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Let M be a matrix with entries from {1, 2,..., s} with n rows such that no matrix
M’ formed by taking k rows of M has s* distinct columns. Let f(k; n, s) be the
largest integer for which there is an M with f(k; n, s) distinct columns. It is
proved that f(k; n,s) = s* — X}_, (?) (s — 1). This result is related to a con-
jecture of Erdos and Szekeres that any set of 2°-2 + 1 points in R? contains a set
of k points which form a convex polygon.

1. INTRODUCTION

The theorems provided in this note are motivated by questions like the
following: .

Suppose an # set x;, X, ,..., X, is colored by s colors in m
distinct ways. How large need m be to guarantee that there is (1.1)
a k set colored in all possible (i.e., s¥) ways?

Suppose that S is a class of subsets of a set X and that
{X1, X5 ,..., X} 1s an n-element subset of X for which m of the
sets A N {x;, X3 ,..., Xn}, A €S, are distinct. How large need (1.2)
m be to guarnatee that there is a k-element set {xi1 s Xiy geuns xik}C
{x15 X5 ,..., x,} for which there are 2* distinct sets
AN {x,—1 s Xiy seers xik}, AeS?

The first of these questions is new, but the second has been considered
previously. It has in fact been solved quite precisely by Sauer [4] in response
to a query of Erdds. An earlier independent solution was given in [5] in
connection with a probabilistic application, but the result of [5] was not the
best possible. In Section 2 of this note Theorem 2.1 gives a general result
by a new method which implies these earlier results and covers the fresh
ground indicated by question (I.1).

The third section gives a geometrical interpretation to a special case of
Theorem 2.1, and shows the relationship of the present work to a long-
standing conjecture of Erdos and Szekeres (see [1, p. xxi]).
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2. MAIN RESULTS

Let M be a matrix with entries from an s-symbol alphabet {1, 2,..., s}.
Now let f(k; n, s) be the largest integer such that there is a matrix M with n
rows and f(k; n, s) distinct columns such that no matrix M’ formed by taking
k of the rows of M has s* distinct columns.

To note the relationship of f(k; n, s) to question (1.1) one defines a corre-
spondence between matrices and sets of colorings as follows: M = (a;;),
where a;; = b and b is the color of x; in the jth coloring of {x;, x, ,..., X,}.
For any subset of elements {xi1 s Xiy sees x,-k} C{xy, X5 5..., X} there is a
corresponding subset of k rows of M which forms a submatrix M’. Further,.
since any coloring of {xi1 s Xiy pees xik} corresponds to a column of M, the
number of distinct colorings of {xi1 s Xiy 3ees xik} equals the number of distinct
columns of M. In the notation of (1.1) we therefore have m = f(k;n, s) + 1.

The main result can now be stated quite succinctly.

THEOREM 2.1.

fk; n, 5) = s™ — _fk (’]’.)(s — 1), @.1)

Proof. First it will be shown by construction that f(k;n,s) >
s" — Z;;k (;)(s — 1)*7, and then the opposite inequality will be proved
afterward by relating the general case to the first construction.

Define M to be the matrix consisting of all columns such that no column
contains k or more ones. Since Z;Lk ()(s — 1) is precisely the number of
columns with k or more ones, we see that M has s» — ¥, (*)(s — 1)~
columns. But since no k-row submatrix of M contains the column of all
ones we have f(k; n,s) > s" — ZL,C G)(s — D,

To obtain the opposite inequality we suppose that a matrix M has no
k-row submatrix with s* columns. To describe the columns which are missing
from M, let C,, C,,..., C, where (;) = 7 be a list of the k-element subsets
of the row indices. For each i = 1, 2,..., 7 there is a submatrix M, formed by
the C; rows of M. Also by the hypothesis there is a k-vector v; which is not
a column of M;. Now for each such v; let Z; be the set of columns of the
n X s™ matrix which equal v; when restricted to the index set C;. Finally
observe that none of the columns of Z = J;_, Z; is a column of M.

If v denotes the number of columns of M then v < s — | Ui, Z: |,
(where | |J;_; Z; | denotes the number of the columns in the union (J;_; Z;).

The proof will be completed by obtaining a lower bound on | J'_, Z; |.
To do this we define a function on column vectors w = (w; , W ,..., w,) as
follows:

D(w) = w', where w' = (W, wy',..., Wy,) 2.2)
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and
w; =1 ifweZ;andje C;,forsomei=1,2,..,r,
2.3)

= Wy otherwise.

