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Abstract

We generalize Sauer’s lemma to multivalued functions, proving tight bounds on the cardinality of subsets of
1‘[;’;1{0, .oos N} which avoid certain patterns. In addition, we give an application of this result, bounding
the uniform rate of convergence of empirical estimates of the expectations of a set of random variables to
their true expectations.



1 Introduction

Let N denote the positive integers, Zt denote the nonnegative integers and Z denote the integers. Let
[0] = 0 and for each m € N, let [m] be the set {1,...,m}.

We begin by stating Sauer’s result [17]. Vapnik and Chervonenkis independently proved a similar lemma
in [24].

Let m € ZT. Let F' be a family of subsets of [m]. If I is a subset of [m], we say that I is shattered by F’
if and only if

{fnr:fery=2" (1)

The Vapnik-Chervonenkis(VC) dimension of F' [24] is the cardinality of the largest subset of [m] shattered
by F.

Theorem 1 ([17]) If the VC-dimension of F' is d, then

n<y (%) @

and this bound is tight; i.e., for alld,m € Z+ d < m, there exists FF C 2™ of VC-dimension d that meets
this upper bound.

In this paper, we look at some generalizations of the above definition of dimension and of Theorem 1.
Following [8], let (m, k) — (n,l) denote the statement: If ' C 2I™] |F| = k, then there exists I C [m]
such that |I| = n and
fnT:fery>t (3)

Sauer’s result can now be stated as

(m, 1 +:§§ (T)) — (d, 2%). (4)

Proofs of other statements of the form (m, k) — (n,!) and related results are given in [3] [5] [6] [8] [11] [10]
[20].
Let m € ZT. Let N; € N,1<i<m. Let

FgX:ﬁ{O,...,Ni}. (5)

i=1

Note that when N; = 1 for all i,1 <4 < m, F' is essentially a family of subsets of [m], as in Sauer’s lemma.
For f € X, denote by f; the ith coordinate of f, and similarly for all cartesian products used in the paper.
Let I = {i1,...,i} C [m], with i1 < is < --- < ig. Define

k
X, = H{o,...,Nij}. (6)

For each f € X, let

fll :(fi1a-"afik)' (7)

Define
B, ={f,:fer} (8)
Suppose that we extend Sauer’s definition of shattering to say that F' shatters I if and only if F}, = X|,.

Generalizations of Sauer’s result using this extension of the definition of shattering are given in [2] [13] [19]
[4]. Unfortunately, the bounds obtained grow exponentially with m. For applications such as that given in



section 3, a generalization of shattering which gives rise to bounds on |F'| that grow polynomially in m is
desirable. We extend Sauer’s result to some such generalizations which were given in [14] [15].1

Choose ¢ : N x N — {0,1,*}. Extend ¢ to

) N*x Nt (9)
keN
by defining
¢(‘iag) = (¢($1:y1)a“'a¢(rk:yk))~ (10)
Extend ¢ further to QNk x N* by defining
¢(S,y) ={o(5,9) : s € S}. (11)
We say that I is ¢-shattered by F if there exists y € X|, such that
{0, o(7,, 9). (12)

We say that g witnesses F'’s ¢-shattering of T and that f € F satisfies b € {0, 1}|I| if and only if qﬁ(fh Y) = b.
The ¢-dimension of F' is the cardinality of the largest subset of [m] shattered by F.
We say F' C X Pollard-shatters (P-shatters) I if F' ¢-shatters I with ¢ defined by

.. 1 ifi>y
s ={ g iz (13)

and define the Pollard-dimension (hereafter called the P-dimension) of F' to be its ¢-dimension in this case.
We denote the P-dimension of F' by P-dim(F"). This definition is discussed in [12][15][16]. It is called the
pseudo dimension in [16] and the combinatorial dimension in [12].

Graph-shattering (G-shattering) and the Graph-dimension (G-dimension) are defined similarly with ¢
defined by

1 ifi=y
sii={ o izl (14)

The G-dimension of F' is denoted by G-dim(F'). This definition is treated in [14].

For the purpose of bounding the cardinality of sets of a given dimension using either of the previous two
definitions, we define the GP-dimension of F' to be its ¢-dimension when ¢ is given by

1 ifi=j
6(i,j) =14 0 ifi<j (15)
* ifi>j

with the corresponding definition for GP-shattering. The GP-dimension of F is denoted by GP-dim(F’).

