Time- and Space-Efficient Algorithms for Least
Median of Squares Regression

DIANE L. SOUVAINE and J. MICHAEL STEELE*

The least median of squared residuals regression line (or LMS line) is
that line y = ax + b for which the median of the residuals |y, — ax, —
b|* is minimized over all choices of @ and b. If we rephrase the traditional
ordinary least squares (OLS) problem as finding the @ and b that minimize
the mean of |y; — ax; — bJ, one can see that in a formal sense LMS
just replaces a “mean” by a “median.” This way of describing LMS
regression does not do justice to the remarkable properties of LMS. In
fact, LMS regression behaves in ways that distinguish it greatly from
OLS as well as from many other methods for robustifying OLS (see,
e.g., Rousseceuw 1984). As illustrations given here show, the LMS regres-
sion line should provide a valuable tool for studying those data sets in
which the usual linear model assumptions are violated by the presence
of some (not too small) groups of data values that behave distinctly from
the bulk of the data. This feature of LMS regression is illustrated by the
fit given in Figure 1 and the residual plots of Figures 2a and 2b.

The LMS regression line is an attractive tool for data analysis, but it
is not easy to compute. Steele and Steiger (1986) established that the
function f(a, b) = median {|y; — ax, — bf¥} can have on the order of
n? local minima, so typical local methods have little hope of finding the
global minimum of f. The main objective of this article is to provide
algorithms that do minimize f and are efficient in terms of both time
and space.

Two algorithms are given here that determine the LMS regression line
for n points in the plane. Both of these algorithms draw their strength
from the systematic use of affine duality, and one objective pursued here
is the exposition of the technique of affine duality so that it will become
more commonly considered by statisticians.

The first algorithm uses the so-called sweep-line technique, and it runs
in worst-case time complexity O(n? log n), using only O(n) space. The
second algorithm depends on the recent development of data structures
that permit the economical searching of the arrangement determined by
n lines. It requires only O(n?) time, but the space needed is raised to
o(n?).

KEY WORDS: Duality; Sweep-line technique; Global optimization; Ar-
rangement of lines; Arrangement searching.

1. THE REGRESSION PROBLEM

One aim of robust regression is to fit a line to a set of
data in such a way that inspection of the residuals will
detect distinctive behavior of even a large minority of the
observations. From that point of view the solid line of
Figure 1 provides a far more effective fit than does the
dotted line that represents the ordinary least squares (OLS)
fit. A careful analysis of the residuals from the dotted line
might reveal the differences in the two clumps of data, but
any glance at the residuals from the solid line will shout
out that the data with positive x-coordinates are “special”
from the perspective of the majority. This point is illus-
trated by the residual plots of Figures 2a and 2b.

Our main purpose here is to provide two new and ef-

* Diane L. Souvaine is Assistant Professor, Department of Computer
Science, Rutgers University, New Brunswick, NJ 08903. J. Michael Steele
is Professor, Department of Civil Engineering and Operations Research,
Program in Engineering Statistics, Princeton University, Princeton, NJ
08544. Souvaine’s research was supported in part by National Science
Foundation Grant MCS83-03926. Steele’s research was supported in part
by National Science Foundation Grant DMS-8414069.

ficient algorithms for calculating the robust fit that Rous-
seeuw (1984) called the least median of squares (LMS)
regression line. This fitting process has excellent behavior
from the point of view just indicated. In particular, Rous-
seeuw compared LMS with six important robust regression
competitors and found substantial advantage to the LMS
method.

To introduce the computational issues associated with
LMS regression, we first let (x;, y;) (1 =i = n) denote n
points in the plane. The slope and intercept of the LMS
fitted line are those values a* and f* that minimize

f(a, f) = median(ly; — ax; — p7). (1.1

As Rousseeuw showed, the ILMS procedure does an ex-
cellent job following the majority. One formal method for
expressing and quantifying this virtue relies on the notion
of the breakdown point of an estimator (see, e.g., Donoho
and Huber 1983). Roughly speaking, the breakdown point
of an estimator is the smallest percentage of the obser-
vations that can be changed so as to make the estimate
arbitrarily large. In the case of estimates of location, we
can see that the breakdown point of the mean is 0%, since
moving even one point out of # can cause an arbitrarily
large change. Similarly, one can check that the breakdown
point of the median is 50%. It is also easy to see that these
same figures persist in the regression case; that is, OLS
has breakdown point 0% and LMS regression has break-
down point 50%.

