Complexity-Based Tools for Automated Learning

Timothy Law Snyder
Department of Computer Science
Georgetown University
Washington, DC 20057

J. Michael Steele
Department of Statistics

The Wharton School
University of Pennsylvania

Philadelphia, PA 19104

EXTENDED ABSTRACT (4800 words, August 14, 1991)

A theoretical basis for automated learning is provided that is motivated by the need for
tools for training and testing image recognition devices. The foundation rests extensively
on ideas from theoretical computer science, and the model easily extends to the general
problem of automated learning.

1. Introduction

The objective of this paper is to develop a complexity-based paradigm for the training of image recogni-
tion devices. The models and examples used offer a bridge between the problems of automated learning and
some classical results from theoretical computer science. Though we use the image generation/recognition
problem as a prototypical example, our paradigm is general enough to apply to virtually any form of auto-
mated learning.

Most of the technologies currently applied to image recognition require training the recognizer. In this
training, the recognizer is provided a large number of incidences of feasible input images and is given feedback
on the accuracy of its responses. For the training to be effective, the training data must be appropriate and
ofter needs to be extensive. In the well-studied context of optical character recognition, one can easily
generate relevant data in the quantities required, but in other important contexts, the practical problems
associated with the physical generation of the training data are nearly insurmountable. Even in less complex
circumstances, if one requires a high level of recognition correctness, say on the order of one error per million
trials, then one immediately finds a compelling need for training data sets that are much larger than can be
achieved by physical generation.

The traditional problems that arise when trying to generate data suitable for training a learning device
are not related to complexity theory. In image generation, for example, one quickly finds critical problems
in statistical modeling, image modeling, and image perturbation. Still, for the problems of generation of

instances for training and testing the quality of learning, there is a foundational need for the generation

problem to be easy and the for recognition problem to be hard. Though these intuitive descriptions do not
conform to off-the-shelf tools of computational complexity, the insights of computational complexity still can
be made relevant to thre problems one faces in practice.

When one considers the rigorous complexity theory of automated training, a useful paradigm that arises
is that of an adversary-based generation/recognition. We present such a paradigm in Section 2, along with
a key example. The example deals with a problem from the theory of graphs rather than true imagery, but
its sixﬁplicity sorts out many issues that have been considered problematic for some time.

Besides simply bridging the gap between traditional automated learning and classical complexity theory,
our paradigm offers other advantages. For example, the generator is afforded virtually complete control over
the difficulty of the problem instance presented to the recognizer. Section 3 develops several scenarios
that the generator has at its disposal; these include complete information versus partial information, and
subversive partial information. The distinctions seem to be new—yet essential-—to the rigorous discussion
of image generation driven by theoretical computer science.

Section 4 contains additional examples that illustrate the range of new possibilities the paradigm offers.
Included are the specification of the data to be transmitted to the recognizer, the impact that variations in
this data have on the complexity of recognizing the image, and algorithmic issues involved with generating the

images. Section 5 illustrates strategies that the recognizer can use for the scenarios developed in Section 3.

2. A Generation/Recognition Paradigm

Our goal is to generate a set of high-complexity images that are in certain circumstances amenable to
low-complexity recognition. We begin by noting that there is a massive body of literature that deals with
the complexity of problem solving, especially from the computational standpoint (see, e.g., Aho, Hopcroft,
and Ullman (1974), Papadimitriou and Steiglitz (1982), and Garey and Johnson (1979)).

In the analyses, discussions, and examples that follow, we uniformly use the worst-case measure of
theoretical computer science as our measure of complexity, and we assume the reader is familiar with the
complexity classes P and NP-complete. We define NP-complete problems to be of high-complexity in terms
of recognition; problems in P, however, we consider to be low-complexity recognition problems. This simple
distinction results in a wide variety of image-generation examples, as we will show. For us, of course, a
problem instance is an image and some supplementary information, which we define as follows.