The function @ has several elementary but valuable properties which we
first note and then prove:

oz <1z forz=)z. (2.4)

=1

D(Z,) contains all columns of the n X s* matrix which when

restricted to C; equal the k-column vector (1, 1,..., 1). 2.5)
@(Z) contains all n-columns which contain k or more ones. (2.6)
| 8@) = Y. ()i — 1. @7

iz

The proof of (2.4) is immediate since @ is a function, and (2.5) is just a
consequence of (2.3). To prove (2.6) note that if w has k or more ones, then
there is a C;, restricted to to which w has all ones, and hence w € (Z,),
by (2.3) and the definition of Z,. Finally (2.7) comes from (2.6) and easy
counting. ’

The last calculation is that

n
v<st =1zl <s = 0@ <= % (He—nn @)
=k
which completes the proof.
The preceding method also permits a precise understanding of those
extreme matrices which lack k-row submatrices with a complete column set.
Such matrices are characterized by a “missing” column vector.

THEOREM 2.2. Suppose M is an n-row matrix with s™ — Z;;k G)(s — i
distinct columns and which has no k-row submatrix with s* distinct columns.
Then there is an n vector v such that for each column w of M one has w; #* v;
Jor at least k values of the index i.

Proof. In the notation of the previous proof, we note that if there is no
v as required above then there are v; and v; such that C; N C; 5% @ yet v,
and v; are not equal on C; N C; . By the definition of @ and Z; we therefore
have | D(Z; U Z,)| < | Z; v Z; |. Consequently, we have | D(Z)| < | Z|.

But, since M has s* — ZL,C ($)(s — D~ distinct columns, we note
| Z | = i (O — D7, However, by (2.7) we know | D(Z) >
i (D(s — 1) so the inequality | ®(Z)| < | Z | vields a contradiction.
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3. RELEVANCE TO A FAMoOUs CONJECTURE

Is it true that out of every 2¥~2 4 1 points in the plane one can always
select k points so that they form a convex n-sided polygon? This problem,
posed in the winter of 1932-1933, published in 1935, promulgated daily,
is still unsolved for & > 6 [1, pp. xxi, 42; 2; 3].

The results of Section 2 are relevant to this conjecture of Erdos and
Szekeres, since they provide a sufficient condition that a set contain a convex
polygon.

To see this let X be the plane and S the class of convex subsets of X.
Next define

A(xy, Xg 50y Xn) = [{x1, Xg 500, X} N A5 A S} (3.1)

that is, 4(xy, Xy ,..., X,) is the number of subsets {x,-l, Xq, ""’xh} C
{x1, X3 ..., X} such that {x,-l 5 Xiy 5eres Xi,} = {X1, X5 500y Xpf N A for some
AeS. Let 4;, j=1,2,., 4(x;, Xs,..., X,), be elements of S such
that each of the sets {x;, X5 ,..., X,} N A4; is distinct. These A; define a
n X A(x;, X, ,..., X,,) matrix as follows:

ai,-:1 if xiEAj,

—0 i x¢A,. (3-2)

By the definition of the 4; we know that M = (a;;) has 4(x;, x, ,..., X))
distinct columns so

A(xy, Xg yeey ) < fk; 1, 2) 3.3)

unless M has k rows which have 2* distinct columns. But since
A(x,~l > Xiy 5eees xik) = 2% if and only if the set {x,~l s X, seees xik} forms a convex
polyhedron, we have proved the following:

THEOREM 3.1. A4 sufficient condition that the set {xi, x,,..., x,} C R?
contains k points which form a convex polygon is that

Axy, Xy soy X)) > kg: (’J’) . (3.4)

To prove the Erdos-Szekeres conjecture it thus suffices to show that
(3.4) holds when n = 2*-% 4 1. Of course, condition (3.5) has only been
proved sufficient and quite possibly the Erdds-Szekeres conjecture can be
true without (3.4) being met. Still, there are several .possible uses of
A(xy , Xy 5.y X,) in this problem and (3.4) pinpoints the most direct one.

To gain another view of Theorem 3.1 one should note that it is possible
to give a more geometrical proof which avoids invoking the full strength
of Thecrem 2.1. For this proof, suppose Be{{x;, x5,..., x,} N 4: 4 €S}
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and let 9B denote the subset of B equal to the elements of B on the boundary
of the convex hull of B. We note that [0B| < k — 1 if {x;, x5 ,..., X}
contains no k-element convex polygon, since, indeed, @B is convex polygon.
Next note that there are precisely Z;:; (7) subsets of {x;, x, ,..., X,} With
fewer than k elements. Since B uniquely determines B we have

k-1 n
A(xl > X2 5eeey xn) < z ( ) (35)
=0 *J
unless {x;, X, ,..., x,} contains a k-element subset which forms a convex
polygon. This completes a second proof of Theorem 3.1.

4. A CLOSELY RELATED PROBLEM

In connection with the results given here and the Erdds-Szekeres con-
jecture the following question seems quite interesting:

What is the minimum value of 4(x;, x,,..., X,,) given that
{1, Xs,..., x,,} contains a k-set which forms a convex polygon? (4.1)
(The x; are assumed noncolinear.)

If this value is called g(n, k), it is trivial that g(n, k) > 2%, but a sub-
stantial improvement on this seems difficult. Still, by consideration of this
problem it may be possible to make progress of the yet unreachable con-
jecture of Erdos and Szekeres.
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