The first mentions of an algorithm for LMS regression
are in Rousseeuw (1984) and Leroy and Rousseeuw (1984).
The first formal study was given in Steele and Steiger
(1986), where it was shown (a) for (x;, y;) in general po-
sition, f(a, ) has Q(n?) local minima (€2 stands for “order
of at least” just as O stands for “order of at most,” and
for this result general position means that no three points
are colinear and no four points determine parallel lines),
and (b) exact minimization of f is reducible to a finite
search that has worst time complexity of O(n%).

Although an O(n®) algorithm is practical on modest data
sets, faster algorithms are needed if the LMS fitting pro-
cedure is to be useful as an interactive tool on data sets
of even moderate size. The main algorithm we give here
runs in time O(n?). Because lower bounds for geometric
algorithms are extremely rare (and generally very crude),
it is to be expected that establishing the optimality of the
O(n?) result will be difficult. Still, in all likelihood, there
is no algorithm for LMS regression that is faster than O(n?),
and applications of LMS regression may have to live with

© 1987 American Statistical Association
Journal of the American Statistical Association
September 1987, Vol. 82, No. 399, Theory and Methods

794



Souvaine and Steele: Least Median of Squares Regression

[s0}

795

s | i

-6 -4 -2

0 2 4

Figure 1. Benefits of High Breakdown Regression.

that constraint. One should note that an approximate al-
gorithm such as that of Leroy and Rousseeuw (1984) may
give useful fits at a computational cost that may be sub-
stantially smaller than O(n?). Such approximate algo-
rithms may be the only practical approach for LMS mul-
tiple regression.

We also give a second algorithm in which more careful
attention is paid to the space requirements of LMS regres-
sion. Although our O(n?) algorithm requires O(n?) space,
we are able to give a O(n? log n) algorithm that requires
only O(n) space. There are certainly machines and prob-
lems for which the second algorithm would actually run
faster because of the lessened overhead of memory man-
agement.

The algorithms we provide use two important new tools
from computational geometry. These tools are (a) affine
duality and (b) data structures that facilitate searching
arrangements. The benefit of this feature is that these tools

work together very well and should prove useful in many
other statistical problems that deal with lines and points.

The algorithms given here have been tailored to be as
simple as possible given the aim of attaining the achieved
orders of space and time complexity. Obviously any im-
plementation of these algorithms would entail numerous
minor (or not so minor) speedups and improvements; in
particular, we could have been much more stingy with our
pointers. This situation rests in comfort with the widely
endorsed philosophy of getting the right algorithm and
then toning for high performance. One can consult Bentley
(1982) for many elegant illustrations of this viewpoint.

Technical Remark. The word median needs to be un-
ambiguously defined in the case of even n. Our convention
for n even will be to take the high median or the value of
rank m = 1 + n/2in anordered list u; < u, < - =< u,.
This convention is made for specificity and clarity; it has
no material impact on the analysis of our algorithms.



796

Joumai of the American Statistical Association, September 1987

-1

i,

0

fan) L 1

Iy

1

1 L

-4 -2

0 2 4

Figure 2. (a) Residuals From Robust Line. (b) Residuals From OLS’s Line.

2. GEOMETRIC TRANSFORMATIONS:
POINT/LINE DUALITY

There have been powerful applications of transforma-
tions in geometry since the work of Steiner and Poncelet,
but the thesis of Brown (1979) opened up the floodgate
of applications to computational geometry (see, e.g., Cha-
zelle, Guibas, and Lee 1983; Dobkin and Souvaine 1986;
Edelsbrunner, O’Rourke, and Seidel 1983).

In statistical work the point/line duality was used most
recently in Johnstone and Velleman (1985), which gives
an algorithm for a different robust regression method, the
resistant line. In data analysis and in simple linear regres-
sion, duality was also used by Emerson and Hoaglin (1983),
Dolby (1960), and Daniels (1954).