Let X be a set of images. Of these, only a subset will be feasible; let the feasible set of images be F C X.
The images in F belong to two categories. The first category is the set of images in F that possess some
predetermined criterion or criteria; these images comprise the set of “yes” instances. The second category
is the subset of all images of F that fail to possess at least one of the features of merit that distinguish the
yes instances from the no (non-yes) instances. For any image z € X, let

1, if zis a yes instance;
y(z) = . ,
0, if z is not a yes instance,

(2.1)

So, the function y : X — {0, 1} partitions the set of images into “yes” and “no” instances.

2

Let the set of yes instances be Y C F C X, ie,, ¥ = {z: y(z) =1, 2 € F}. The recognizer needs to
determine, for a given problem instance, whether £ € . Note that the definition of) requires that a yes
instance must be feasible.

We can completely define the set)’ of yes instances by an attribute set 4 = {A;, Aq, ..., Ax}, where
each A; is an attribute of a yes instance. Formally, for all 1 <i < &k, let A; : X — {0, 1}, where 4;{(z) =1
if and only if the image z possesses the attribute associated with A;. For an image to be considered a yes
instance, it must possess all the A;. Furthermore, we require that if the recognizer if in possession of the
entire set A, then, for all z € X, there exists a polynomial-time algorithm to determine whether = €).

The notion of attributes allows us to model the notion of partial informat}on, which we define as a
proper subset A’ of A. The complete information set, naturally, is A, and the no information corresponds
to A=0.

Along with the attribute set A, the generator creates (or is given) a feasibility set B = {By, B, ..., B;}.
The B; are also yes/no functions, with B; : X — {0,1}, for 1 < { < j, and B;(z) = 1 if and only if satisfies
the feasibility condition associated with B;. An image z € F if and only if Bi(z) = 1forall 1 <i < j. We
restrict the feasibility conditions to be such that, for all z € X, the computation of B(z) can be accomplished
in polynomial time.

Combining the conditions required by the attribution and feasibility sets, we can now completely char-
acterize V:

z€Y & Ai(r)=1lforall 1 <i<kand Bi{z)=1forall 1<i<j (2.2)

For some problems and applications feasibility is not an issue. In these cases, weset B =@ and F = X,
thereby making all images of A’ feasible, focusing only on the attribute set of the images.

We now have a model that allows us to present our generation/recognition paradigm. In words, the
paradigm is as follows. First, the full attribute and feasibility sets are established, i.e., A and B (hence,)
and F) are determined. The following process is then repeated. The image generator creates, using some
algorithm or system of rules, an image * € X along with the value of y(z), and, sometimes, some extra
information in the form of a subset of A. The subset can be empty, a proper subset of 4, or all of A.
The generator then passes z and the selected attributional information to the image recognizer, which must
determine y(z). Based on previous experience, the recognizer proceeds by making the best selection it is
able to make for the value of y(z), and it passes this “best guess” to the generator. The generator then
makes the recognizer privy to the true value of y(z), informing the recognizer of the correctness of its guess.
The process is repeated, with the generator controlling the difficulty of the recognizer’s task by its selection
of the attributes that are passed along with each images.

More formally, let G be our image generator, and let R be the image recognizer. Though we could
formally model G and R using functions, we choose this notation to keep the description simple. The

following eight-step process characterizes the image generation and recognition paradigm:

1. G establishes (or is given) X, A, and B,
2. From A and B, G forms the problem instance (z, A’, B, y(x)), where ¢ € X, A' C A, and

3

y: X — {01}, withy(z) =1 < z €},

3. G passes (z, A’, B) (but not y{z)) to R;

4. R first reconefles whether £ € F by computing B;{x) for all 1 < ¢ < j (by definition, this can
be done in polynomial time);

5. If Bi(z) =1forall 1 <i<j(ie,if z € F), then R attempts to reconcile whether z € Y by
computing, if possible, 4;(z}, for all 1 <i < k;

6. From the results of Steps 4 and 5, R then guesses whether r € J by computing r(zr), where
r: X — {0,1} is R’s best guess for y(z);

7. R passes r(z) to G; and

8. G computes and passes to R the value 1(r(z)), where 1(r(z)) = 1 if and only if r(z) = y(z)

(i.e., if and only if R’s guess r{z) is correct).

