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PROBABILISTIC ALGORITHM FOR THE DIRECTED
TRAVELING SALESMAN PROBLEM*+

J.MICHAEL STEELE

Princeton University

A model is given for a random directed traveling salesman problem (DTSP). The asymp-
totic behavior of the optimal solution of the DTSP is determined, and this result is used 1o
establish an e-optimal probabilistic algorithm for solving the DTSP in polynomial time.

1. Introduction. In Karp (1977) the problem is posed of formulating a probabilis-
tic model of the direcred traveling salesman problem (DTSP) for which one can
establish a probabilistic polynomial time algorithm. The main objective of this article
is to introduce one such model.

In fact, the model studied here is about the most obvious model one could imagine
for the DTSP. The hard part is to obtain enough probabilistic information from the
model to be able to show the existence of a good algorithm.

To specify the model we first suppose that X,, 1 < i< o, are independent random
variables with the uniform distribution in the unit square [0, 1% As the vertex set of a
directed graph G, in R we take Vo={X1. Xy, ..., X,}. Now, we suppose that for
1 <i<j < n there are independent Bernoulli random variables ¥, which are also

i

independent of ¥, and for which P( Yy=1)=1/2=1- P( Y; = 0). The directed edge

set E, is defined by taking (X X)€E, if Y;=1 and (X;,X)€E, if ¥;=0. The
random variable of greatest interest is D,, the length (in the usual Euclidean distance)
of the shortest legitimate directed path through all of the vertices V,, of the graph G,.

It may not be apparent that there is always a directed path through V,. This follows
from a classic result of Rédei (1934) and will be established algorithmically in the next
section.

The main result on D, which will be proved here is the following:

THEOREM 1. There is a constant 0 < B < o such that as n—> oo

ED,~Bn . (1.1

The main consequence of this asymptotic relationship is the existence of a probabi-
listically efficient algorithm for the DTSP.

THEOREM 2. There is a polynomial time algorithm which provides a directed path
through V,, which has length D} satisfying

EDy <(1+¢€)ED,, (1.2)
forall e >0and n > N(e).

The sense of optimality in this result is a bit weaker than that obtained by Karp
(1976), (1977). and the reasons for this difference are discussed in the final section.

*Received November 2, 1981: revised March 21, 1985.

AMS 1980 subject classification. Primary: 60D0S. Secondary: 90C42.

{AOR 1973 subject classification. Main: Graphs.

OR/MS Index 1978 subject classification. Primary: 490 Networks/graphs /traveling salesman.

Key words. Directed traveling salesman problem, probabilistic algorithm, Euclidean functionals.

*This research was supported in part by Office of Naval Research Grant NOOD14-76-C-0475 and NSF
Grants DMS-8414068. and DMS-8414069.

343
0364-765X /86 /1102 /0343501.25

Copyright € 1986. The Institute of Management Sciences /Operations Research Society of America



344 J. MICHAEL STEELE

The proof of Theorem 1 is given in the next three sections. In the first of these, a
procedure is given for sewing together the subproblems of a natural decomposition of
the DTSP. The inequalities provided by this procedure are used in §3 to obtain the
asymptotic behavior of the Borel average of the ED,. Finally, the Tauberian theorem
of R. Schmidt (1925) is used in §4 to complete the proof of Theorem 1.

In §5 the sewing method and Theorem 1 are used to complete the proof of Theorem
2. The last section compares results obtained here for the DTSP with Karp’s original
work on the TSP and isolates a basic open problem.

TecuNicaL REMARKS. (1) By a directed path we mean a sequence of directed edges
€€y, . .., e, such thatif ¢, = (x;, y,) then x, .| = y, for each 1 < i < n. In particular it
is possible for a vertex x to appear more than once on the shortest path. This is a
complication that cannot arise in the undirected TSP.