Note that if N; = 1 for all 4,1 < ¢ < m, all of these dimensions reduce to the VC-dimension. This
can be seen by viewing the subsets of [m] in the definition of VC-dimension as elements of {0,1}™. Then
F C {0,1}™ shatters I C [m] exactly when {0, 1}/l C F,. Tt can now easily be verified that, for each
function ¢ given above, F is shattered exactly when F' is ¢-shattered.

We now look at a fourth generalization of the VC-dimension.

Choose 7 : N® — {0, 1,x}. Extend v to

| 2V x N* x N* (16)
keN

as above. We say that I is y-shattered by F' if there exist y,z € X|, such that for all 4,1 <@ <k, y; < 2
and

{0, =y(F,,9,2). (17)

1Bounds polynomial in 7 and N for yet another generalization of the VC-dimension are implicit in [1], research pursued
independently from ours. It appears, however, that the bounds of this paper are more useful when applying the results of
section 3 (see e.g. [12]).




Here we say that g and Z witness F’s y-shattering of I and say f € F satisfies b € {0, 1}|I| if and only if
v(fi;,9.2) =b. (18)
We say F' N-shatters I if F' y-shatters I with 4 given by
1 ifi=y
(i, 5,0)=< 0 ifi=1I . (19)

* otherwise

The Natarajan-dimension (or N-dimension) of F' is defined to be its y-dimension in this case. This definition
appears in [14]. The N-dimension also reduces to the VC-dimension when N; = 1 for all 1 <i < m.
Define

Prax(d,m,N1,...,Np) = max{|F|:F C ﬁ{O, oy Ni}, P-dim(F) < d} (20)
i=1

Gmax(d,m, N1, ..., Ny) = max{|F|:F C ﬁ{O, ooy, Ni}, G-dim(F') < d} (21)
i=1

G Ppax(d,m,N1,...,Np) = max{|F|: F C ﬁ{O, sy Ni}, GP-dim(F) < d} (22)
i=1

Npax(d,m, N1, ..., Np) = max{|F|: F C ﬁ{O, cosy Ni}, N-dim(F") < d} (23)
i=1

It is easily verified that if a set F' N-shatters a set, it also GP-shatters it, and if F* GP-shatters a set, it
also G-shatters it and P-shatters it. This implies that

N-dim(F) < GP-dim(F) (24)
GP-dim(F) < P-dim(F) (25)
GP-dim(F) < G-dim(F) (26)
which in turn implies that
Prax(d,m, N1,...;Np) < GPpax(d,m,Ny,..., Npy) (27)
Gmax(d,m, N1,..., Npy) < GPpax(d,m, Ny, ..., Np,) (28)
GPmax(damaNla“'aNm) S Nmax(d;m;N1;~~~aNm) (29)

for all relevant d,m € Z+ ,Ny,...,N,, € N.
Our main result is stated below, and will be proved in the following section. In the following, for each
i,m e Z%, let Tpn; C 2[™ be defined by

P = {5 C [m] £ 8] = i}. (30)
Theorem 2 For alld,m e Zt Niy,...,N,, € N such that d < m,

Gmax(damaNla'“aNm) = (31)
Pmax(damaNla-“aNm) = (32)

> I ~. (33)

i=0 SEl'n; k€S

G Prax(d,m, N1, ..., Np)

When there is an N € N such that N; = N for all i, 1 < ¢ < m, we obtain the following corollary, which
is useful for obtaining learning results such as those in [12].



Corollary 3 Letd,m e Zt N € N be such that d < m. Let
Fc{o,..,N}"

such that F' has G-, P- or GP-dimension no greater than d. Then

d
m i
|F|§Z<i)N.
i=0

Proof: Follows from Theorem 2 by substituting N for each N and collecting terms. O
Using similar techniques, we can establish the following.

Theorem 4 For alld,m € Zt Ni,...,N,, € N such that d < m,

Zd: STTI M < Noas(dom, Ny oo, N
l Ne 41
> I

i=0 S€l',; k€S

IN

This gives a result similar to that obtained by Natarajan [14] in the special case above.
Corollary 5 Let d,m € Zt ,N € N be such that d < m. Let
Fc{o,.. N}

such that F' has N-dimension no greater than d. Then

|F|§§(T) (ijl)i

Note that both Corollary 3 and Corollary 5 give Sauer’s result (Theorem 1) in the case N = 1.

