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The length of the minimal spanning tree on the complete graph on n vertices with edge weights
determined by independent non-negative random variables with distribution F is proved to
converge in probability to {(3)/F’(0), provided only that F have a non-zero derivative at the
origin. In particular, no other smoothness or moment conditions are placed on F. This augments
the result of Frieze for random variables with finite variances and differentiable distribution.

1. Introduction

Let G denote a complete graph with vertex set V' with cardinality #» and edge
set E. Weights are assigned to each e€ E by means of non-negative, independent
random variables X, with common distribution F. We further let L, denote the
cost of the minimal spanning tree of G, i.e.

L,=min Y X, (1.1
T eeT
where the minimum is taken over the set of all n” =2 trees which span V.

Under the assumption that the X, are uniformly distributed on [0, 1], Frieze [4]

established that

lim E(L,)=(3)= ¥ k3=1.202... (1.2)
n—oo k=1

and
L,—{(3) in probability as n—oo. (1.3)

In Frieze [5] the result was extended to cover the case of continuous F with finite
variances. The purpose of this note is to extend Frieze’s theorem to the widest
possible class of F. In particular, the next section establishes the following result:

If X, are independent non-negative random variables whose continuous distri-
bution function F is differentiable from the right at 0, with F'(0)>0, then L, con-
verges to {(3)/F'(0) in probability, i.e., for all €>0
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P(|L,-((3)/F(0)|>¢£)—~0 as n—os. (1.4)

The proof of this extension leans only on Frieze’s result for uniform random
variables [4] and is developed independently of Frieze’s extension to F with finite
variance. The main issue rests in seeing how a variant of the usual probability
transform device can fit together rather neatly with a greedy algorithm. This recipe
for extension can be expected to be useful in some related problems, but the princi-
pal aim is to make Frieze’s remarkable limit as widely useable as possible.

2. The limiting result

The independent random variables X, permit us to define a new related family
of independent random variables Y, which have the uniform distribution. If F were
continuous we could take Y,=F(X,), but for F with jumps more care is required.
For each X,, we will define a new random variable Y, which depends on X, and
possibly on an additional independent uniformly distributed random variable U,
when X, € A, the set of atoms of F. We will define Y, by '

¥, {F(Xe) if X,¢A,

FX,—)+ UIF(X,)— F(X,—)] if X,cA. 2.1)

What one should observe about the Y, is that although the Y, are not a deter-
ministic monotone increasing image of the X,, there is a monotone increasing
ordering of the X, such that

Y, <Y, implies X,<X,.

The point of this arrangement is now brought out by Kruskal’s algorithm, where
the edges are considered in non-increasing order and an edge is chosen for inclusion
in T if it does not complete a circuit (see, e.g., Aho et al. [1, pp. 234-237]). Since
there is an ordering of the edges which is consistent with non-decreasing values of
both Y, and X,, the Kruskal algorithm shows there is a tree 7 which is a simul-
taneously minimal spanning tree for both of the weight sequences {X,} and {Y,}.

Now to express the hypothesis that F is differentiable at the origin in a convenient
form we write F(x) =ax +xg(x) and F(x —)=ax+ xh(x) where g and 4 go to zero as
x—0. By the definition of Y, given in (2.1) and the definitions of f and g we have
for the double minimal spanning tree calculated above,

E /Yeh(A/e)S Z Ye—a Z )(eS Z Xeg(Xe) (22)
eeT eeT eeT eeT
It will suffice therefore to show that with high probability the two outside terms of
(2.2) are small compared to },_, X,.

To bound those outside terms it will be useful to have a large deviation result for

X, when e is an element of the minimal spanning tree. We begin by considering a
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general random graph G =(V, E) such that the edge set E is constructed by con-
sidering each edge e of the complete graph and accepting e as an element of G with
probability p, 0<p<1. We will get a simple and succinct bound on P(G is con-
nected) by following a route like that used for the assignment problem in Karp and
Steele [6]. The present method is easier (but less precise) than the methods used in
Knuth and Schonhage [7] or Erdos and Rényi [2] for slightly different models.

If G is disconnected, then there exists a k-set, 1 <k =<n/2 which is not connected
to its complement, so

n/2
P(G is disconnected)< Y, <Z>(1 _p)kn=h
k=1

k
<2 ¥ <E e—n/2>
1=k=n2 \ K

where the second inequality is obtained using the symmetry of the previous sum-
mands and the standard bounds

k
ne
<Z>s<—k—> and 1-p=<e”.

For np=2(1 +log n) the summands are decreasing so the whole sum is majorized by
n/2 times the first term. This proves that

P(G is disconnected)<en*e " (2.3)

for np>2(1 +log n); and, since the right hand side is otherwise larger than one, we
see (2.3) holds for all 0<p<1 and n=1. Since for each e, P(X,<A1)=F(1), in-
equality (2.3) also says

P<max Xe>l> <en’e "FA2, 2.4)

eeT

It is now easy to show that in probability we have

ZT Xeg(Xe)=o< ET Xe>. @.5)

We first let g*(x):maXOSysxg(y) and note that g*(x)—0 as x—0. We then fix
£>0, choose A so that g*(1)<e, and note that

P( Y Xe(X)ze ¥ Xe>

eeT eeT

eeT eeT eeT eeT

sP<g*(/1) Y Xe+< Y X€>I<maxXez/1>Za y Xe>

= P<max X, = ,1> <en’e "N

eeT
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which establishes (2.5). The completely analogous argument can be applied to
Yeer Xh(X,), so inequality (2.2) now says

o

as n—oo. By Frieze’s theorem for the uniform distribution Y.c7 Ye converges to
{(3) in probability so we have established that as n— oo

L X~ {B3)/F(0)

eeT

aZXe_ZYe

eeT eeT

2£>->0 2.6)

in probability which was to be proved.

3. Concluding remarks

Frieze’s theorem provides one of the very few situations where an explicit limiting
value is known for a sum functional on a graph with random edge weights. This
provides the main motivation for pushing the distributional hypothesis to the most
general attainable. In the case of F'(0)>0 there does not seem to be any reasonable
way to push further than the result of this note, but if F”(0)=0 there remains the
possibility of a more precise understanding of Z, than the trivially obtainable result
that L,—co in probability. It seems within reason to expect proper rate results,
especially if F is assumed to be regularly varying at 0.

Another promising direction is the exploration of functionals which are kindred
to the minimal spanning tree. Walkup [9] has attained interesting bounds on the
assignment problem but obtaining the precise limit seems out of reach. Additional
functionals for which there are good prospects for progress can be foulnd in Fenner
and Frieze [3] and Lueker [8].
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