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Abstract

Suppose that n persons each know a different piece of information, and that
whenever a pair of persens talk on the telephone each tells the other all the
information that he knows at the time. If calls are made at random. we show
that the expected number of calls necessary until everyone knows all »n pieces of
information is asymptotically 1.5 n log n. This sharpens an earlier result of J. W.
Moon.

CONTAGION; RANDOM MATRIX; TELEPHONE PROBLEM

1. Introduction

The object of this paper is to give a solution to a problem raised by Moon [4]
concerning a model of random contagion. Of the several ways to describe this
model one has become traditional. Suppose that n persons each know a different
piece of information, and whenever two of them talk on the telephone each tells
the other all the information he knows at the time. The way in which information
spreads through such a system suggests a variety of problems.

The popular ‘telephone problem’, attributed to A. V. Boyd in [4] and [5], is to
determine the minimum number of calls c(n). required until everyone has
learned all n pieces of information. It is clear that ¢(1)= 0, ¢(2) = 1 and ¢(3) = 3,
and A. V. Boyd exhibited a scheme of calls to show thatif n =4, c(n)=2n -4
(such a scheme is described in [5]). He conjectured that ¢(n)=2n~4forn = 4,
and this was proved independently by Tijdeman [5}, Bumby and Spencer {1}, and
Hajnal, Milner and Szemeredi [3].

Moon [4] considered instead the situation in which the calls are made at
random (i.e. the operator chooses two different persons at random from the n
and places the call). Suppose C calls are made before each person knows all the
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information. The problem is to determine E{{), the expected value of . Moon
gave an elegant proof of the bounds

(I—eymlogn=E(C)=(2+¢e)nllogn),

where ¢ >0 and n is sufficiently large. Here we will prove the {ollowing more
precise result.

Theorem.

E(C)=

[ NS RON]

nlogn+ O(n(log n)'").

A different formulation of the telephone problem, attributed to Wirsing in [5],
may serve to put our result in a more general context. Let B; be the n X n matrix
with all entries 0 except for a 1 in the (i, j) and (j, i) positions. Let A{0) = I and
A(t)= A~ 1)(I+ By)if there is a call between persons i and j at time t. Then
A (t) >0 if and only if the mth person knows the kth piece of information at
time t. One sees this by induction, after observing that A(¢) is obtained from
A(t ~ 1) by replacing the ith and jth columns by their sum, leaving all other
columns unchanged. Thus, if m = i or j, then a..(t) >0 if and only if at least one
of aw(t —1)>0 or a,;(t — 1) >0 holds, while if m# i,j then aw.(t) = @ {t — 1).
This corresponds to the fact that i and j know the kth piece of information at
time ¢ if and only if one of them knew it at time ¢ — 1. Thus, if the B; are chosen
at random, C is the first time at which A(¢) is a strictly positive matrix.

2. The lower bound

Let T, be the first time at which everyone knows person i’s original
information, and let T'} be the first time at which person i knows everyone’s
information. In terms of the matrix formulation, T; is the first time that the ith
row of A (t) has no zeros, and T'% is the first time that the ith column of A (¢) has
no zeros. Since each Bj; is symmetric, it is clear that one has the following result.

Lemma. The distributions of the vectors (T,---, T.) and (T, -+, T%) are
equal.

By definition, C = max =is. 1 = MaXizi=. I 5. Moon used the observation that
E(C)=z E(T)) to obtain his lower bound. To improve this bound, it seems
necessary to consider all the T. Let T, be the ith largest of the T% so that
Tiy=---=T%,=C Now let R, be the number of calls until each of the
persons 1,2,---,i has received a call. Then, fori=n—-2

1) E(C)2 E(T*s)+ E(Roi_).