2 Proofs of the results
We begin by exhibiting large sets of a given G-, P-; GP-, and N-dimension.
Lemma 6 Letd,mée& Zt Ni,...,N,, € N be such that d < m. Then there exists
FcXx=][{0,...N:}
i=1
such that F' has G-, P-, GP-, and N-dimension d and

=Y Y I

i=0 SEl'm; keS

(41)

Proof: Define F' to be all the elements of X with at most d nonzero entries. We claim F' has G-, P-, GP-

and N-dimension d, and |F'| is as given above.

To prove that the G-, P-, GP- and N-dimensions of F' are all no greater than d, it is sufficient to prove

that G-dim(F') < d and P-dim(F") < d, since as discussed above

N-dim(F) < GP-dim(F)
GP-dim(F) P-dim(F")

<
GP-dim(F) < G-dim(F).



First, we show that G-dim(/") < d. Assume G-dim(f") > d for contradiction. Let y witness F'’s G-
shattering of I with |I| = k > d. Form b € {0, 1}* by

bi:{o ify; =0 (45)

1 otherwise

Let f € F satisfy b. Let g = j?|1. By definition of G-shattering, we have g; # y; if y; = 0 and ¢g; = y; if
yi # 0, 50 g; # 0 for all ¢, which implies f; # 0 for all j € I which contradicts the definition of F', since
7] > d.

Next, we need to show that P-dim(F') < d. Again, assume P-dim(F") > d for contradiction. Let § witness
F’s P-shattering of I = {iy,...,ix} with |[I| = k& > d. Let f € F satisfy (0,0, ...,0). Since y; > i, for all
4,1 < j <k, we have y; > 0 for all j,1 < j < k. Let g € I" satisfy (1,1,...,1). Since g;; > y; for all
7,1 <5 <k, we have g;;, > 0 for all j,1 < j <k, which again contradicts the definition of F'.

We can see that the G-, P-; GP- and N-dimensions of F' are all no less than d, since for each of the
definitions of shattering, any subset I of d elements of [m] is shattered, since it is trivially N-shattered
(taking y = (0,0,...,0), z = (1,1,...,1)), and as discussed previously, the N-shattering of I implies its G-,
P- and GP-shattering.

We can see that F’s cardinality is as given in the lemma by breaking the elements of F' up into subsets
consisting of the elements with exactly ¢z non-zero elements, 0 < ¢ < d, and for each 7 further breaking these
up according to which ¢ elements are nonzero. O

For our next lemma, we give an upper bound on the cardinality of sets of a given GP-dimension, and
thereby that of sets of a given G- or P-dimension. OQur argument is a generalization of that given by Sauer
in [17], and is similar to Natarajan’s generalization of this argument in [14].

Lemma 7 Letd,mé& Zt Ni,...,N,, € N be such that d < m. Let

FgX:ﬁ{O,...,NZ»} (46)

i=1
be such that GP-dim(F) < d. Then
d
ey Y I )
i=0 SELm; kES

Proof: Our proof is by double induction on m and d.

First we consider the case in which d = 0. Here, the bound (47) reduces to |F| < 1. If |F| > 1, then
F must have two distinct elements f and g. Let 7 be an index on whose entry f and g differ. Then {i} is
shattered by F', so the GP-dimension of F' is at least 1, which contradicts the assumption that d = 0, so
|F'| <1 and the lemma holds.

Next, suppose that d = m. By partitioning the elements of the domain as discussed above, we can see

that .
X1<> > I ™ (48)

i=0 S€lm; kES
so since F' C X, certainly
m
71<> > TV (49)
i=0 SET i kES

establishing the result in this case.
Now, choose d, m € Zt such that 0 < d < m. Define 7: X — H;”;ll{o, ..., N;} by

7(f) = (frs s fmn). (50)

Define
a:w(F)—{0,..., Ny} (51)



b
Y a(wy, ..., Wy—1) = min{v : (w1, ..., Wy_1,v) € F'} (52)
Define
Fo={(fi, s fmr,a(fi, s fm1)) : f € F} (53)
and for each n € N,1 < n < N,,, define

Fo={feF—F_:fn=n} (54)

Since the above sets are disjoint and their union is all of F', we have
N
[P = [F-|+ ) [Fal. (55)
n=1

Let us make the inductive assumption that the bound (47) holds for all sets F of vectors of m—1 elements.
We claim that this implies the following.