(2) The fact that 8 > 0 is a consequence of the fact that the length of the DTSP is at
least as large as the corresponding TSP. Thus, 8 > 0 follows from Beardwood, Halton,
and Hammersley (1958). To see this even more easily one can note that the expected

distance from any point in {X,,X,, ..., X,} to its nearest neighbor is bounded below
by en~V/2,

2. Sewing inequalities. As promised, we will first establish Rédei’s theorem that
any complete digraph G has a directed path through all its vertices. Suppose a partial
path Xi»Xis o -+ X, 1 < k < n, has been constructed through part of the vertex set
{x,%, ..., x,}. We can choose x; arbitrarily from the remaining vertices and show
that it can be included in an augmented path. If (x,x;,)EE then x; > x;, = -+ >x,
is such a path, and otherwise (xil,xj) € E by the completengss of G. Now, if
(x5, x;,) € E we see x; - X;=>x;,=> -+ X, is a path, while if (x;,x;) & E we proceed
to x; . Either we eventually succeed in inserting x; somewhere inside the path or else we
have shown that X; ™ X;, ™ -+ X, > X, Is a legitimate path. This procedure is basic
to the inequalities proved here and will be used repeatedly in the sequel.

Now for some probabilistic considerations. Instead of directly studying X,, 1 < i
< o0, iid. U[0, 1T it will be convenient to consider a Poisson process IT in R? with
constant intensity 1. For each Borel 4 C R* we note that II(4) is a finite point set with
cardinality N, = |TI(4)| where N, is a Poisson random variable with mean A(A4), the
Lebesgue measure of 4. We let R? be ordered by Lexico-graphical order (<), and for
each pair of points x < y we define a Bernoulli random variable Y,,. We require (1)
P(Y,,=1)=1/2=P(Y,,=0), 2) the collection .~ = { Y, :x<y, x,y€R?} an
independent collection, and (3) the collection . is independent of II.

A new process D(r) is defined as the length of the shortest path through the points
of II[0, ¢}’ using only those edges (x, y) for which x <y and Y, =1, or y<x and
Y., =0. By E(¢) we will denote the set of such legitimate directed edges between the
points of IT[0, 1.

The point of introducing D(¢) is the fact that it is a sort of smoothed version of D,.
This is made explicit, and useful, by the key identity

ED(1) =’§2t(ED,,)e“’zt2"/n!. 2.0

To see why (2.1) holds we note that conditionally on the event {ITI([0, t}*)| = n}, the
random variables D(7) and ¢D, have the same distribution. Since ITI([0, £]%)| is Poisson
with mean %, (2.1) just expresses the identity ED(r) = E(E (D) 110, P))).

We now let ¢(r) = ED(¢) and proceed to prove the first of the sewing inequalities
which are needed to obtain the asymptotics of &(2).

LEMMA 2.1. There is a constant ¢ > 0 such that
$(21) <dgp(t)+ct, 0< < o0, (2-2)
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PrROOF. Let O, 1< i< 4 denote the four quadrants of the square [0,2:], and
suppose that x, > x,— .- > x and X{=>xj=> -+ —>x/ are the optimal directed
paths through the sets II( Q) and TI( Q,) respectively. Next, we let

7= {mink :(x,,x) € EQ21), 1 < k < v}
and let 7 = o if (x,,x;) & EQ2r) for all 1 < k < v or if ITI( @,)| = 0. Similarly, we let
7= min{ k Hx,.x) € EQ2:),1<k< u}

and 7 =co if (x/,x,) & EQr)forall 1 < k < u or if TI(@p=0.
Now if 7 < o0 and 7’ < o we see that

X, DX DX, > DPXIX DX > >Xx,_1—>x, (2.3)

1s a circuit C,, which goes through all the points of TI( Q) UII( Q,) except for at most
the set Z,,={x/, 1<k< T} U {x:, 1<k <17} (See Figure I(a).) In a similar
fashion we construct a circuit C 34 through all the points of TI( 03) UII( Q,) except for
a set Z,,. For the last step in our construction we pick x € Cy,, y € Cy, and apply
Rédei’s algorithm to obtain a directed path P through {x, y}U Z, U Z,4 which visits
each point at most once. Finally, we describe a (suboptimal) directed path through
II[0, 2¢F’. Without loss of generality we may suppose x comes before y on P. For our
suboptimal path we take P until we get to x then we take the circuit C,, back around
to x, then we take P until y, make the circuit C34 back to y, and finally finish off the
path P. (See Figure 1(b).)