The transformation that we will apply is the mapping
T, which takes the point (a, b) to the liney = ax + b
and takes the line y = ax + b to the point (—a, b). The
minus sign in (—a, b) may be a little surprising, but it is
precisely what is required to make T a bona fide duality.

Under this transformation, the point P that is deter-
mined by two lines L, and L, is mapped to the line TP,

which is determined by the two points TL, and TL,. Like-
wise the line L determined by two points P, and P, is
mapped to the point TL determined by the two lines TP,
and TP,. These relations lie at the base of duality, and
they are shared by the classical transformation S of Pon-
celet which maps the point (a, b) to the line ax + by +

= 0 and maps the line ax + by + 1 = 0 to the point
(a, b). The duality applied here is not as symmetrical as
Poncelet’s; in particular, we note S? = I, but since y =
ax + b goes to (—a, b) we have T? # I.

The duality given by S may have more algebraic appeal,
but T has additional ordering properties that make it more
useful in computational problems where order plays a role.
The first important ordering property is that the transfor-
mation T preserves the relationship of “above” and “be-
low” for points and lines. That is, if P is above L then TP
is above TL. The transformation T also preserves the ver-
tical distance between points and lines; TL is above TP
by exactly the same distance that L is above P, and so on.
This property is naturally crucial in a problem where a
median residual is to be minimized over a selection of
lines.



Souvaine and Steele: Least Median of Squares Regression

The second important invariance property of T is that
if the slope of L is larger than the slope of L', then the
x-coordinate of T'L is smaller than the x-coordinate of TL'.
This is trivial from the definition, but is a very nice relation
in practical applications.

We should make one final distinction about the way we
will use duality and the transformation 7. We will make
no use of the so-called ideal objects, like “the point at
infinity,” which help give the projective plane much of its
charm. All of our computations depend on ordinary ob-
jects in the finite plane.

3. EQUIOSCILLATION AND ITS DUAL

To articulate a finite problem that can be precisely dual-
ized, it is worthwhile to introduce some terminology rel-
evant to the local structure of LMS regressions. First for
any a and f the line ,; = {(x, y): y = ax + f} defines
residuals r{«, f), which we can typically write as r, without
fear of confusion. We say the line /, ; bisects three distinct
points (x;, y;) (j = 1, 2, 3) if all of the ; are of the same
magnitude r but not all have the same sign. If x;, < x;, <
xzandr, = —r, = r, wesay l, gequioscillates with respect
to the points.

It was proved in Steele and Steiger (1986) that the LMS
regression line must be an equioscillating line relative to
some triple of data points. Since there are at most (§) sach
lines a naive algorithm would be to examine them all.
Obviously our O(n?) algorithm must work differently.

Given an equioscillating line /, ; there are two related

(@7y2Y%,)

797

lines with slope «; the line L, determined by the points
P, = (x;, y,) and P, = (x;, y,,), and the line L, that
goes through the point P, = (x,,, y,,). A key property of
the LMS regression line [, 4 is that the number K of points
between L, and L, must satisfy

K= (n— 4)/2 neven
={n—5)/2 nodd 3.1

provided n > 3 (compare Steele and Steiger 1986, main
lemma). Both the idea of equioscillation and the enclo-
sure property given by Equation (3.1) are illustrated in
Figure 3.

One simple method of determining the LMS regression
line can now be given. For each triple of data points P,,
F,, and P; that are ordered by x-coordinate we first de-
termine lines L, and L,, as before. Next we find a triple
with exactly K data points between L, and L, such that
the vertical distance between L, and L, is minimized. The
LMS regression line is the line that goes exactly between
L, and Lz.

We can now see the rephrasing of our problem obtained
by applying T to the data points and the lines they deter-
mine. The condition that there are K points between the
lines L, and L, becomes the condition that there are K
lines between the points TL, and TL,. Further, TL, is the
point determined by the two lines TP, and TP;; TL, is the
point on the line TP, that has the same x-coordinate as
the point TL,.

Our algorithmic problem in the dual can now be ex-

B= ("niz: Yip)

Figure 3. Equioscillation. For the given set of data points of size n = 20, the LMS regression line I, equioscillates relative to P,, P,, and P,.

Note that L,wﬁﬂng and lines are equally spaced.