Claim 8

o <> > T v (56)

i=0 SET (p_1y; kES

Proof (of Claim 8): The restriction of m to F_ is 1-1 by construction of F__. The set w(F_) has GP-dimension
no greater than d since any set of indices shattered by «(F_) is also shattered by F_, and therefore by F.
By the induction hypothesis,

T(FO)I<Y S >0 T s (57)

i=0 SEF(m—l)z kesS

so since @’s restriction to F_ is 1-1, the claim is verified. O
Next, under the same induction hypothesis, we make the following claim.

Claim 9 Foralln € N,1<n < N,

IFnISZ_: ST v (58)

i=0 SEl(pm_1y; kES

Proof (of Claim 9): Choose n € {1,..., N,}. We will show that the GP-dimension of F,, is at most d — 1.
The claim then follows by an argument similar to that of the previous claim. Let I be a set of indices
GP-shattered by F,, and let |I| = [. Note that m ¢ I, since f,, = n for all f € F},.

Now we show that I U {m} is GP-shattered by F. Let y be the witness of F},’s GP-shattering of I.
Consider (yi, ..., y1,n). Choose b € {0, 1}'*1. Let f € F), satisfy (b1, ..., b;) (with respect to I).

If b;41 = 1, then f satisfies b, and if by = 0, then

(fi, oo fn—v,a(f1, oy fae1)) (59)

satisfies b. Since b was chosen arbitrarily, I U {m} is GP-shattered by F. Since by assumption the GP-

dimension of F' is no greater than d and m ¢ I, we have |I| < d — 1. Since I was chosen arbitrarily, the

GP-dimension of F), is no greater than d — 1, which is sufficient to prove this claim, as discussed above. O
From the previous two claims, we have that

[ a i d—1
< 13 T TI Ve 803 > TI v« (60)
| i=0 S€l(poy)i kES | i=0 S€L(pm_1); kES
[ d T a-1
ST T Ox+Y Y O ow (61)
=0 SET (sn_1); kES ] 1=0 SEl'(;p_1); kESU{mM}




HY Y Iw+Y Y I om )

i=1 SET (;p_1); kES i=1 S€l(m_1)(i—1) kESU{m]}
J -
N 1N I R AT D N | 7 (63)
i=1 | SET (m—1): KES SEl (m_1)(i—1) kESU{m}
J -
=13 Y Om+| X IIw (64)
i=1 SET i, mES kES SEl i, mES LES

This completes the induction. O

Theorem 2 easily follows from the previous lemmas together with the discussion relating G Ppax to Gax
and Ppax.

Next, we turn to Theorem 4. The lower bound was established in Lemma 6. We obtain the upper bound
with the following lemma, the proof of which is similar to that of Lemma 7.

Lemma 10 Letd, m & Zt Ni,...,N,, € N be such that d < m. Let

FgX:ﬁ{O,...,Ni} (66)

i=1
be such that N-dim(F) < d. Then
d
Ny +1
ey S I (67)
i=0 S€Tm; kES

Proof: As before, our proof is by double induction on m and d.

Using the same argument as the previous lemma, we can establish this lemma for the case d = 0.

Next, suppose that d = m. By partitioning the elements of the domain as discussed above, we can see
that

RY

IN

>y 1w (69

i=0 Sel',; keS

i Y1 (Nk; 1) (69)

i=0 Sel',; keS

IN

so since F' C X, certainly
“ Np+1
ney > IO (M) (1
i=0 SET,; kES
Now, choose d, m € Z%t such that 0 < d < m. Define o and F_ as in the previous lemma and for each
pair of distinct elements u,v € N,0 < u < v < N, define
Fuw={f€F—TF_:fn=v,a(f1, ..., fm-1) = u}. (71)
Since each of the above sets are disjoint and their union is all of ', we have

™m

Np—1 N,
IFI=IF_1+ > > [Fwl. (72)

u=0 v=u+1



Using the same argument as in the previous lemma, under the inductive hypothesis that the lemma holds
for all sets F' of vectors of m — 1 elements, we have

rey v (%) @

i=0 SET (p_1); kES
Now, we wish to establish the following claim under the same inductive hypothesis.

