Mathematica and Diffusions

J. Michael Steele and Robert A. Stine

9.1 Introduction

A central aim of this chapter is to illustrate how symbolic computing can sim-
plify or eliminate many of the tedious aspects of the stochastic calculus. The
package Diffusion.m included with this book provides a suite of functions
for manipulating diffusion models, and individuals with a basic knowledge of
Mathematica should be able to use this package to expedite many of the routine
calculations of stochastic calculus. After demonstrating the basic features of this
package, we give an extensive example that applies the functions of the package
to a problem of option-pricing.

This application offers a derivation of the well-known Black-Scholes formula
for options pricing. The derivation exploits the idea of a self-financing portfolio
(Duffie 1988). Our goal is show how Mathematica simplifies the derivation of the
central expression in this problem. This task is to be distinguished from that
engaged in Miller (1990) which shows a variety ways to describe and use the
Black-Scholes formula.

In the next section we give a brief overview of the central idea of diffusions as
required by options pricing theory, and we introduce the notation that is needed-
This section is indeed very brief, and readers unfamiliar with diffusions shou}d
consider a text like that of Arnold (1974) or Duffy (1988) for the missing defal_ls
and intuition. Section 9.3 introduces the new Mathematica functions that
be needed in Section 9.4 where we present a Mathematica derivation of f%‘e
Black-Scholes formula. Section 9.5 demands more knowledge of Mathematict
since it describes issues of implementation and includes further examples of the
methods used in the extended example.

This package uses features found in Version 2 of Mathematica. Since some f’f
these features are not available in earlier versions of the software, problems
occur if one attempts to use the package without having upgraded to at Jeast
Version 2.0.

9. Mathematica and Diffusions 193

9.2 Review of Diffusions and Ito’s Formula

Diffusions form a class of stochastic processes that allow one to apply many of
the modeling ideas of differential equations to the study of random phenomena.
In simplest terms, a diffusion X; is a Markov process in continuous time { > 0
that has continuous sample paths. A key feature of diffusions is that there
exist two functions u and ¢ which together with an initial value X, completely
characterize each diffusion. Moreover, in many applications 1 and o have
physical or financial interpretations.

For this article we will assume that the scalar-valued functions x4 and o are
locally bounded, and let W; denote the standard Weiner process. Under these
conditions, a fundamental result of the Itd calculus is that there exists a well-
defined process X; having the suggestive representation

4 t
X: = Xo +/ w(Xs, s)ds + / o(Xs, s)dWs. (1)
0 0

The intuition behind this representation for X is that the function u determines
the instantaneous drift of X; whereas o controls its disperson or variability. If,
as in later examples, X; denotes the price of a stock at time ¢, then ¢ and ¢ may
be interpreted as the rate of return and the instantaneous risk.

Since the process W; is not of bounded variation, the second integral on the
right-hand side of (1) cannot be interpreted naively. For example, suppose that

we were to attempt to evaluate fot W,dW5 as the limit of an approximating sum
over partitions of the interval [0, ¢],

ZWSi(Wti - W), 0<tic1 <5 <t <L
i

Since W, is not of bounded variation, the value for the integral suggested by
such approximation turns out to depend upon how we choose to locate s;
in the interval [t;—;,%;]. Throughout this chapter, we adopt the convention
s; = t;_1. The resulting stochastic integral has a unique solution known as the
It6 integral. A very important reason for choosing s; = t,_; is that with this
choice a stochastic integral with respect to W; is always a martingale.

One of the most common and convenient ways to express a diffusion is to
use a notation that is analogous to that of differential equations. Rather than
use the stochastic integral to represent X; as in (1), one often uses a shorthand
notation:

dXt = /J,(Xt,t)dt + O'(Xt,t)th. (2)

This compact description of the process X; resembles a differential equation,
but it must be interpreted appropriately as just shorthand for (1).

An important property of diffusions is their behavior under smooth transfor-
mations. Perhaps the central result in the theory of diffusions is that a smooth
function of a diffusion produces another diffusion. Moreover, an explicit for-
mula due to Itd identifies the new process by giving expressions for the drift
and disperson functions. Suppose that the function f maps (®,®7) — ®,

194

J. Michael Steele and Robert A. Stine

and consider applying this function to a diffusion, say ¥; = f(X,t). Under
modest conditions on f, the process Y; is also a diffusion. One set of suf-
ficient conditions is to require continuous first and second derivatives of f
in its first argument and a single continuous derivative in the second. De-
note these derivatives by f, = 8f(x,t)/0z, fzz = 8°f(z,t)/0z*, and f; =
af (z,t)/0¢.