We now need to estimate the expected length of this suboptimal path through
II[0, 2¢]%. First we bound L(P), the length of the path P, by noting that no edge of P is

longer than 22 ; and there are exactly 2 + |Z,,| + |Z,,| vertices on P. This provides
the bound, .

E

-

EL(P) < 122 {1+ E|Z,| + E|Z,,) < 161 (24
where we have used the fact that |Z,,] is majorized by a geometric random variable

with parameter p = 1/2 so E|Z,|= E|Z;)=2.
For the length of Ci2, L(C}y), we note-

u—1 o1
L(Cl2) < 2 |x;— Xipl + 21 |x/ = X/l + [x, — x|+ |x;, - x,|. (25)
i=1 i=

Since |x, — x/| and |x] — x| are less than 1y3 » taking expectations in (2.5) gives
EL(Cyy) < 2¢(1) + 1243 . (2:6)

Naturally we obtain the same inequality for C,, since L(Cyy) = L(Cy,).
From (2.4), (2.6), and the fact that the path we have constructed is suboptimal we

x *y » °
a) ¥ x
: // ! =3
i /o =2
L l Y
Xy Xy X x|

Ficure 1. Illustration of Lemma 2.1.
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have the bound
$(21) < EL(C) + EL(Cy) + EL(P)
< 4¢(t)+ 307, w (2.7

LEMMA 2.2, There is a constant ¢ > 0 such that
#(31) < 9¢(1) + ct, 0<1<eo. (2.8)

Proor.. The proof is essentially that used before except that the fact that 9 is odd
forces some asymmetry.

Before applying these lemmas to the asymptotics of ¢(1), it is worth summarizing a
consequence of the sewing procedure which will be useful in the algorithm of §5. We
state this as a lemma.

LEMMA 2.3, Suppose tha G, is a complete digraph with arbitrary vertex set {x,,
X35+ o oy X} CL0,5F and with the directions of the edge set determined by independent
Bernoulli random variables. Let Qi, 1 < i< 4, denote the four quadrants of [0, s and let
D; denote optimal (or suboptimal) DTSP tours for the restricted digraph G, with vertex
set QN {xy, %5, ..., x,). If D is the solution of the DTSP for G we have

ED < ED+ ED,+ EDy + ED, + cs. (2.9
PROOF. This lemma just spells out the consequences of the procedure of Lemma
2.1 in the case of a slightly different model. In particular one should note that in

Lemma 2.1 no use was made of the distribution of the points of IT0, 1%

3. Asymptotics from inequalities.

LEMMA 3.1. Suppose that  : [0, ][0, ) is any contir;u'ous Junction which satisfies
Y2 <4y(t)+ct and 3D
YEH <Y+, 0<1< oo 3.2)

One then has
Jim Y(1)/ 1= liminfy(s)/r*= B < 0. (3.3)

PrOOF. Forj=1, k=1, itis trivial from (3.1) and (3.2) that

Y(21) < 2% (0) + ot > 2 and (34
J=1<s<2~1)

V(3 <30y + ot > 3. (3:5)

k=1<s<2k=1)

These more general inequalities (3.4) and (3.5) are easily verified by induction. Using
both of these we see

Y(2/3%) < 2% (3%) + cr3k > 2
Jm1Ls<2(j~1)

< 221{32"¢(t) + ct 3‘} + cr3k > 2

k-1<s<2(k-1) J=1<s<2(j-1
<@ p(0) + (23 e, (3.6)

Now consider {n, < ny< -} ={23>0k> 0} = S. For any ¢ > 0 there exist
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Positive integers a, b, ¢, d with 1<2737°2 <14 eand 1 < 327< 1 + €. For n, suffi-
ciently large we must have n_ divisible by either 3% or 29 and hence either 237 e 8
or 327% e §. In either case we see By < (1+ €)n so we have ]ims_,wnﬁ,/nx = 1.