Claim 11 For allu,v € N,0 < u < v < N,,, we have

Fal<Y Y 11 (") (74)

i=0 SEL(jn_1y; kES

Proof (of Claim): Choose u,v € N,0 < u < v < Ny,,. We will show that the N-dimension of Fy,, is at most
d— 1. The claim then follows by an argument similar to that of Claim 8. Let I be a set of indices shattered
by F,, with |I| = [. Note that m & I, since f,, = v for all f € F,.

Now we show that T U {m} is shattered by F'. Let y and z be the witnesses of Fy,’s N-shattering of I.
Consider (y1,...,y,u) and (z1, ..., z;,v). We claim that these vectors witness F’s N-shattering of I U {m}.
Choose b € {0, 1}'+1. Let f € F,, satisfy (by, ..., b;) (with respect to I).

If b1 = 1, then f satisfies b and if by = 0, then

(fl, ceny fm—l; a(fl, ceey fm—l)) = (fl, ceny fm—l; u) (75)

satisfies b. Since b was chosen arbitrarily, 7U{m} is N-shattered by F. Since by assumption the N-dimension
of F' is no greater than d and m ¢ I, we have |I| < d — 1. Since I was chosen arbitrarily, the N-dimension
of Fy, is no greater than d — 1, which completes our proof of this claim, by the discussion above. O

From the previous two claims, we have that

< Zd: 3 H(Nk+1)_+<Nm2—|—1)d§ Z H(Nk—i—l) (76)

| i=0 SET(yy_1); kES i=0 SEL (j_1); kES

s H(N’““) oy o1 () ™

z 0 SEl(m_1)i kES 1=0 S€l'(;m_1); kESU{m}

d
- 1+z > o™ )+ = 10 (") )
i= 1SeF(m 1)i k€S t=1 S€l'(m_1)(i—1) kESU{m}
d
Ny +1 N +1

; _Sel%:_l), kI;[S 2 SEF(mZ_;)(,_l) keslzl{m} 2

< | Ni +1 Np +1
:1+Z; SZ H<k2)+ > H(’“ ) (80)

i= | SET i, mgS keS SET p;,mES kES

which completes the induction. O
Theorem 4 can now easily be established.

3 An application

In this section, we give an application of Corollary 3, bounding the sample size necessary to obtain uniformly
good empirical estimates for the expectations of all random variables of a given class F' in terms of a

10



generalization of the definition of P-dimension given above to classes of real valued functions, in this case,
random variables. We will measure the deviation of the estimates from the true expectations using a metric
introduced in [12]. These results can be extended to bound the sample size necessary for learning according
to the computational model of learning discussed in [12], an extension of that introduced in [21] which
incorporates additional methods from previous work in Pattern Recognition.

We begin with some definitions. First, we will denote the set of positive real numbers by RT. Now, let
S beaset. Let d: S x S — RT. We say that d is a metric on S if for all z,y,z € S,

r=y < d(z,y)=0 (82)
d(z,y) = d(y,x) (83)
d(z,z) < d(z,y)+d(y,z). (84)

In this case, we say (S, d) is a metric space. Let T C S. We say T is bounded if sup{d(z,y) : z,y € T'} is
finite. For any ¢ € R*, a finite set N is an e-cover for 7' if and only if for all € 7', there exists y € N
with d(z,y) < e. We say T is totally bounded if 7" has a finite e-cover for each € € R*. In this case, we let
N(e,T,d) denote the cardinality of the smallest e-cover of 7' (w.r.t. S and d).

Now, we define the metric relative to which we prove uniform convergence results in this section. This
metric was introduced and its utility as a measure of accuracy for an approximation of a function was
discussed in [12]. For each v € Rt define d, : Rt x Rt — R* by

|r — 5]

dre)= s

(85)
It is straightforward but tedious to verify that for all v € R, d, is a metric on RT.