Under these restrictions on f, Itd’s formula guarantees that Y; is a diffusion
and gives the functions that characterize this new diffusion. Specifically, the
stochastic differential for ¥; = f(X;,t) is

dYs = {fe(Xe,) + (X2,) fo (Xt) + foa0? (Xe, 8) /2 At +{ fo (Xi, t)0 (X, t) } AW

(3)
This expression is not in the canonical form of (2) since the drift and dispersion
functions of Y; are functions of X; rather than Y;, but this problem is easily
remedied. If the transformation f has an inverse g so that

y= f(.’L‘,t) &L= g(y7t)a
then we can use this inverse to obtain the desired form. Substitution in (3) gives

dY: = {fi(g(Yz, 1), 1) + u(g(Y, 1), 1) f=(9(Y3, 1), £)+
fez0?(9(Ye, 1), 1) /2}dt + { f2(9(Ys, 1),)o(9(Yz, 1), t) }dWs

So indeed,
dY; = p(Y:, t)dt + 5(Ys, t)dW, (4)

for the indicated values of i and 5. The complexity of (4) suggests that we can
avoid some tedium if we put Mathematica to work managing the transformation
of the pair {u(z,t),0(z,t)} into {i(z,t),5(z,t)}

1to’s formula (3) can be made more revealing if one also introduces the notion
of the infinitesimal generator of the diffusion X;. The infinitesimal generator of
a diffusion measures the instantaneous rate of change in the expected value of
a transformation of a diffusion as a function of its starting value. Under some
natural conditions on the function f, we can define the infinitesimal generator as

Ea:f(Xta t) B f($7 0)

y)
where E, denotes the expectation conditional on the starting value Xo = -
This limit turns out to be closely related to the drift expression in [t&’s formula,
and one can show under mild conditions that Ax is the differential operator
that has the explicit form

AX f(.’L') = limt_,o

8 o 1 5 5)

By using the infinitesimal generator associated with the diffusion X;, we obtain
a more compact form of Itd’s formula,

dY't = df(Xtvt) = Adet + fx(Xtvt)o-(Xtvt)th-

9. Mathematica and Diffusions 195

9.3 Basic Mathematica Operations

9.3.1 Introduction to the Package

This section introduces basic functions that permit us to build and manipulate
diffusions. In order to follow the operations described here, one must first
import the package that defines the needed functions. The package itself is
located in the file named “Diffusion.m” which should be placed in a directory
which is easily, if not automatically, searched. The following command imports
the package.

In{l]:= << Diffusion’®

The names of most of the functions in this package begin “Diffusion”, though
some also have shorter, more convenient names. This convention allows for an
easy listing of the available functions via the built-in Names function.

In[2]:= Names["Diffusion*"]

Out[2]:= {DiffusionA, DiffusionChangeSymbol, DiffusionDispersion,
DiffusionDrift, DiffusionExpand, DiffusionExpandRules,
DiffusionFeynmanKac, DiffusionInitialValue,
DiffusionIteo, Diffusionlabel, DiffusionMake, .
DiffusionPrint, DiffusionSimulate, DiffusionSymbol,
DiffusionWeinerProcess, DiffusionWeinerProcessMake,
DiffusionWeinerProcessSymbol}

A brief synopsis of each function is available via the standard Mathematica
request for help; one precedes the name of the function of interest with a question
mark. For example, the following command reveals the syntax and a brief
description of the function which prints diffusions.

In[3]:= ?DiffusionPrint

DiffusionPrint[d] prints a formatted version of the
diffusion object d using subscripts and symbolic names.

The next section describes how to build the diffusion objects that this function
requires as arguments.

9.3.2 Building a Diffusion

The first order of business in building a diffusion is to specify a Weiner process.
In this and many other examples, we begin by calling the Clear function. This
function removes any value that might already be bound to the named symbol,
as might occur when experimenting with Mathematica outside of the range of
commands shown here. Thus, we first clear the name W which we intend to use
to represent a Wiener process.

196

J. Michae! Steele and Robert A. Stine

Inf{l]:= Clear[W]

The next command associates the name W with a Weiner process. Until we say
otherwise, the name W will denote a Weiner process to the system.

In[2]:= WeinerProcessMake [W]

We can now use this Weiner process to define more complex diffusions. To
build each diffusion, our convention requires a symbolic identifier (or name)
for the diffusion and for the underlying Weiner process, two expressions (the
drift ¢ and the dispersion ¢), and an initial value. As an example, we first
consider the lognormal diffusion. This process is used extensively in financial
modeling and it will play a central role in Section 9.4 when we derive the Black-
Scholes formula. In the classical notation of the stochastic calculus, a lognormal
diffusion can be specified by

dXt = ClXtdt + BXtth, Xo = v,

for scalars o and 3 > 0. To represent this diffusion in Mathematica, use the
command DiffusionMake. Again, we clear the name X before we make the
new process.

In[3]:= Clear[X]

In[4]:= DiffusionMake[X, W, alpha X, beta X, v]

To test the success of this command, we recall that typing the name of any
object in Mathematica reveals the value of that object. In the case of a diffusion,
the value is a list that holds the definition of the process.