Now fix € > 0 and Jet B any real number such that there is an interval (1g, 1) for
which

Y()/P+c/rP< B+, L<1<y,. (3.7)
By (3.6) we see Y(W)/u* < B+ ¢ for all

n€(J231y,1) = Un(z5.1)).
ik s

But ns, > s ytg for all 5 such that Moo/ n < 1 /8y, ie., for all s sufficiently large.
By taking g = Max ¢, W)/ + ¢ /1) we see that Limsupy(1)/1 < B < oo.
Then by taking g = lim infY(1)/1* we see lim supY(1)/ £ < lim infY(r)/2
en we apply the preceding lemma to the function ¢(r) we obtain after some
simplification the basic asymptotic relation for the Bore] transform of ED |

e‘A’gﬁ %ED,,“’B‘/X, as A— oc. (3.8)

4. Tauberian step.

LemMMa 4.1, Tpe relation

< n
Alirg e“)‘ngl ﬁ-!a,,= c 4.1
implies a,— ¢ if and only if
im liminf  mip {a, —a,) >0. (4.2)

+ >
’?0 < n<m<n+e\/r?

REMARKS. This is the Tauberian theorem for Borel summability due to R. Schmidt
(1925). For a discussion in a modern probabilistic context and many related references
one may consult Bingham (1981).

The preceding lemma does not apply directly to the asymptotic behavior of ED,,
but we will shortly show that the choice g, = — -1/ ED, will complete the proof of
Theorem 1.

Lemva 42, @) ED,, | < ED, +2/2,
(b) limbxe"‘z;,”gz()\"/n!)(ED,,)/\/;z— =¢,0<c¢< 0.

PROOF. The first inequality follows from Rédei’s algorithm since the passage from
D, to D, adds at most two edges which are each bounded by 7. Ope consequence

ED, < 5n. (4.3)

Now setting

R

WE see

h(A) < e~ b ALy + e -1 S Nep (4.4)

!
n=2 M.
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so letting s = [(1 — €)A] we see from (4.4) and (3.8)
limsuph(A) <(1—¢€)~ "%,  forall €>0. (4.5)

A 00

The lower bound is just as easy since for S = [(1 + €)A],

h(A) > e*As*‘/zéz AED,> e')‘s’l/z(¢(}\) - ,§+1 AL 5&). (4.6)
From (3.8) and (4.6) we have
liminfh(\) > (1 + e)” %, 4.7)
and the inequalities (4.5) and (4.7) naturally complete the proof of the lemma. #
Lemma 4.3, For a, = —n~'/2ED, we have
lim liminf min {a,-a,} 20 (4.8)

+ n—=ree
€0 n<m<n+cv/;

ProOF. We have to bound

min _{a,—a,})= -—max (m'/’ED,—n'’ED,}.
n<m<n+eln a<m<n+en

To do so we note xy-—x’y"—-(x—x’)y+x’(y~y’), soforn<m<n+ehn

m~\ED, < n"VED,+ 3 {(n+ k) VED,~ (n+%k~1)"2ED, )
k=1

<n V2ED,+ S (n+ k= 1)TV2E(D, i~ Duiiy)
k=1 K

-

<n VED,+ €2V2 . (4.9)
One then sees that for all n,

min  {a,—a,} > -2 (4.10)
n<m<n+eln
so (4.8) follows immediately. &

With the assumption of the last two lemmas we are able to conclude that ED,~Bn
as n—> oo and thus complete the proof of Theorem 1.