Let (S, B, D) be probability space with D a probability measure on the set S, and B some appropriate
o-algebra on S. Let F be a set of (measurable) random variables on S. For m > 1, denote by S™ the m-fold
product space with the usual product probability measure. For any

E=(&,....&m) € S™ (86)
and f € F, let
E¢(f) = %Zf(&)- (87)
and B
o =), - f(&m)) - f € F}. (88)

We can view Fl, asa subspace of the metric space (R™,dr1), where dr: is the usual L metric, i.e., for any
z=(21,....,2m) and = (y1,..., Ym) in R™,
m

du(2,9) = -3 foi — il (89)

i=1
Also, we denote by N (e, £, ,dr1) the size of the smallest e-cover of £, in the dp:1 metric by elements of
R™.
Similary, we can view Fi asa subspace of (R™, dpe), where dp is defined as follows. For z = (21, ..., )
and ¥ = (y1, ..., Ym) in R™,
dpe(Z,y) = max{|z; — y;| : 1 < i < m}. (90)
Denote by A (e, F, ,dre) the size of the smallest e-cover of B, in the dp~ metric by elements of R™. Since
clearly for all z,y € R™, dr1(Z,y) < dp(Z,y), any e-cover in the dpe metric also serves as a e-cover in the

dr1 metric, which implies

N(G,FL{ ,dL1)§N(€,F|£ ,dre). (91)

We are now ready for the following theorem. Similar results are given in [9] [15] [22]. In general, these
theorems bound deviation of estimates Eg(f) from true means E(f) for functions f in F' in terms of sizes of
e-covers for I, .

11



Theorem 12 ([12]) Let F be a set® of random variables on S such that there exists M € R with 0 <
F) <M forallf e F and £ € S. Assume v >0, 0 < a <1 and m > 1. Suppose that £ € S™ is generated
by m independent random draws according to the fized measure D on S. Let

p(a,y,m):Pr{EIfEF:d,,(Eg(f),E(f)) >a}. (92)

Then
pla,v,m) < 2F (min(?N(au/S, B, dL1)e_a2”m/8M, 1)) ) (93)

Let us generalize the definition of the ¢-dimension given above for sets of integer vectors to sets of real
valued functions. F be a set of real valued functions defined on some linearly ordered domain X. Let
I={zy,..,2p} C X, withay <22 <---<xp. For f € F, let

f|1 :(f(l’l),,f(l’?k)) (94)

Define
F|I:{f|IZfEF}. (95)

Choose ¢ : R x R — {0,1,%}. Extend ¢ to 28" % RF as in Section 1. We say that I is ¢-shattered by F' if
there exists ¥ € RF such that

{0,1}* C 6(F,,9). (96)

We say that g witnesses F'’s ¢-shattering of T and that f € I satisfies b € {0, 1}* if and only if o(fi,,y) = b.
The ¢-dimension of F' is the cardinality of the largest subset of X shattered by F.

As in Section 1, we define the P-dimension and P-shattering to be the ¢-dimension and ¢-shattering with
¢ defined by

i
sii={ o izl (o7

Note that this definition is equivalent to that of the previous sections when X = [m] and we restrict the
range of functions in F' to initial intervals of the nonnegative integers. If we assume that X = [m] and the
range of all functions in F is [0, M] for some positive real M, we obtain from the above definition a definition
of the P-dimension of a subset of [0, M]™ analogous to that of the previous section for integer vectors. This
will prove useful.

Now we wish to show that if a subset of a product of closed intervals of R has small P-dimension, then
it has a small e-cover in the dy~ metric.

Lemma 13 Let M € RY,me Zt. Let F C [0, M]™ be such that P-dim(F) < d. Let e € R*. Then

Nie,Fde) < E ()| %] (59)

Proof: If S C R™, y € R™ and ¢ € R, denote by ¢S + y the set {e¢s+y:s5 € S}.
Define g : [0, M]™ — {0, ..., L%J 1™ by B(f) = g, where g; = [%J for all i,1 < i < m. Let G = B(F).
Let H = 2eG + (¢, ¢, ..., €).

~ First, we claim that H is an e-cover for F' with respect to the dp~ metric. Choose f € F. Let
h=2eB(f) + (¢,¢,...,€). Choose i,1 <i < m. Then we have

|fi—hi| = |fi— <2€ {%J + 6)‘ (99)
_ i i !
|2 0
< e (101)

?Further measurability assumptions are required. See [12].
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Since ¢ was chosen arbitrarily,
dreo(f,h) = max{|fi — hi| : 1 <i<m} <e. (102)

Since f € F was chosen arbitrarily, H is an e-cover for F.
Next, we wish to show that P-dim(G) < d. Let I = {1, ..., iz} be a set shattered by G and let

