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Abstract. We construct a continuous distribution G such that the number of
faces in the smallest concave majorant of the random walk with G-distributed
summands will take on each natural number infinitely often with probability
one. This investigation is motivated by the fact that the number of faces Fn of
the concave majorant of the random walk at time n has the same distribution
as the number of records Rn in the sequence of summands up to time n. Since
Rn is almost surely asymptotic to log n, the construction shows that despite
the equality of all of the one-dimensional marginals, the almost sure behaviors
of the sequences {Rn} and {Fn} may be radically different.

1. Introduction

If Xi, i = 1, 2, . . . is a sequence of independent random variables with a contin-
uous distribution G, then the number of records

Rn = max{k : Xi1 < Xi2 < . . . < Xik
, 1 ≤ i1 < i2 < · · · < ik ≤ n}

was studied in Rényi (1962) and was found to have the same distribution as

(1) ξ1 + ξ2 + · · · + ξn

where {ξi : i = 1, 2, . . .} is a sequence of independent Bernoulli random variable
that satisfy P (ξk = 1) = 1/k. Goldie (1989) later observed that as a consequence
of Spitzer’s combinatorial lemma as generalized by Brunk (1964) that the number
of faces of the concave majorant of the random walk Sk = X1 + X2 + · · · + Xk,
1 ≤ k ≤ n, also has the same distribution as Rn; that is, if one lets Fn denote the
number of pieces in the smallest piecewise linear concave majorant of the set of
points Sn = { (0, 0), (1, S1), . . . , (n, Sn) }, then one has P (Rn ≤ t) = P (Fn ≤ t) for
all t ∈ R and all integers 1 ≤ n < ∞.

By a standard Borel-Cantelli argument, one finds from the Bernoulli sum repre-
sentation (1) of Rn and the monotonicity Rn ≤ Rn+1 that

(2) lim
n→∞ Rn/ logn = 1 with probability 1,

so from Goldie’s observation that Rn
d= Fn for each n, one might expect an anal-

ogous strong law for the sequence {Fn : n = 1, 2, . . .}, despite the fact that the
sequence {Fn : n = 1, 2, ...} is not monotone. In Steele (2002) it was suggested the
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Figure 1. The concave majorant of a random walk

limit law for records (2) might not extend to the face process {Fn : n = 1, 2, ...},
and the main goal of this note is to confirm a particularly strong version of this
conjecture.

Theorem 1. There exists a continuous distribution function G such that if the
random variables Xi, i = 1, 2, . . . are independent with P (Xi ≤ x) = G(x) for all
i = 1, 2, ... and if Fn denotes the number of faces of the least concave majorant of
the first n steps of the random walk Sk, 1 ≤ k ≤ n, then

(3) P (Fn = m i.o.) = 1 for each value of m = 1, 2, ....

In particular, the concave majorant of the set Sn ⊂ R
2 will be a single line infinitely

often with probability one.

The behavior described by the relation (3) contrasts about as sharply with the
limit (2) as one could imagine, despite the fact that the marginal distributions of
Fn and Rn are equal for each n.

2. Two Constructive Lemmas

The basic idea is that one can construct a continuous distribution G such that
infinitely often the summand Xi is so large that it completely overwhelms the
cumulative contributions of all of the preceding summands. The implementation
of this idea rests on two simple technical lemmas. To begin, we take an arbitrary
sequence of integers 2 ≤ n1 < n2 < · · · , and consider independent discrete random
variables Yi, i = 1, 2, . . . such that P (Yi = nk) = pk for all i ≥ 1 and k ≥ 1. Our
technical lemmas tell us about events that are unlikely to take place in conjunction
with the first time that an element of the sequence {Yi} is equal to nk.
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Lemma 1. For α > 1, let cα be chosen such that pk = cα(k!)−α is a probability
measure on {1, 2, ...}. If one sets

Bk,t =
{
Yt = nk

} ∩ {
Ys �= nk for all 1 ≤ s < t

} ∩ {
max
s<t

Ys > nk

}
,

then for Ak =
⋃∞

t=1 Bk,t one has P (Ak i.o.) = 0.

Proof. If we set αk =
∑k−1

j=1 pj/(1− pk), then by independence of the {Yk} we have

P (Bk,t) = pk(1 − pk)t−1(1 − αt−1
k ).

Since the events {Bk,t}∞t=1 are disjoint, we also have

∞∑

k=1

P (Ak) =
∞∑

k=1

∞∑

t=1

P (Bk,t) =
∞∑

k=1

pk

( 1
pk

− 1
1 − (1 − pk)αk

)
(4)

=
∞∑

k=1

1 − ∑k
j=1 pj

1 − ∑k−1
j=1 pj

=
∞∑

k=1

∑∞
j=k+1 pj∑∞

j=k pj
(5)

≤
∞∑

k=1

1
(k + 1)α

< ∞,(6)

and the proof is completed by applying the Borel-Cantelli Lemma. �

Remark: One should note that with the choice pk = cα(k!)−α the condition α > 1
cannot be dropped. For example, one can easily check that if pk = e/k!, then the
sum of the P (Ak) diverges. On the other hand, a referee has observed that an
interesting alternative that does work here (and in the next lemma) is given by
pk = qk2

for any 0 < q < 1. With this choice the inequalities (4) and (5) are
unchanged but the last line is somewhat simplified. Specifically, with pk = qk2

the
bound in (6) can be replaced by q3 + q5 + q7 + · · · < ∞.