5. An efficient algorithm. The algorithm given here is based on geometric parti-
tioning and dynamic programming. We first recall that the m city TSP can be solved
by a dynamic programming in time O(m2™) (Bellman 1960, Held and Karp 1972).
Almost without modification the dynamic programming algorithm can be used on the
DTSP and the same time bound holds.

Now we spell out the DTSP analogue to Algorithm A of Karp (1977). First we
choose a real sequence t(n) satisfying

loglog,n < t(n) < 4loglog,n, 3.1
(n/t(n))'/?=2  forsome j=0,1,.... (5:2)

We also need some notation for a decomposition of the unit square Q = [0, 1]>. We
let 0, 1 < i <4, denote its four quadrants, and for each i we let Q;, 1 < j < 4 denote
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the four quadrants of Q,. More generally, for each s we let Oii,. .i» 1 < i <4, denote
the four quadrants of Q,; i_,- We can now sketch the procedure.

DTSP Algorithm. (1) Decompose [0,1]* into 4% subsquares Q...
1log,(n/t(n)).

(2) Use dynamic programming to find an optimal solution for the DTSP in each
subsquare Q;; .

(3) For s = k until 1 and for all 1 < [;<r, 1< j<s, sew the paths obtained in
Qii,...;;» 1 <i; <4 together by the method of §3 in order to get a path through

iy iy

It is easy to see that this algorithm runs in expected time O{nlogn). It remains to
check that under the model of the random DTSP studied here that the algorithm
provides a nearly optimal solution.

If we let O, .., denote the length of the optimal path through the vertices of
Q,,...; then inequality (2.9) says that these can be sewed together to get a path

for k =

o

through the vertices of Qi .. ,oflength L, satisfying
Li,iz....;_, < E Oz,i;..‘ik+ 27k (53)
1< <4
If L,, ., is the length of the path through the vertices of Qiiy...i» 1 <5<k,

obtained by our algorithm then using inequality (2.9) starting from (5.3) we find for
s=k—j

J
Li,iz...ik_j ,,iz...,ﬁcz2"“""4'_‘- (54)

I<i <4 r=1
k—j+1<e<k

< > o0

If we let D} denote the length of the path given by the algorithm, then setting j = k in
(5.4) and simplifying will give

*
L% < :S CM&.“
1<ij<4
1<j<k

i+ 2k, (5.5)

Now since Q,; , has area p =47% = t(n)/n the number of vertices in iz i, 1S
distributed as a binomial random variable with parameters n and p we see by
conditioning that

n

EO,, ., = 20(’]’.),01'(1 ~ p)"E(D;)-27*. (5.6)

j=

From (5.5) we get
ED? <yn/1t(n) io(’})pj(l ~ )" E(D) + eyn/1(n) . (5.7)
=

Since pn = 1(n) and since ED,~pBVk the binomial sum in (5.7) is asymptotic to

Byt(n) . From this we see the whole right side of (5.7) is asymptotic to Byn . This
bound completes the proof of Theorem 2.

6. Open problem. The results of this article are pointed toward the establishment
of algorithms which perform well in terms of the expected length of the solution
obtained. This is somewhat in contrast to the original conception of Karp (1977) where
a similar algorithm is shown to provide an e-optimal solution with probability one (see
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also Steele 1981b and Weide 1978 for some subsequent refinements and elaboration of
Karp’s theory.)

It is natural to ask if the present model will also yield an €-optimal algorithm with
probability one. The basic step would consist in proving the natural conjecture

D,~Byn,  with probability one. (6.1)

There are three approaches which have succeeded in similar problems (Beardwood,
Halton and Hammersley 1959 and Steele 1981a,c, but these methods do not seem
capable of proving (5.1).
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