Of course, Steps 2 through 8, which comprise a single iteration of the paradigm, are repeated as the recognizer
is trained, We note that the entire feasibility set B is passed to the recognizer. This means that the
recognizer can determine the feasibility of z in low-complexity time. Hence, the potentially laborious part
of the recognizer’s task is in dealing with the A;’s, which are selectively revealed at the discretion of the
generator.

The generation/recognition paradigm gives us a framework we will use in future examples and augmented
models. We first present an example that will guide us through the concepts associated with these models.
Though the example is perhaps too simple, we will see that it contains a surprising richness in terms of the
generation and recognition issues it invokes.

Let X = {G : G is a graph }, so that the image generated is a graph G = (V, E) € &, and let d(v), for

a vertex v € V, be the degree of v. The following complete attribution set is known to the image generator:

A= {A,, A2},

where

A(G) =1 < G has a Hamiltonian cycle, and 23)
2.3

AG)=1 < ForallveV, d(v)=2.
Furthermore, let B = @, so that F = Y.

Clearly, the complete problem instance (G, A) is in P because, if the recognizer determines that A, is
true for G, then the normally NP-complete attribute A; can be easily reconciled just by ascertaining whether
G is connected. This gives us a linear-time algorithm for determining y{G)} in the presence of the complete
information set A, provided the recognizer is smart enc;ugh to resolve Az before attempting to resolve A4;.
{The problem of the order of resolution of the attributes by the recognizer will be formally addressed in
Section 5.)

But, the generator has the option of passing any subset of A to the recognizer. In the next section, we

survey the strategies the generator can use to vary the difficulty of the recognizer’s task.

4

3. Options for the Generator: Complete, Partial, and No Information

By its definition of the attribute set A, complete knowledge of A leads to low-complexity (polynomial-
time) recognition. In the generation/recognition paradigm, however, the generator may pass only partial

information A’ C A or no information at all to the recognizer. This leads to three general scenarios.

3.1. The No-Information Scenario

If the problem instance is void of supplementary information and consists only of an image, then the
recognizer must perform its task in the presence of no information. The perils of this scenario are discussed

in the full version of this paper.

3.2. The Partial-Information Scenario: Subversive vs. Non-Subversive Information

In most circumstances in which a recognizer is likely to be used, the recognizer has clues as to what it
is attempting to recognize in the form of reference standards, pre-programmed procedures, or A; that arrive
with the current or previous images. This corresponds to the partial information scenario A’ C A, with
A # A

We can subdivide the partial-information scenario into two categories: subversive and non-subversive
partial information. The key feature that separates the two categories is the nature of the information that
is withheld by the generator, i.e., the attributes belonging to A — 4’. If the problem instance formed by an
image and the partial information set A’ belongs to P, then we say the partial information is non-subversive,
for the information is complete enough to guarantee the existence of a polynomial-time algorithm for the
problem instance, making it of either current or eventual low-complexity.

Note that non-subversive partial information does not, however, guarantee that the recognizer will
discover all the key ingredients, A, that allow it to determine without error the value y(z) for all # € X. So,
even in the presence of non-subversive partial information, the recognizer’s task remains non-trivial.

In some cases, key or critical attributes of 4 will be withheld from the recognizer. If these ingredients
are such that the problem instance resulting from an image and A’ is an instance of a problem that is NP-
complete, then we say that the partial information is subversive, since the withheld information in 4 — 4’ is
necessary if the image is to be recognized with low complexity.

To illustrate these concepts, we return to the example of Section 2, where X = { G : G is a graph } and
A ={A;, Az} and A; and A; correspond to G having a Hamiltonian cycle and being of regular-degree two,
as specified by (2.3).

Consider the recognizer’s task in the presence of subversive partial information. If the recognizer is

given the image G along with
A ={A,}, (3.1)

without the augmenting information in A, that makes the problem tractable, it must resolve whether & has

a Hamiltomian cycle. In general, this is an NP-complete problem.