798

pressed as follows: Given n lines L; (1 = i = n) in general
position in the plane with intersection points P;; (1 =i <
j = n), find that line L* and intersection point P* such
that, among all line-point pairs (L, P) that have exactly
K of the L, cutting the vertical segment S joining L and
P, the pair (L*, P*) has the smallest vertical distance. [For
statistical purposes there is no loss in assuming that our n
lines are in general position in the sense that no pair of
lines are parallel and no more than two meet at any given
point. If this were not the case a statistically subliminal
perturbation of the L, could make it so. This perturbation
(if required) can be achieved with a preprocessing cost of
order O(n). In addition, with minor adjustments to our
algorithms, one can remove the stipulation that the lines
be in general position.]

If this dual problem is solved, then in constant time we
can interpret the solution as a solution to the primal.

4, SWEEP-LINE ALGORITHM AND
SPACE EFFICIENCY

We are now in a position to give our first duality-based
algorithm for computing the least median of residuals
regression line. We will suppose for this section that the
duality transformation has been performed, and we pro-
ceed to solve the dual problem spelled out previously.

The technique that we apply is a type of sweeping of
the plane by combinatorially moving a vertical “sweep-
line” from the left to the right, stopping at each of the P;
to perform some computation. This is probably the first
application of these techniques in the area of regression,
but Shamos and Hoey (1976) and Bentley and Ottman
(1979) showed that sweep-line techniques are applicable
to a variety of problems in computational geometry. Edels-
brunner and Wetzl (1986) recently applied techniques sim-
ilar to those presented here to achieve fast algorithms for
such problems as half-planar range estimation, the k-near-
est neighbors search problem, and minimum area trian-
gulation.

The computational objectives of this first algorithm are
(a) to illustrate the power of duality in a statistical problem
and (b) to provide a reasonably fast algorithm that is op-
timally space efficient. The second objective requires some
care and a few subtleties. In the first place, by “space-
efficient” we mean an algorithm that requires O(n) space.
Since the problem is of this size one cannot do better.

The sweep-line algorithm requires two off-the-shelf data
structures. The first of these, to be called LIST, will main-
tain our set of # lines in a geometrically meaningful order.
LIST can be implemented as a simple linked list, but we
will want to add some additional pointers that will help
LIST to interact with the second data structure.

Our second structure will be used to store a certain
subset of n — 1 out of the set of n(n — 1)/2 intersection
points P;. The structure we create will permit us to access
the “smallest” element in time O(1) and permits the in-
sertion or deletion of an element in time O(log n). The
ordering we will use to give meaning to “smallest” is that
P; < P, provided the x-coordinate of P; is smaller than
the x-coordinate of P,,. To implement this second structure

Joumnai of the American Statistical Association, September 1987

we can use a heap (see, e.g., Aho, Hopcroft, and Ullman
1974). We will refer to our particular structure as HEAP.

The initialization of these structures will show how they
will be used and will help make the algorithm transparent.
We begin by noting that to the left of all of the intersection
points, the lines are themselves ordered by slope, that is,
the line with smallest slope is above all of the other lines,
and so on. Consequently, we place all of the L; into LIST
in increasing order of slope. We also augment the structure
holding the L; by storing along with each of the L; a set
of four pointers, Upl, UpK, Downl, and DownK, which
will point to the lines that are 1 above L;, K above L,,
and so forth in the ordering given by LIST. Since lines too
near the top or the bottom will not have lines satisfying
the required conditions, we set the pointers to the null
value to flag this situation.

The current order of the lines in LIST, increasing order
of slope, is exactly equivalent to decreasing order of L,
intercept, where L,: x = A is any vertical line strictly to
the left of all of the P;;. To compute a potential value for
A, we must locate the leftmost intersection point P;. But
the leftmost P; must be an intersection of two lines ad-
jacent in LIST. Consequently, we pass through LIST and
for each adjacent pair L; and L; in LIST, we install P; in
HEAP. We do this while respecting the ordering of the P;
by x-coordinates and we end up with a heap of size n —
1 with the leftmost of the P; installed at the root. As an
important adjunct to the heap building process, we make
a double set of pointers that associate the elements of
HEAP and the elements of LIST. Specifically, for each
adjacent pair L; and L; in LIST and each corresponding
intersection point in HEAP, we create pointers from L;
and L; to P; and pointers from P; to L; and L;.