In[5]:= X
Out [5]:= diffusion([X, W, alpha X, beta X, v]

While revealing to the Mathematica programmer, this form is probably not very
appealing to one more familiar with the standard mathematical notation. The
function DiffusionPrint ameliorates this problem by producing a more fa-
miliar rendering of a diffusion, complete with subscripting. Here are examples
for the two diffusions created so far. The printed form for a Weiner process is
pretty simple.

In[6]:= DiffusionPrint [W]

W = Weiner Process with scale 1
t

The format in general for printing a diffusion matches the notation of equa-
tion (2).

In[7]:= DiffusionPrint [X]
dX = alpha X dt + beta X dWw ; X = v
t t t t 0

9.3.3 Simulating Diffusions

In order to experiment with a diffusion model, it is often useful to simulate
realizations of the process. The function DiffusionSimulate generates sim-

9. Mathematica and Diffusions 197

ulated realizations by building a discrete-time approximation to the continuous-
time process. The method implemented in this software is a little naive—it re-
sembles Euler’s method for approximating solutions of a differential equation—
but it functions quite usefully in most instances. To illustrate, we begin by asking
Mathematica to reveal its summary of DiffusionSimulate.

Infl]:= ?DiffusionSimulate

DiffusionSimulate[d diffusion, n, dt] simulates a
diffusion. It returns a list of n pairs
{,,,{i*dt,x{i*dt}},,,} of the diffusion d. Each realized
series is an independent realization. Responds with an
error if the diffusion contains symbolic paramters.

As a simple example of the use of this function, we will simulate 100 values of
a Weiner process at times {0,0.01, ...,0.99}. Assuming that we are simulating
a diffusion labelled X;, the simulated realization begins with the pair {0, X¢}
and adds n — 1 pairs of the form {i d¢t, X;4: },7 = 1,2,...,n — 1, separated in time
by the chosen step size dt which is the last argument to the function. In this
example, the semicolon at the end of the command suppresses the printing of
the complete simulated realization. The function Short reveals the start and
end of the list, and the bracketed number indicates that 97 of the items in the
list are hidden.

In{2]:= simW = DiffusionSimulate[W,100,0.01];

In[3]:

li

Short [simW]

Out[3]:= {{0, 0}, {0.01, 0.0984664}, <<97>>, {0.99, —1.55817}}

The list structure of the simulated diffusion makes it quite easy to have Mathe-
matica plot this artificial realization versus time.

In[4]:= ListPlot[simW, PlotJoined -> True]

Qut (4] := —Graphics—

198

J. Michael Steele and Robert A. Stine

Simulations of other diffusions can be obtained just as easily. For example,
suppose that we wished to plot the simulation of the diffusion

dY; = Yidt + Y1dW4, Yy = 10.
First we build the diffusion using DiffusionMake.

In[5]:= DiffusionMake[Y,W, Y,Y,10]

Next we generate the partial realization using Di ffusionSimulate, and again
we note that Short reveals just the extremes of the list. Since the time spacing is
not specified in the call to DiffusionSimulate, this program sets the spacing
to a default value of 0.01.

In[6]:= simY¥ = DiffusionSimulate[Y,100];
Short [simY]

Out[6]:= {{0, 10.}, {0.01, 9.99454}, <<97>>, {0.99, 37.4779}}

In[7]:= ListPlot[simY,
PlotJoined -> True]

30t
25t
20}
15+
10
\ 0.2 0.4 0.6 0.8 1
OQut[7]:= ~Graphics—

The function RandomSeed makes it possible to generate correlated realiza-
tions. By default, each realization of a diffusion is independent of other realiza-
tions. This structure may not be desired for many problems. As an example,
consider the relationship of the Weiner process realization and the diffusion for
the process dY; = Y;dt + Y;dW; considered above. Independent realizations
fail to capture the relationship between the series and suggest little relationship
between the two. After all, these simulated realizations are independent. Here
is a plot of ¥; on W; with the plots joined in time sequence order.

In[8]:= ListPlot[Table[{simW[[i,2]], sim¥[[i,21]1},(i,1,100}1,
AxesLabel -> {"W[t]", "Y[t]"},
PlotJoined -> True]

9. Mathematica and Diffusions 199

R N . N
1 =g) ~0.5 g~ "l

Out [8]:= —Graphics—

By explicitly setting the random seed used by Mathematica, we force the real-
ization of Y; to be based on the same random values used to simulate the Weiner
process W;. This connection gives the realizations we would have expected.
In[9] := SeedRandom[732712];

simW = DiffusionSimulate[W,100];

SeedRandom[732712];
simY = DiffusionSimulate{Y, 100];

The plot of Y; on W; now exhibits the strong relationship between the two
simulated realizations that is missing without matching the simulation seeds.
In[10]:= ListPlot[Table[{simW[[i,2]], simY[[i,2]]},{i,1,100}],

Axeslabel->{"W[t]", "Y[t]l"},
PlotJdoined ~> True]

Yit]

Out [10] := ~Graphics—

200 J. Michael Steele and Robert A. Stine

9.4 Deriving the Black-Scholes Formula

To illustrate the use of these tools in a problem of considerable historical interest,
we will use our tools to derive the Black-Scholes option-pricing formula. Our
approach parallels the development in Duffie (1988) and uses the notion of a self-
financing trading strategy. Following the tradition in elementary option pricing
theory, we will ignore the effects of transaction costs and dividends. Readers
who are curious for further details and intuition should consider Duffie (1988)
for a more refined discussion than space permits here.

