establish that $\hat{\lambda} = u(\hat{\theta}) \to S_u^2(\hat{\lambda}) \leq S_u^2(\lambda)$ for all λ in Λ . In the "classical" linear model $E_{\theta}(\mathbf{X}) = \mathbf{b}(\mathbf{\theta}) = \mathbf{B}\mathbf{\theta}$ and $Cov(\mathbf{X}) = \mathbf{A}^{-1}$. However, the assertion above holds even without this particular specification of $\mathbf{b}(\theta)$ and \mathbf{A} .

Indeed, as one can see, this invariance property could be claimed for any method of estimation which defines the estimate, if it exists, as the one minimizing the value of a suitable non-negative "distance" function.

REFERENCE

[1] Zehna, Peter W. (1966). Invariance of maximum likelihood estimators. *Ann. Math. Statist.* 37, 744.

When Successes and Failures are Independent a Compound Process is Poisson

J. M. STEELE*

Let N be a random variable which takes on nonnegative integer values, and let X be a random variable which takes on values E_1, E_2, \ldots, E_r . Now let Y_k denote the number of occurrences of event E_k in N independent trials of the random variable X. If N is Poisson, it has been observed ([1], p. 217) that Y_1, Y_2, \ldots, Y_r are independent. In the case that X is Bernoulli, and E_1 denotes success and E_2 denotes failure this yields the interesting situation that the random variables Y_1 and $Y_2 = N - Y_1$ are independent. It should be noted that the random variables determined by Y_i conditioned on the event N=n need not be independent, but with this precaution one can express the independence of Y_1 and Y_2 by saying that in a Poisson number of trials the number of successes is independent of the number of failures. The theorem of this note forms a converse to the preceding observations.

Theorem. If there exist two of the Y_i which are independent then N must be Poisson.

Proof. Suppose Y_1 and Y_2 are independent, and let f(s) be the generating function for the random variable N. Then letting $p_i = P[X = E_i]$ we have that the generating function for Y_i is $f(1 - p_i + p_i s)$. Calculating the bivariate generating function for Y_1 and Y_2 gives

$$\sum_{k,l} P[Y_1 = k, Y_2 = l] s^k t^l = f(1 - p_1 - p_2 + p_1 s + p_2 t).$$
(1)

Now, by the independence of Y_1 and Y_2 we have

$$f(1 - p_1 - p_2 + p_1 s + p_2 t)$$

$$= f(1 - p_1 + p_1 s) f(1 - p_2 + p_2 t). \quad (2)$$

Letting $a = 1 - p_1 + p_1 s$ and $b = 1 - p_2 + p_2 t$ yields the equation

$$f(a+b-1) = f(a)f(b).$$
 (3)

If f(0) = 0 then setting $a = b = \frac{1}{2}$ in equation (3) gives $0 = f(\frac{1}{2})$, which is impossible since f(s) is the generating function of a non-negative random variable. Hence we have $f(0) \neq 0$. Now let g(s) = f(s)/f(0). We have

$$g(a)g(b) = f(a)f(b)/\lceil f(0) \rceil^2 = f(a+b-1)/\lceil f(0) \rceil^2. \tag{4}$$

Now note that letting b = 0 in (3) gives f(a - 1) = f(a)f(0), and then replacing a by a + b gives f(a + b)f(0) = f(a + b - 1). This yields

$$g(a)g(b) = f(a+b)f(0)/[f(0)]^2 = g(a+b).$$
 (5)

Since g(s) is monotone (5) has the unique solution $g(s) = e^{\mu s}$ where $\mu \ge 0$ is a constant.

Now we have g(1) = 1/f(0) so $f(0) = e^{-\mu}$, and $f(s) = e^{-\mu+\mu s}$ which is the generating function of the Poisson distribution.

Corollary. If two of the Y_i are independent then all of the Y_i are independent.

REFERENCE

[1] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, New York (Wiley), 1968 (3rd ed.).

^{*} Dept. of Mathematics, Stanford Univ., Stanford, Calif. 94305.