Once HEAP has been constructed, we fix the line L,:
x = A by setting A to some arbitrary value less than the
x-coordinate of the point at the root of HEAP. Next we
introduce another vertical line L, which we call the sweep-
line, and we initialize L to L,. The line L is not essential
to the algorithm, but it helps articulate a program invariant
that makes verifications clearer.

With the preprocessing and initialization phase com-
plete, we should make a preliminary tally of resources
consumed. First, because of the sorting according to slope,
LIST requires time O(n log n) to build and space O(n) to
store. Since HEAP is also of size only O(n), it can be
created in time O(n) and space O(n) using well-known
methods.

The algorithm for computing the LMS regression line
is now almost trivial using the data structures we have
built. The picture to keep in mind is that of sweeping the
vertical line L from L, until it has passed through all of
the points. What we will do is manage LIST and HEAP
in such a way that (a) LIST always provides the ordering
of the L, according to decreasing order of L-intercept, (b)
the pointers stored in LIST remain consistent with their
initial definition, and (c) HEAP always stores as its min-
imal element the intersection point P; that has smallest x-
coordinate of any intersection point to the right of L.

As L reaches each new intersection point P; we compute



Souvaine and Steele: Least Median of Squares Regression

the vertical distance to the lines UpK and DownK and
compare the results with the previous optimum. Then we
exchange the relative positions of L; and L, in LIST. A
key geometric observation parallel to the idea used to
compute L, is that from the whole set of n(n — 1)/2
intersection points P;; (1 = i <j =< n) the one that is nearest
to the sweep-line L must be determined by a pair of lines
{L;, L;}, which are adjacent in the updated LIST. This
observation permits us to keep a set of candidates for the
“next point to explore,” which is at most of cardinality »
— 1 and means that for each of the O(n?) new positions
of L, we need update only three points of HEAP at a cost
of O(log n) time each. Thus the entire algorithm runs in
time O(n? log n).

5. DATA STRUCTURES FOR
SEARCHING ARRANGEMENTS

To improve upon the O(n? log n) time complexity of
our first algorithm, we introduce the idea of a hammock
(Chazelle 1984). A hammock is a graph G constructed

799

from the » given lines L, (1 = i = n) and an auxiliary pair
of vertical lines L and R, called “left” and “right.” If m
is the number of intersections among the L; occurring
between the two lines L and R, the hammock has a vertex
set V of cardinality m + 2n formed by adding the set of
intersection points on the vertical lines to the set of in-
tersection points enclosed by L and R. The edge set E of
G consists of those pairs of V that are joined by a segment
of the arrangement. That is, v; and v; are joined if they are
on the same line and there is no line that separates them.
An illustration of a hammock is given in Figure 4a.

The key computational fact we need about hammocks
is that Chazelle (1984) introduced an algorithm that com-
putes either the edge list representation or the adjacency
list representation of a hammock in time O(n log n + m)
and space O(n + m). For our application, we must pick
L and R so that the hammock contains all of the inter-
section points P; (1 =i <j = n). Assuming as before that
all n lines are in general position, we may conclude that
m = n(n — 1)/2 and thus that the hammock will require

a
L R
1 - 1 L i

b
3 i vy >V Yy 7: vy >V Vg ¥ Vg > Vg

2: vy * vy » V3 Vg Vg > Vg > Vg > V™ Vo
3 3: vy, » TV, Vg vy + vy > Vi

4: vy > vz > V5 10: v+ vg > Vg * V) ¥
" 5: Vg > Vg >V, > Vo Vg 1l: v+ Vg > Yy Vo

6: Vg >V, > Vg > Vg 7 Vg 12: v, > Vg Yy,

BottomQut

i L

Figure 4. (a) Small Hammock. (b) Adjacency List for the Hammock. (c) Entrance/Exit Rules.



800

O(n?) time and space. Furthermore, all of the vertices of
G that are on L or R have degree 2 or 3 and all other
vertices have degree 4.