The model begins with a simple market that consists of two investments, a
stock and a bond. The bond is taken to be a risk free asset with rate of return
p. 80 in our differential notation the bond price B; at time ¢ obeys dB; = pB;dt.
The stock is assumed to have rate of return p as well as some risk, so we can
model the stock price S; as a diffusion for which dS, = uS,dt + 0S;dW, with
the scalar o > 0. We can set up these processes and clear the needed symbols as
follows:

In{1]:= Clear[W, S,S0, B,BO, V, mu, sigma, rho, g,P]

WeinerProcessMake [W]

DiffusionMake([S, W, mu $, sigma S, S0]
DiffusionMake[B, W, rho B, 0, BO]

Before continuing, we should perhaps view our processes in more conventional
form by getting the printed version of each of the three diffusions.

In[2]:= DiffusionPrint [W]

DiffusionPrint[S]
DiffusionPrint [B]
W = Weiner Process with scale 1
t
dS =mu S dt + sigma S dwW ;S = 50
t t t t 0
dB = rho B dt ; B = B0
t t 0

With these processes as building blocks, we can define the equations that
permit us to give the explicit value of the European option. Suppose that theré
exists a function V(s,t) such that V(S;,t) is the value at time t,0 < t < T,
of an option to purchase the stock modeled by S; at a terminal time T at the
strike price P. Our goal is to find an expression for this function in terms
of 4,0, P,T, and t. Since the value of the option is a function of the diffu-
sion Sy, Itd’s formula gives an expression for V(S;,t). Even though we do
not explicitly know V'(S;,t), we can use the Ito function to identify this new
diffusion symbolically in terms of derivatives of V. In this case, we want 0
avoid putting the diffusion into the canonical form (4) since doing so WO‘.lld
conceal how V'(S;,t) depends upon S;. The use of the ItoInvert opto?
avoids the inversion to the canonical diffusion form, thereby retaining the

9. Mathematica and Diffusions 201 |

stock symbol S in the expressions for the drift and dispersion of the new diffu-
sion.

In[3]:= Ito[V[S,t], Itolnvert->False];

(C, 1) (1,0)
dav{s, t] = (Vv [S, t] + mu S V (s, tl +
2 2 (2,0)
sigma S V [S, t] v (1,0)
) dt + (sigma S V (S, t]) dwW
2 t

Now equate the value of the option to that of a self-financing trading port-
folio. That is, assume that the value V(S;,t) of this stock option can be re-
produced by a portfolio consisting of a; shares of stock and b; shares of bond,
V(St,t) = a:S; + by B:. Here, of course, we are assuming that a; and b; are both
stochastic processes. An argument for the existence of such a portfolio in this
problem appears in Duffy (1988). The matching of the value of the option to
that of a portfolio gives a second expression for V in addition to that from It&’s
formula. If we equate these two expressions for V(S;,t), we can solve for a;
and b;. The manipulations that support the elimination of a; and b; are very
easy in Mathematica since the diffusion package defines some simple algebraic
operations for diffusions.

By default, diffusions retain their symbolic form in algebraic expressions. For
example, if we enter a sum of two diffusions, the sum is retained and no attempt
is made to combine the drift of one with that of the other.

In[4]:= at S + bt B

OQut[4]:= bt B + at §

This behavior is consistent with the way Mathematica handles many other sym-
bolic expressions, such as the way a product is not expanded unless the user
makes an explicit request:

In[5]:= (a + b) (c + d)
Out[5]:= (a + b) (c + &)
In[6]:= Expand[%]

OQutf{é6]:=a c +bc+ad+bd

The analogous behaviour is needed in the algebra of diffusions. In order to
equate the two expressions for V(5;,t), we require the drift and dispersion of
a diffusion that is the sum of two diffusions. The function DiffusionEx-
pand combines several diffusions, though the resulting “diffusion” is not of the
canonical form. Since we are only interested in the drift and dispersion, the
absence of the canonical form is not a problem.