5

Furthermore, consider now the situation in which the recognizer is given A’ as defined in Equation (3.1),
and G contains a Hamiltonian cycle but does not satisfy attribute Az in (2.3). In this case, even if the
recognizer is lucky enowgh to find a Hamiltonian cycle in G and therefore guess that y(G) = 1 (by transmitting
r(G) = 1 to the generator), its efforts would be frustrated when the generator responds with y(G) = 0
(actually, 1{r(G)) = 0) since A3 is not satisfied in G. This is why we call partial information such as A’
in (3.1) subversive: without the information in 4 — A’, the problem is NP-complete, and, even if the NP-
complete problem instance is “solved,” the recognizer is still faced with a situation that is barely better than
having no information at all.

Since NP-complete problems are intractable, it is of paramount priority that the recognizer be able
to identify subversive partial information when it is received. Since so many NP-complete problems are
well-cataloged (Garey and Johnson (1979}), we deem this to be a feasible task. In Section 5, we consider
general options available to the recognizer when it is faced with subversive partial information.

Before doing so, we first present, in the next section, more examples that serve as reasonable systems

for the generation of recognizable high-complexity images.

4. Examples of High-Complexity Generation with Low-Complexity Recognition

This section contains examples of problems that suit our goal of high-complexity images that are recog-
nizable in low-complexity time for a system (recognizer) with complete information. To make the recognizer's
task more difficult, the generator will usually choose an attribute set that results in the transmission of sub-
versive partial information.

Our examples come in three flavors: (1) graph-theoretical, (2) string-based, and (3) image-like. For each
example, we will discuss the problem definition, the proposed partial information to be ttansmitted to the
recognizer, the issues involved with recognizing the image, and the issues, including feasibility and available
algorithms, involved with generating the images.

We begin with the graph-theoretical examples, the first of which is the prototypical example of the last
section. The reader is reminded that the case B = # corresponds to F = X, i.e., the case in which feasibility

is not an issue.

4.1. Graph-Theoretical Examples

1. Hamiltonian Cycles in 2-Regular Graphs

i.A. Problem Definition:
Let ¥ = {G: G is a graph } and A = {A4,, A2}, where, for G=(V,E)e X, 4;(G) =11if
and only if G has a Hamiltonian cycle and A(G) =1 if and only if d(v) = 2 for all v € V.
Also, let B = 0.

1.B. Partial Information:

A" = {A,}; subversive.

1.C.

1.D.

Recognition Issues:

For the complete information case, the recognizer needs only to realize that x € ¥ if and
only if G is cennected. Once this 1s accomplished, the recognizer can determine mernber-
ship in Y in linear time using any search method, say, depth-first search (Tarjan (1972)).
The partial information case is subversive.

Generation Isstes:

Generating the images is trivial: To generate a G € X such that y(G) = 1, the generator
simply chooses a non-negative integer n and forms a cycle on n vertices. An image G
that fails to be Hamiltonian but satisfies A, is simply a set of disjoint cycles, and a G
that is Hamiltonian but fails A, can be generated by beginning with a simple cycle and
augmenting the cycle graph with additional edges. If the generator wishes to generate
graphs that satisfy neither condition, the key issue is the Hamiltonian path. It is not
trivial to generate a highly-complex graph that is guaranteed to not be Hamiltonian.
Perhaps the easiest way is to generate a graph that is disconnected. A second and more
reasonable example guaranteed to be non-Hamiltonian is a bipartite graph whose total
number of vertices is odd. Many canonical graphs, such as the Peterson, Horton, and
Herschel graphs, are also known to be non-Hamiltonian (Bondy and Murty (1976)).

2. Traveling Salesman Tours of Short Length; Christofides’ Heuristic

2.A.

2.B.

2.C.

2.D.