The adjacency list representation of G, our choice, con-
tains a linked list of the vertices such that each vertex v
also has a pointer to a linked list containing the vertices
adjacent to v in counterclockwise order. An illustration of
the adjacency list representation corresponding to the
hammock of Figure 4a is given in Figure 4b. In this bounded
degree situation, the linked adjacency list can be replaced
with just a simple four-element array. We shall tag the
four edges associated with a vertex not on L or R with
labels like those in Figure 4c.

A final point about Chazelle’s O(n?) construction of a
complete hammock is that it is reasonably easy to imple-
ment and there is not a substantial amount of overhead
being concealed in the constants of the O(n?) bound. A
contrasting example is Strassen’s O(n*®!) algorithm for fast
matrix multiplication, which has seen little practical im-
plementation despite its remarkable theoretical impor-
tance (see, e.g., Aho et al. 1974),

6. TIME-EFFICIENT LMS REGRESSIONS

In addition to the hammock just described we will need
one further data structure before we can detail our second
algorithm. Just to have a name we will call this additional
structure S. If Q; (1 = i < n) are the points of intersection
of L; on L, we require that (a) S be a linked list of the L;
ordered by decreasing y-coordinate of @, (b) for each L;
we have defined a pointer called Kbelow(L;), which points
to the line L; that is K + 1 below L; in the list S, and (c)
we have defined a similar pointer Kabove(L,), which points
to aline L, thatis K + 1 above L;in S. If one of the lines
L;or L, fails to exist, it is understood that the correspond-
ing pointer takes on the null value.

A notion that helps the understanding of our second
procedure is that of a strand. By a strand we mean that
connected sequence of intervals that is obtained by starting
at a point Q, following the only non-L edge of the ar-
rangement from Q; and then successively following the
traversal rule given in Figure 4c and making the unique
permissible transition from each of the P;; until we arrive
at R. The key property of a pair of strands W and W’ is
that any vertical line between two points of W and W' will
always cross exactly the same number of lines L, 1 =i =
n).

The algorithm is now easy. For each Q; (1 =i < n) we
construct the strand W, that originates from Q,. Using the
pointer in § we find the Q, and Q, that are K + 1 above
or K + 1 below @Q; (if they exist). We then consider the
associated strands W; and W,.

For specificity let us suppose that W; is a strand that is
K + 1 below W,. We will traverse W, by starting at Q; and
taking the unique admissible edge out of each successive
intersection point until we reach R. At each step of this
process we increment our position in W; until we locate
the edge E of W, that lies directly below our current in-
tersection point P in W,;. We then compute the vertical
distance between P and E. As we traverse W, we retain a

Joumal of the American Statistical Association, September 1987

record of the minimum value found and the point—-edge
pair that produces that minimum.

Although the details have just been spelled out for W,
and the strand K + 1 below W,, we obviously can process
the strand that is K + 1 above W, in the same way. (Typ-
ically one has either a strand K + 1 above or a strand K
+ 1 below, but it is also possible to have both.)

After each strand W, has been processed we can then
at cost O(n) examine the minimal point-edge pairs asso-
ciated with the W, (1 =< i = n). This will permit us to find
the global minimum, that is, the point-edge pair (P,, E,)
such that the vertical distance between P, and E, is min-
imal in the class of all point—-edge pairs P and E such that
K lines pass between P and E. This pair (P,, E,) is (of
course) a solution to our dual version of the LMS regres-
sion problem.

Before leaving this algorithm we should note where re-
sources are consumed. The creation of the basic hammock
had time cost O(n?) and space cost O(n?). Creating §
added the more modest space cost of O(n) and time cost
O(n log n). There were n strands traversed, and each of
these traversals required time O(n), so the cumulative time
cost of the core algorithm was O(n?). The resources con-
sumed over the whole process are, therefore, of order
O(n?) for both space and time.

7. CONCLUDING REMARKS

The most obvious question that we have not fully ad-
dressed is that of multiple regression. The techniques of
this article should extend, although the expositional and
analytical overhead increases substantially. The funda-
mental tool for searching a higher-dimensional arrange-
ment has been provided in Edelsbrunner et al. (1983), and
the basic device of duality remains intact. The running
time of any exact LMS regression with d dimensional is
likely to be no faster than O(n?). This fact makes the study
of heuristic alternatives to LMS regression an open and
interesting area for further study.