In[7]):= diff = DiffusionExpand[V - (at S + bt B)]

202 J. Michael Steele and Robert A. Stine

Qut[7]:= {0,1)
diffusion[$3, W, —(bt rho B) — at mu S + (V) [S, t]

2 2 (2,0)
(1,0) sigma S (V) [S, t]
+ mu S (V) (s, t] +

r

2

(1,0)
—(at sigma S) + sigma S (V) [s, tl,

—(bt BO) — at SO0 + V[S0, t]]

In order for the difference V(S;,t) — (a;S; + b:B;) to be zero, both the drift

and dispersion of this new diffusion must be identically zero. This gives two

equations in two unknowns, and thus the number of stock and bond shares in

the matching portfolio, a; and b;. The built-in function Solve gives a set of

rules that define the solution of the system of two equations.

In[8]:= roots = Solve[{DiffusionDrift|[diff]==0,
DiffusionDispersion[diff]==0}, {at,bt}]

out[8]:= (1,0)
{{at —> (V) [S, t], bt —>
(1,0)
mu S (V) [Sr t]
—() +
rho B
(0,1) (1,0)
(2 (V) [S, t] + 2 mu § (V) [s, tl +
2 2 (2,0)
sigma S (V) [S, t]) / (2 rho B)}}

For convenience, we next extract the values of a; and b; implied by these rules
and assign them appropriately. The additional simplification eases later ma-
nipulations and seems unavoidable in some implementations of Mathematica.
The function First in the next two expressions extracts the solution from the
single-element list in which it is embedded.

In{9]:= at = Simplify[First[at /. roots]]

Oout[9]:= (1,0)
(V) [s, t]
In[10]:= bt = Simplify[First[bt /. roots]]
Qut[i10]:= (0,1) 2 2 (2,0)"
2 (V) [S, t] + sigma S (V) [s, t]
2 rho B

In more conventional notation,

Vi(Se,t) + 20282V, (S,, ¢
a’t=V$<St7t)7bi= t(:)+;;—B ! < i)7
t

9. Mathematica and Diffusions 203

where V, denotes the partial derivative of V(z,u) with respect to its first ar-
gument, and V. denotes the second partial derivative in the first argument.
Similarly, V; is the first partial in the second argument.

To find a partial differential equation for the value of the option, we substitute
these expressions for a; and b, back into the relation V(S;,t) = a4 S; + b:B;. The
use of the function Expand assures that the function Coefficient extracts the
proper term. :

Infl1l]:= pde = Expand[at S + bt B - V[S,t]]

Qut[ll]:= (0,1)
(V) [s, t] (1,0)
—VI[s, t] + + S (V) (S, t] +
rho
2 2 (2,0)
sigma S (V) [S, t]
2 rho

To set things up for the next step, normalize this PDE so that the coefficient of

Viis 1.
In[l12]:= pde = Expand[pde / Coefficient[pde, D[VI[S,t],t]] 1]
out[12]:= (0, 1) (1,0)

—(rho V[S, t]) + (V) [S, t] + rho S (V) [s, t]

2 2 (2,0)
sigma S (V) (s, t]
+
2

These equations and the boundary conditions discussed shortly are sufficient
to determine V, thus solving the option pricing problem. The problem now
faced is the purely mathematical one of solving our PDE. A variety of tools
exist for solving PDE'’s that arise in the application of diffusions, and one of
the most powerful is based upon the Feymann-Kac theorem. For our purposes,
the Feynman-Kac theorem expresses the solution of a certain second-order PDE
as an expectation with respect to a related diffusion. The first question one
has to resolve before applying this method is whether the PDE of interest is of
the appropriate type. The second issue is to make an explicit correspondence
between one’s PDE and the form of the Feynman-Kac result. The function
FeynmanKac performs both of these tasks. As a side-effect, it also prints out
the terms used in its matching using the notation of Duffie (1988).

The use of this function also requires identifying boundary conditions. Let
g{x) denote the payout function for the option. For example, the payout function
for a European option with exercise price P is the piecewise linear function
g(z) = (x — P)™ where (z — P)* = z — P if z > P and is zero otherwise.
The payout function determines the needed boundary condition, V(z,T) =
g(z). Here we apply the FeynmanKac function, using the symbol g to denote

204

J. Michael Steele and Robert A. Stine

the payout function. In the following output, the symbol Ave stands for the
expected value operator since the symbol E denotes the base of the natural log
e in Mathematica. ‘

In[13]):= soln = FeynmanKac[pde, g]

f =V; rho =rho; u=0

dX = rho X dt + sigma X dwW ;X = x
t t t t 0
Qut[13]:= g(X[~t + T]]
Ave []
rho (—t + T)
E

The “solution” given by the Feynman-Kac theorem is rather abstract and the
task of rendering it concrete is not always easy. The result of this function
indicates that the solution of our PDE is the expected discounted payout

e PTVEg(Xr_s),

where X is the diffusion that satisfies dX; = pX;dt + ¢ X,dW; with initial value
Xo = x and Weiner process W;. The process X, is just the familiar lognormal
diffusion, as confirmed by use of Itd’s formula.