Lemma 2. Suppose the sequence {nk} satisfies the gap condition nk/nk−1 > k/pk

for all k ≥ 2. If we have

Ek,t =
{
Yt = nk

} ∩ {
Ys < nk, for all 1 ≤ s < t

}
and Ek = ∪t≥nk/nk−1Ek,t,

then we have P (Ek i.o.) = 0.

Proof. We have P (Ek,t) = pk(
∑k−1

i=1 pi)t−1, so by disjointness we find

∞∑

k=1

P (Ek) =
∞∑

k=1

∞∑

t=� nk
nk−1

�
pk(

k−1∑

i=1

pi)t−1 =
∞∑

k=1

pk
(
∑k−1

i=1 pi)
� nk

nk−1
�−1

1 − ∑k−1
i=1 pi

≤
∞∑

k=1

pk
(1 − pk)�

nk
nk−1

�−1

pk
≤

∞∑

k=1

(1 − pk)(k/pk)−1.

From the bound 1 − x ≤ e−x and the geometric sum, one sees the last sum is not
larger than (1−e−1)−1, so the Borel-Cantelli Lemma again completes the proof. �
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3. Proof of Theorem 1

We now say that a random time τ is good provided that

• τ ≥ 2,
• Yj < Yτ for all 1 ≤ j < τ , and
• for nk such that Yτ = nk one has τ < nk/nk−1,

so, the main point of Lemmas 1 and 2 is that they immediately imply that with
probability one there exists an infinite sequence τ1 < τ2 < ... of good times. To
complete the proof of Theorem 1 we just need to connect the existence of these good
times to the geometry of the concave majorant of an appropriate random walk.

Specifically, we let Un, n = 1, 2, ... denote a sequence of independent random
variables with the uniform distribution on (0, 1), and we set Xn = Yn + Un, where
the Yn are as before. We will now focus on the random walk Sn = X1+X2+· · ·+Xn

and confirm that the continuous distribution G(x) = P (Xk ≤ x) satisfies the claims
of Theorem 1.

The key geometric fact of the construction, fits snugly into a single line:

(7) if τ is a good time, then Fτ = 1.

To see why this assertion is true, we first note that

(8)
Sτ

τ
>

nk + (τ − 1)n1

τ
> nk−1 + n1 − n1/τ ≥ nk−1 + 1,

where in the last step we use the facts that n1 ≥ 2 and τ ≥ n1. We then note that
for all t < τ we have

(9)
St

t
<

t(nk−1 + 1)
t

= nk−1 + 1,

and the truth of the assertion (7) follows immediately from the bounds (8) and (9).
By assertion (7) and the almost sure existence of an infinite sequence of good

times, we therefore find that Fn = 1 infinitely often with probability one. Now we
only need to check that for each m ≥ 1 we also have Fn = m infinitely often with
probability one. The basic idea here is that we get infinitely many independent
tries at an event that has probability that is uniformly bounded away from zero.

More formally, since the summands {Xk = Yk+Uk : k = 1, 2, ...} are nonnegative,
elementary geometry tells us that for each good time τ and for each m ≥ 2 that
the event

Sτ/τ > Xτ+1 > Xτ+2 > · · · > Xτ+m−1

implies the event Fτ+m−1 = m. Also, the event Xτ+1 > Xτ+2 > · · · > Xτ+m−1 has
probability greater than that of the event

Cm = {Yτ+1 = Yτ+2 = · · · = Yτ+m−1 = n1} ∩ {Uτ+1 > Uτ+2 > · · · > Uτ+m−1},
and Cm has probability pm−1

1 /(m − 1)! = δm > 0, which does not depend on τ .
Moreover, by (8) one always has Sτ/τ > n1 + 1 provided that Yτ ≥ n2, so along
the infinite sequence of good times τj , j = 2, 3, ... one can find has infinitely many
opportunities of observing Fτ+m−1 = m that are independent and that have prob-
ability δm > 0. Thus, by the law of large numbers one finds that with probability
one, we have Fn = m for infinitely many n, and the proof of Theorem 1 is complete.
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4. A Final Observation

The distribution G constructed here suffices to show that one cannot expect
regular behavior of Fn at the same level of generality that one finds regularity for
Rn. Nevertheless, the sequence Fn may not always be badly behaved. Under nice
conditions — say, for example, when the summands are exponentially distributed
— one may be able to prove a useful limit law for Fn.

In the hunt for such a law, it may be useful to note that for summands with a
continuous distribution one always has

(10) lim sup
n→∞

Fn

log n
≥ 1 with probability one.

Moreover, from the equality of the distributions of Rn and Fn and the representation
(1) for Rn, one has the useful large deviation bound:

(11) P (|Fn − Hn| ≥ εHn) ≤ 2 exp(−ε2Hn/4) for all 0 ≤ ε ≤ 1/2,

where Hn = 1 + 1/2 + 1/3 + · · · + 1/n. In fact, the bound (11) follows immedi-
ately from the usual concentration inequalities for Bernoulli sums, say, for example,
Bennet’s inequality (Bennett (1962), equation (8b)). Finally, from (11) one easily
proves (10) with the Borel-Cantelli lemma and a subsequence argument.
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