This follows from the fact that, at time T, either i or i +1 persons know
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everything (since a call involves two callers). For the remaining n — i — 1 persons
to learn everything, each musi receive at least one call. If one defines
E{Ry)= E(R_.)=0, then (1) is obviously valid for i = n — 1 and i = n. Averag-
ing (1) over i, we have

n=2

2) E(C)zn' > E(TH)+n7' 2 E(R).
i=1 i=1
But, from the lemma,

E(T%)=3 E(T.)= nE(T)).

i=t =

E\r’j X

C’/’ Z E(TTJ:

[

Combining (2) and (3) gives
) E(C)z E(T)+n™'> E(R).
i=1

As in [4], E(T\) can be calculated by observing that T,= X,+ -+ X, _,,
where X, is the number of calls after i persons know person I's information until
i+1 know it. The X, are independent and geometrically distributed with
parameter p; = (2i(n — i))/(n(n — 1)). Hence E(X;)= 1/p; and

n=l 1 n-1
5) E(T,)=Zp:‘=”212{%+ L .}=n10gn+0(n).
i=1 i=]

n-—1

The calculation of E(R;) is slightly more complicated. We observe that the
process of generating calls at random is equivalent to the following: first

generate numbers N, N, - - - at random from {1,2, - - -, n}. Form the sequence of
pairs (N, N:), (N5, Ny),---. Delete from this sequence any pair for which
Naio1 = N, obtaining a sequence (Ni, N3),---. Then a call is made at time ¢

between N5, and Ni. Thus R, is the time at which N3, -+, N4, first contains all
of {1,---,i}. Let S be the first time at which N,, - - -, N5 contains all of {1, - - -, i}
and M be the first time at which N, ---, Ny contains {1,---,i}. Clearly
M = §/2. Next let A, be 1if Nay_, = Ny, and 0 otherwise. Put K = 2L, A, and
note that R, 2 M — K. Since E(A.)= 1/n, Wald’s lemma ([2], p. 380), shows
E(K)= E(M)/n, so

(6) E(R)=(1- n"YEM)= (1- n"YE(S)/2.

But § = B;+---+ B, where B, is the time between the occurrence of the
(j — 1)th and jth elements of {1,2,---,i} in N,,---, Ns. So B, is distributed
geometrically with parameter (i —j+1)/n. Hence E(B;,)=n/(i—j+1). So
E(S)=n Z;.,j”". Combining this with (6) gives

n-2
) S E(Ri)éénlognwLO(n),
i=1
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3. The upper bound

We first note that

/ \ P
P(C .>_u)=P<kma>«; Zﬂ)iu =nP(T z u)
1sisn /
Mow, using the well-known formula E{C) = [7 F(C Z u)du ([2], p. 148}, we se=

that, for any ¢ > 0.

E(C)= f P(C = u)du +f P(C = u)du

©) -
=i+ nf P(T,z u)du.

The exact distribution of T, is known from Section 2, and thus
n—1
(10) P(T\zu)= e “E(e ™) =e ][] pe’/(1—qe’),
i=1
where p; = 2i(n — i))/(n(n — 1)), and ¢; = 1 — p.. In (10) we must have 1 — q.¢’ >

0so e *>1-2/n Write 7, = I1/2! pe*/(1 — qi¢*) and then substitute (10) into (9)
to obtain

(11) E(C)=t+ns e "m.
Setting e * = 1— ¢/n with ¢ <2, we have
(12) log 7, = = Z log (1= ¢/(np.)) = 2 2 i (c/(npy)).

If we set b; = 272 (¢/(np:)), we have (as in [5]), b, = c logn, and

Srn<EEen () <E (S a-enr

i(n~

since (n— D/(i(n—i))=lforl=i=n-1 Now

2(1&11!)):2{%4_%(%“1“1) (n1 )} o,

so that, by (12), there is a constant M for which

logm. =clogn+M(1-c/2)".
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Since s >1-e¢7° = ¢/n, (11) now becomes
(13) E(Cyst+cexp{2logn—n""ct+clogn+ M(1—c/2)).

On setting ¢ = 2(1 - (logn)™"*) and t = 3nlog n + An(log n)'”, the exponent in
(13) becomes

logn—(2ZA -1~ M)(logn)”+2A =logn + 2A,
if we choose A = (M + 1)/2. Then (13) becomes

E(C)é%n logn + An(logn)"?+ ¢ 'nexp(ZA)
(14)

[\S QYY)

nlogn + O(n(log n)"),
which completes the proof of the theorem.
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