Problem Definition:

The traveling salesman problem is to find, in a graph G = (V, E) with weight function
w : B — |R, a Hamiltonian cycle of smallest weight, where the weight of the cycle C
is 3°.cc w(e). The traveling salesman problem is NP-complete. One heuristic method
that finds a reasonably short tour is Christofides’ heuristic (Christofides (1976)), whick
is guaranteed to find a tour T¢ such that weight(T¢)/weight(T,) < 3/2, where T, is an
optimal traveling salesman tour. Let X be the set of all weighted graphs. For G € X, let
A = {A;, Az}, where A;(G) = 1 if and only if G contains a tour of weight less than «,
where o is given. Let A5(G) = 1 if and only if G contains a tour of weight less than o
that can be found by Christofides’ heuristic. Also, let B = 0.

Partial Information:

A’ = {A;}; subversive.

Recognition Issues:
Recognition is easy in the presence of complete information, for Christofides’ heuristic
runs in polynomial time. If the image G fails to have a tour of weight less than a that can
be found by Christofides’ heuristic, then G ¢ Y. On the other hand, if A3(G) = 1, then
A1(G) = 1, as well, for the optimal tour has weight no more than that of a tour found by
Christofides’ heuristic.

Generation Issues:

To generate graphs that have traveling salesman tours of weight less than «, simply start
with a cycle, say, of length n, assign a weight of a/n — ¢, where € > 0, to each edge in
the cycle, then augment the cycle with any number of edges, assigning weights to the
new edges arbitrarily (or randomly). To build a graph with no traveling salesman tour of

7

length less than «, again begin with a cycle on n vertices, then augment the graph with
as many edges as desired. But, this time, assign a weight of a/n or more to each edge.
Since the trayeling salesman tour must contain exactly n edges, all tours are guaranteed
to be of weight at least a, which is too much for the graph to belong to).

3. Euclidean Minimum Steiner Trees with One Steiner Point

3.A.

3.B.

3.C.

3.D.

Problem Definition:

The Euclidean Steiner tree problem is to find a minimum-length graph that spans a given
set of points § C IR?, where the interpoint distances are determined by the Euclidean
(L2) metric and the allowable edges come from the complete graph on 5. The length of
the optimal graph, which which is called a Euclidean minimum Steiner tree, is sum of its
edge-lengths. The Euclidean Steiner tree problem is NP-complete (Garey, Graham, and
Johnson (1976)). When forming a minimum Steiner tree of S, the tree can be augmented
with points that do not belong to S; such points are called Steiner points. Let X' be
the collection of all point sets S of cardinality n. For § € &, let A = {A;, As}, where
A;(S) = 1if and only if S has a minimum Steiner tree of length less than o, where « is
given. Let Az(S) = 1 if and only if S has a Steiner tree of length less than a, when the
problem is constrained so that a maximum of one Steiner point is permitted. Also, let

B=20.
Partial Information:
A’ = {A,}; subversive

Recognition Issues:

Recognition is surprisingly easy in the presence of complete information. Though the
problem associated with A, is NP-complete, the problem associated with A3, the 1-Steiner
problem, has an efficient quadratic solution (Georgakopoulos and Papadimitriou (1987)).
Since the 1-Steiner problem associated with attribute As is solvable, and since the existence
of a Steiner tree of length less than « using only one Steiner point implies the existence of
a minimum-length Steiner tree of length less than « (using any number of Steiner points),
the recognition problem is solvable in the presence of complete information.

Generation Issues:

Given a, the generation issues for this problem are tough, for it is difficult to find a point
set that guarantees a minimum Steiner tree of a given length. The best way to generate
point sets that do or do not satisfy attribute A, for the 1-Steiner problem is to choose o
after constructing the point set. In other words, choose any set S, then compute the length
of a minimum 1-Steiner tree using Georgakopoulos and Papadimitriou’s algorithm. Once
the length of a minimum 1-Steiner tree is known, o can be chosen to exceed or not exceed
the length. Another strategy, for point sets in the unit cube, chooses an a that exceeds
the maximum possible length that the Steiner tree can assume (see Snyder (1990)).

4.2. String-Based Examples