We will next confirm that the exponential of the normal diffusion dY; =
adt + bdWy; is indeed a lognormal diffusion, and we use Mathematica to make
the required identification of coefficients in both drift and dispersion.
In[14]:= Clear[Y]:

DiffusionMake([Y,W, a,b,0];
Ito[Y] [Exp[Y¥]]

2 Y

Y (2 a+b) E Y

dE = () dt + (b E) dW
2 t
Inversion rule... {Y —> Log(Z]}
Outl4]):= 2
(2 a +b) 2
diffusion[Z, W, , b Z, 1]
2

Clearly, b corresponds to o. Equating the drift coefficients (2a + b2 /2) = pshows

that a = p — (s%/2).

In[15]:= a = Simplify[a/.First[Solvel[(2 at+sigma“~2) /2 == rho,
alll '

Qut[15]:= 2
sigma

rho —
2

This calculation implies that the diffusion X; in the solution from the Feynman-
Kac theorem is the exponential of a normal diffusion with constant drift ¢ ~

9. Mathematica and Diffusions 205

(62/2) and dispersion ¢. Recalling that X, = z, at any time ¢ > 0 X satisfies

X, = me(ﬁ'%z)t-*‘dwz‘
Hence for any ¢, X; has the same distribution as zelp=(*/2)t+0VTZ here 7 is
a standard normal random variable with mean zero and variance one. Finally
we see that the value of the option at time ¢ = 0 is

—-pT s 2
V(z,0) = e "TEg(Xr) = e‘ /o glaelp= T IT+VTozy =124,
— o0

For the European option with exercise price P, we have g(z) = (z — P)* and
this integral becomes

—pT [o’e)
€ ; (xe(p—i’;)T-#ﬁaz _P)e—z2/2dz,
V ™ 20
where zg solves
xe(p—-’fz—z)T-i-\/Tazo = P.

Calculation of this integral is somewhat tedious, but its evaluation makes
for a nice illustration of the integral solving capabilities of Mathematica. To
make the coding a little more modular, we first define a function h(z) =
zelp=(0*/D)T+VToz _ P and use it to locate the lower bound 2.
In[16]:= h[z_] := x Exp[(rho-sigma~2/2.)T+Sqrt[T] sigma z] - P
rule = Solve[h{z]==0, z]; .
z0 = Simplify[First[z /. rule]]
Qut[l6]:= 2 P

~(rho T) + 0.5 sigma T + Log([—]
X

sigma Sqgrt[T)]

To simplify the input further, we define the Gaussian kernel gauss(2)=e"*/2A/2r.

In[17]:= gauss[z_] := E~(-(z"2)/2)/Sqrt[2 Pi]

Given these definitions of the functions h and gauss, it is quite simple to
describe the needed integral. We call the integration function with specific
limits a and b rather than symbolic infinite limits. The integration routines seem
to behave more robustly in this application with these limits rather than infinite
limits.
In[18]:= Clear|a,b]

intab = Integrate[E~ (-rho T) h[z] gauss[z], {z,a,b}]

Qut[18]:= a b
P Erf{—) P Exrf[——]
Sqrt 2] Sart 2]

rho T rho T
2 E 2 E

206 J. Michael Steele and Robert A. Stine

Out 18] (cont.)

2 2
—(rho T) + (sigma T)/2 + (rho — 0.5 sigma) T
(E X
a — sigma Sqrt(T]
Erf| 1y /2 +
Sgrt[2]
2 2
—(rho T) + (sigma T)/2 + (rho — 0.5 sigma) T
(E X
b — sigma Sqrt[T]
Exf| 1y /7 2
Sgrt 2]

Now we can apply two substitution rules that specify the range of integration,
a = z9 and b = oo, and we have the desired integral.

In[19]:= int = intab /. {a->z0, b->Infinity};

Simplify[int]
Out[19]:= 2 P
—{(rhc T) — 0.5 sigma T + Logl[—]
X
x Erf(]
-P % Sqrt[2] sigma Sgrt[T]
+_.._..
rho T 2 2
2 E
2 p
—(rho T) + 0.5 sigma T + Log[—]
X
P Erf]]
Sqrt (2] sigma Sgrt[T]
+
rho T
2 E

This expression involves the error function defined in Mathematica as erf(z) =
IS e = dr. We get a more familiar result by using the equivalence erf(z) =
2®(+/2z) — 1, where ®(z) denotes the cumulative standard normal distribution,

®(z) = [2 (=12) Var)da.

In[20]:= bs = Simplify[int /. Exrf[x_] ->
(2 NormalCDF[Sqrt[2]x] - 1)]

Oout [20] := 2 P
—{rho T) — 0.5 s T + Log[~]
P X
—{) + x — x NormalCDF]|] +
rho T s Sgrt{T]

9. Mathematica and Diffusions 207

Qut [20] {cont.)
2 p
—(rho T) + 0.5 s T + Log[—]
X
P NormalCDF []
s Sgrt[T]

rho T
E

We can express this result in yet more familiar form by using a rule that expresses
the relationship ®(z) =1 — ®&(—z).

