213121,

4. exactly-2-in-8: 12111121, 12122121, 12113121, 12123121, 12131121,
12132121, and 12133121.
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Now, although we have 11 simple patterns in A we have only 4 equivalence
classes which we can enumerate with their star-patterns:

12121, 121121, 121 ∗ 121, 121 ∗ ∗121.

Here, it is important to note that ∗ does not mean just “any symbol”, because,
for example, 12121121 is not in A, and, as a result, class 121 ∗ ∗121 does not
include 12121121.

Given this reduction to equivalence classes, there are analogous reductions
for the rest of our tools, such as the ending scenarios. Now, we introduce a
list of ending scenarios associated with the list of equivalence classes (or star-
patterns). As before, we associate a gambling team with each element of the
final list of ending scenarios.

The real key is the new betting rule. Now, a gambler from a gambling team
associated with a star-pattern bets on a symbol if it is a symbol from Ω but
he simply passes when it is a star. For example, a gambler from the gambling
team that corresponds to 121 ∗ ∗121 first bets on 121 in the sequential fashion
that should now be quite familiar. If he is successful after those three bets, he
then pause for two rounds. After the pause he bets then successively bets his
entire capital on 121, the rest of the star-pattern.

Assume that we have N ′ ending scenarios and N ′ gambling teams. A gam-
bler from the j’th gambling team that joins the game in n’th round will bet yj

dollars. Next let yjWij , 1 ≤ i, j ≤ N ′ be the total winnings of the j’th gambling
team in the case that game was ended by the i’th scenario. As before, Wij is
not random; it is fully determined by the pattern of overlap of the star-patterns
associated with the given gambling team and ending scenario.

To make this explicit, we let E = e1e2 · · · em and T = t1t2 · · · tl be two
patterns over the extended alphabet Ω̄. We first define a measure of “two
letters coincidence”:

δ(ei, tj) =





1, if tj = ∗
1/P(Z1 = tj), if tj 6= ∗, ei = tj ,
0, if tj 6= ∗, tj 6= ei.

Next, we define a general measure of overlap for E and T:

W (E, T) =
min(m,l)∑

i=1

i∏

j=1

δ(em−i+j , ej).

Finally, if the i’th ending scenario is associated with the pattern E and the
j’th gambling team bets on T, then we have the explicit (and deterministic)
formula,

Wij = W (E,T).
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If Xn is the casino’s total net gain at the end of the n’th round, then it is
again a martingale, since taking a pause preserves a martingale property. At
time τA the stopped martingale is given by

XτA =
N ′∑

j=1

yjτA −
N ′∑

i=1

N ′∑

j=1

Wijyj1Ei ,

where 1Ei is the indicator that the game is ended by the i’th scenario, so if the
vector {yj}1≤j≤N ′ is a solution of the linear system

N ′∑

j=1

Wijyj = 1, 1 ≤ i ≤ N ′, (1.13)

then the stopped martingale has the tidy representation

XτA =
N ′∑

j=1

yjτA − 1.

Since E(XτA), we come very quickly to our final formula.

Theorem 1.5.1 If the vector {yj}1≤j≤N ′ solves the linear system (1.13), then
expected value of τA is given by

E(τA) =
1

∑N ′
j=1 yj

.

Example 1.5.5 Let Ω = {1, 2, 3}, and A = 121, and suppose we scan for at
least two As in a window of 8 symbols. As we have seen there are only 4
equivalence classes:

12121, 121121, 121 ∗ 121, 121 ∗ ∗121.

The matrix Wij in this case is



1
p3
1p2

2
+ 1

p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p3
1p2

+ 1
p2
1p2

+ 1
p1

2
p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p4
1p2

2
+ 1

p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p3
1p2

+ 1
p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p4
1p2

2
+ 1

p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p2
1p2

+ 1
p1

1
p4
1p2

2
+ 1

p2
1p2

+ 1
p1




,

Theorem 1.5.1 gives us the following formula for the expected value:

E(τA) =
1 + p1p2(1 + p1p2)(1 + p1(3− p2 − 2p1p2))

p3
1p

2
2(1 + p1(3− p2 − 2p1p2))
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One obviously can extend this technique to the case of the higher moments
and generating function.

1.6 Concluding Remarks

The martingale method for studying the waiting time until a compound pattern
is now well developed — even the stubborn Markovian case. Still, from the
examples given here, one can see that successful application of the method
requires some detailed combinatorial information. Specifically, almost always
needs to determine explicitly what we have called here the “final list of ending
scenarios.”

For problems, such as those that come from the theory of scan statistics,
this final list can be large. Nevertheless, by the introduction of appropriate
equivalence classes, one can still make steady progress. Explicit formulas for
moments are possible more often than perhaps one might have guessed.

Going forward there are two problems that we believe deserve considera-
tion: one general and one specific. The general problem is the identification
of further problems like the one developed in subsection 1.5.2 for clusters of
words. Generically, the challenge is to identify the problems in which one can
find a substantial simplification of what would otherwise be the waiting time
problem for a very large class of patterns. Correspondingly, it would be useful
to identify as many problems as possible where one has a firm combinatorial
understanding of the final list of ending scenarios.

The more specific problem is the conjecture given in equation (1.12). His-
torically, there has been considerable value to finding a good representation for
the largest eigenvalue for even very special matrices. The class of matrices that
are obtained as the essential (improper) transition probability matrix of imbed-
ded finite Markov chain associated with compound pattern A is indeed special,
yet it is still reasonably large. For this class the conjecture (1.12) provides an
explicit — and novel — approach to the analysis of the largest eigenvalue.
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