Two other issues of importance are (a) making these
algorithms dynamic in the sense of being able to add or
delete observations cheaply and maintain an LMS regres-
sion line, and (b) providing analogies to LMS regression
that accommodate weights for different data points.

The importance of these issues comes from the possi-
bility of real time applications of robust regression as part
of filtering systems.

[Received March 1986. Revised December 1986.)

REFERENCES

Aho, A. V,, Hopcroft, J. E., and Ullman, J. D. (1974), The Design and
Analysis of Computer Algorithms, Reading, MA: Addison-Wesley.
Bentley, J. L. (1982), Writing Efficient Programs, Prentice-Hall Software

Series, Englewood Cliffs, NJ: Prentice-Hall.

Bentley, 1. L., and Ottman, T. A. (1979), “Algorithms for Reporting
and Counting Geometric Intersections,” IEEE Transactions on Com-
puters, C-28, 643-647.

Brown, K. Q. (1979), “Geometric Transforms for Fast Geometric Al-
gorithms,” Technical Report CMU-CS-80-101, Carnegie-Mellon Uni-
versity, Dept. of Computer Science.

Chazelle, B. (1984), “Intersecting Is Easier Than Sorting,” in Proceed-



Souvaine and Steele: Least Median of Squares Regression

ings of the 16th Association for Computing Machinery, Symposium on
the Theory of Computing, pp. 125-135.

Chazelle, B., Guibas, L. J., and Lee, D. T. (1983), “The Power of
Geometric Duality,” in Proceedings of the 24th IEEE Foundations of
Computer Science, pp. 217-225.

Daniels, H. E. (1954), “A Distribution-Free Test for Regression Param-
eters,” Annals of Mathematical Statistics, 25, 499-513.

Dobkin, D. P, and Souvaine, D. L. (1986), “Computational Geometry—
A Users Guide,” in Advances in Robotics I: Algorithmic and Geometric
Aspects of Robotics, eds. J. T. Schwartz and C. K. Yap, Hillsdale, NJ:
Lawrence Erlbaum.

Dolby, J. L. (1960), “Graphical Procedures for Fitting the Best Line to
a Set of Points,” Technometrics, 2, 477-481.

Donoho, D. L., and Huber, P. J. (1983), “The Notion of Breakdown
Point,” in A Festschrift for Erich L. Lehmann, eds. P. J. Birkel, K.
Doksum, and J. L. Hodges, Belmont, CA: Wadsworth, pp. 157-184.

Edelsbrunner, H., O’Rourke, J., and Seidel, R. (1983), “Constructing
Arrangements of Lines and Hyperplanes With Applications,” in Pro-
ceedings of the 24th IEEE Foundations of Computer Science, pp. 83—
91.

801

Edelsbrunner, H., and Wetzl, E. (1986), “Constructing Belts in Two-
Dimensional Arrangements With Applications,” SIAM Journal on
Computing, 15, 271-284.

Emerson, J. D., and Hoaglin, D. C. (1983), “Resistant Lines for y-
versus-x,” in Understanding Robust and Exploratory Data Analysis,
eds. D. C. Hoaglin, F. Mosteller, and J. Tukey, New York: John Wiley.

Johnstone, I. M., and Velleman, P. F. (1985), “The Resistant Line and
Related Regression Methods,” Journal of the American Statistical As-
sociation, 80, 1041-1054.

Leroy, A., and Rousseeuw, P. J. (1984), “PROGRESS: A Program for
Robust Regression,” Report 201, Centrum voor Statistiek en Oper-
ationell Onderzoek, University of Brussels.

Rousseeuw, P. J. (1984), “Least Median of Squares Regression,” Journal
of the American Statistical Association, 79, 871-880.

Shamos, M., and Hoey, D. (1976), “Geometric Intersection Problems,”
in Proceedings of the 17th IEEE Foundations of Computer Science,
pp. 208-215.

Steele, J. M., and Steiger, W. L. (1986), “Algorithms and Complexity
for Least Median of Squares Regression,” Discrete Applied Mathe-
matics, 13, 509-517.