In[21]:= Simplify| bs/.NormalCDF[x_]—>1—NormalCDF[—x]]

Qut[21]:= 2 P
—(rho T) — 0.5 s T + Log[—]
b4

x NormalCDF [—(I

s Sqrt{T]
2 P
—(rho T) + 0.5 s T + Log([—]
X
P NormalCDF [—()]
s Sgrt[T]
rho T

E

This is the Black-Scholes formula for pricing the European option (Duffie, 1988,
p- 239). Miller (1990) discusses this function at length and shows various ma-
nipulations of it using Mathematica.

95 More Mathematica Details and Examples

The material of this section focusses on some issues that can be omitted at a
first reading, but that might prove useful for the user who wishes to extend
the methods or examples. The discussion begins with the underlying data
structure used to represent a diffusion. Many of the ideas come from object-
oriented programming. We next consider in some detail the use of our functions
that produce the infinitesimal and Itd’s formula. Further programming details
appear as comments embedded in the code of the package itself.

The examples in this section use both of the Mathematica diffusion objects built
in Section 9.3. In case these are not available, the following command rebuilds
the Weiner process W; and the associated lognormal diffusion X;.

In[l]:= Clear([X,W}];
WeinerProcessMake [W] ;
DiffusionMake[X,W, alpha X, beta X, v];

The data structure we use to represent a diffusion parallels the notation of
Section 9.2. To represent an arbitrary diffusion, one must describe each of the

J. Michael Steele and Robert A. Stint

distinguishing components: drift, dispersion, Weiner process, and initial value
In addition, we need to supply a symbol that names the diffusion itself. As
result, the list that we use to represent a diffusion has these five items: name of
the diffusion, name of Weiner process, drift expression, dispersion expression
and initial value. This data structure is particularly simple for a Weiner process.
The first two symbols which are the names of the diffusion and its underlying
Weiner process match for a Weiner process. The drift and dispersion are the
constants 0 and 1, respectively. The matching of the leading symbols identifies
in the software the presence of a Weiner process.

Several accessor functions permit one to extract components of a diffusion
without requiring detailed knowledge of its data structure. Although these
functions simply index the list that holds the components of the diffusion, use
of these accessors frees one from having to remember the arrangement of the
list. Such abstraction offers the opportunity to change the data structure at a
later point without having to rewrite code that uses accessor functions. Here
are a few examples of the accessor functions.

In[2]:= DiffusionWeinerProcessSymbol [X]

Qut[2]:=W

Notice that this function results in the symbol associated with the Weiner process
rather than the Weiner process itself. A different accessor extracts the process.

In[3]:= DiffusionWeinerProcess [X]

OQut [3]:= diffusion(W, W, 0, 1, 0]

The next three examples extract the remaining components of the diffusion.
In[4]:= DiffusionDrift [X]

Out[4]:= alpha X

In[5]:= DiffusionDispersion[X]

Out[5]:= beta X

In[6]:= DiffusionInitialValue [X]

Qutf6]:=v

It is important to notice that the results of some of these functions include the
symbol X which represents the diffusion. A sleight of hand is needed to obtain
this behavior, and all is not quite as it appears. The built-in function FullFor®
reveals that the results of both DiffusionDrift and DiffusionDispersion
contain so-called “held expressions” that one must use in order to keep ﬂ.‘e
system from trying to evaluate the diffusion symbols that appear in the drift
and dispersion expressions.

In[7):= DiffusionDrift[X] // FullForm

Out[7]:= Times[alpha, HoldForm[X]]

9. Mathematica and Diffusions 209

Were it not for holding the evaluation of the symbol X in this expression, Math-
ematica would descend into an endless recursion, continually substituting the
list representing the diffusion each time it encountered the symbol X in the list.
Further discussion of this recursion appears in Steele and Stine (1991).

We have found that it is most easy to manipulate the drift and dispersion
functions as expressions rather than Mathematica functions. Still, occasions arise
when one wants a function. For example, one might want to differentiate or
plot the drift. The accessors normally extract these components in a manner
that preserves their symbolic content. That is, they return an expression which
includes the symbol for the diffusion. When a function is desired, the accessors
DiffusionDrift and DiffusionDispersion have an optional argument
that forces the output to be returned as a function. The returned function has
two arguments, the first for the diffusion and the second for time, as in u(z,t)
and o(z,t) respectively.

As example, consider generating a plot of the drift from the lognormal diffu-
sion. First, extract the drift as a Mathematica function and give it a suggestive
name.

In[8]:= mu = PiffusionDrift [X, Function]

Oout[8]:= Function[{x$, t$}, alpha x$]

We can treat this function just like any other, differentiating or plotting as we
choose.

In[9]):= Dimu[x,t], x]
Out [9] := alpha

Of course, if we expect to plot the drift function, we have to make sure that all
of the symbolic terms have a value. Here we set o = 2 so that u(z,t) = 2z.

Inf{10]:= Plot[mu[x,t]/.alpha->2, {x,0,5}]

10+

1 2 3 4 5

Qut [10] := —Graphics—

210

J. Michael Steele and Robert A. Stin

In general, we would need to plot the drift u(z, t) as a surface over the plane, bu:
in this and many other common circumstances this elaborate plot is not needed

As we noted in our review of It&’s formula, the infinitesimal generator of
a diffusion process has an intimate relationship to the stochastic differentia)
representation of the diffusion. The argument given to the function which finds
the infinitesimal is an expression involving a diffusion. For example, the nex
example determines the infinitesimal of the process defined by an arbitrary
function g of W;. We see that the infinitesimal is half of the second derivative
of g.

In[l11]:= A[g[W]]
Out[11]:= g’'’ [W]

2

For the lognormal diffusion X;, the result is somewhat more complex, but the
syntax of the commands is the same. We saw this expression in Section 9.4 in
the option-pricing problem.

Inl[l12]:= A[g[X]]

OQut[12]:= 2 2
beta X g’’[X]

alpha X g’ [X] +
2

The function associated with It6’s formula provided in the accompanying
packageis more potent than the other functions of the package. The function Ito
(or more elaborately, DiffusionIto) builds the new diffusion associated with
the input expression which again is an expression which includes a diffusion.
The program also assigns a default name to the new diffusion unless a new
name is chosen.

As an example we show how to use It6’s formula to find the diffusion as-
sociated with half the square of a Weiner process, Y; = W?2/2. The optional
argument sets the name of the new diffusion to be the symbol ¥ which has been
cleared of any prior value.

In[13]:= Clear[Y]
Ito[1/2 W*2, ItoSymbol->Y]

2

W 1
d— = (=) dt + (W) dw

2 2 t
Inversion rule... {W —> Sqgrt[2] Sgrt(Y]}
Qut[l13]:= 1

diffusionlY, W, —, Sqgrt(2] Sgrt Y], 0]
2

Two pieces of intermediate output precede the final result in this example. The
first portion of the output shows the diffusion associated with the transformation

9. Mathematica and Diffusions 211

in the form of (3) before conversion to canonical form. This portion of the output
is occasionally useful in solving various stochastic integrals. In this example,
the output expression dW?/2 = (1/2)dt + W;dW, suggests the solution to a
stochastic integral,

t
/ W.dW, = W?2/2 -1/2
0

Of course, one would have to know to look at It&’s formula applied to W2 in
order to find [} W,dW, in this way. However, since [; zdz = t2/2, this is not
such a bad place to start looking for an answer.

The second piece of intermediate output in the example beginning “Inversion
rule. ..” (above) gives the inverse transformation used to convert the result of
Itd’s formula (which is a function of W;) into a function of Y;. This is the inverse
function g described in the introductory review.

Here is another example. This example shows that the exponential of a Weiner
process is a lognormal diffusion. Notice as always that it is important to begin
with an unbound symbol to use for the new diffusion.

In[14]:= Clear|[Y]
Ito[Exp[W], ItoSymbol->Y]

W
W E W
dE = (—) dt + (E) dw
2 t
Inversion rule... {W —> Log[Y]}

Solve::ifun:
Warning: Inverse functions are being used by Solve, so
some solutions may not be found.

out[l4]:= Y
diffusionlY, W, —, Y, 1]
2

The warning message in this example will often suggest a problem in the inver-
sion process. In this example the inversion via logarithms works since Y; = "
implies W; = log, Y;. Were the process W; complex, for example, such inversion
might not be appropriate. Since Mathematica does not assume W, is real-valued,
it displays a warning.

9.6 Summary and Concluding Remarks

This chapter began by reviewing some of the basic notions of the theory of
diffusions such as the local drift y, the local dispersion o, and the specification
of a diffusion process though the formalism of stochastic integraton. We then
illustrated how the fundamental formula of It6 for functions of diffusions can
lead to calculations that can be profitably performed by symbolic methods.

8. Mathematica and Diffusions 213

9.7 References

Arnold, L. (1974). Stochastic Differential Equations: Theory and Applications. Wiley, New
York.

Duffie, D. (1988). Security Markets. Academic Press, New York.

Steele,]. M. and R. A. Stine (1991). “Applications of Mathematica to the stochastic
calculus.” In American Statistical Association, Proceedings of the Statistical Computing
Section., 11-19, Amercian Statistical Association, Washington, D.C.

Miller, R. (1990). “Computer-aided financial analysis: an implementation of the Black-
Scholes model.” Mathematica Journal, 1, 75-79.