_ M|k
vy | == 1
ve 0. 3]y (103)
witness this shattering. We claim that 2ey witnesses F’s shattering of I. Choose b € {0,1}*. Let g € G

satisfy b. Choose f € F', such that 8(f) = g.
If b; = 1, we have g;; > y; which is equivalent to

i

A TR 104

2| 2w (104
which implies

i

LA RS 1

% = Yj ( 05)

since > |z] for all # € R. Finally, the previous inequality implies
fi; 2 2ey;. (106)

So if bj = 1, fij 2 2€y]'.
Suppose b; = 0 and f;; > 2ey;. This implies f;; /2e > y;, which in turn implies

since y; € Z. But this is a contradiction, since g;; < y;, which holds because b; = 0 and g satisfies b. So if
bj =0, we have f;, < 2cy;.

In the preceding two paragraphs we have established that for all j,1 < j < k, we have f;; > 2ey; if and
only if b; = 1, and thereby that f satisfies b. Since b was chosen arbitrarily, I is shattered by F'. Since I was
chosen arbitrarily, P-dim(G) < P-dim(F') = d.

Now, by Corollary 3,
orm\ | M|
< E — . 1

Since H is an e-cover of F' and |G| = |H|, we have

N(e, Fydp=) <3 <T) l%J (109)

+=0
which completes the proof. O

Corollary 14 Let M € R* ,m e Z*. Let F C [0, M|™ be such that P-dim(F) <d. Let e € R*. Then

v £(2) ()

=0
Proof: As discussed above

N(e,F,dLl)SN(G,F,dLm). (111)

The corollary then follows from the previous lemma. O

The technique by which we obtain bounds on the sample size necessary for the uniform convergence of
estimates to true means for a sequence of random variables has elements which are similar to that used to
in [18] improve the bounds of [7]. The following lemma is useful in this derivation.
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Lemma 15 ([18]) Let z,y € R+. Then
Inz <zy—lIney. (112)
Proof: Fix y € R+. Consider f: R+ — R defined by

f(z) = 2y — Inexy. (113)
Then
flle)=y-1/z (114)

Clearly, f/(z) is positive when # > 1/y and negative when # < 1/y and f is continuous and differentiable
over its domain, so f assumes its minimum at 1/y and

f(1/y) = y(1/y) —Iney(1l/y) = 0. (115)

So f(z) > 0 for all z € R+, which yields the desired result. D
Finally, we are ready to bound the sample size necessary to ensure that with high probability an empirical
estimate of the expected value of a random variable chosen from a set of a small P-dimension is accurate.

Theorem 16 Let F' be a set® of random variables on S such that there exists M € RY with0 < f(&) < M
forallf € Fandé €S. Assumev >0,0< a <1 andm > 1. Suppose that & is generated by m independent
random draws according to the fized measure D on S. Suppose also that P-dim(F) < d. Then

Pr{EIf € F:d,(Eg(f), E(f)) > a} <4 <%)d (%)de—“”m/w. (116)

Moreover, for

m > ZM <2dln (;\7/_)” 4) (117)

this probability is less than 6.

Proof: First, from Corollary 14, we have that

N(av/8,F, ,dp:) < i( ) [4MJi. (118)

i=0

Using the well known combinatorial identity that

> (1) < (empay (119

and substituting

(ﬂ)d (120)

av
for each )
AM |"
— 121
{ av J ' (121)
we get

Naw/8. B, .dp) < (‘“”) (&), (122)

av

Applying Theorem 12 yields the first result.

3The same measurability assumptions as Theorem 12 are required.
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Now, we wish to determine a lower bound on m which guarantees that

d
aM em\ 4 2
—a“vm[8M
4 <—) (_d ) e < 6. (123)

av

Set k = %. Then the above expression simplifies to

d ozm
4k (%) - <5 (124)
Taking logs and rearranging terms yields the following equivalent expression:

am ke
ﬁ>d(lnm+ln7)+ln4/6 (125)

Since by the preceding lemma for any A € R, 0 < A < 1,

Ao kd
<[22 il
Inm < (kd)m—i—(ln)\ae), (126)

the following is sufficient to guarantee Inequality (125):

am Aw kd ke
— > d|— In— +In— In4/6 12
% = <kdm+ " ae T d)+n/ (127)
A k?
= 2%m+dln— +1In4/6. (128)
k Ao
Solving for m yields
2k k 4
> — [ 2d1 1 129
m‘a(l—?A)( v +n5) (129)
and resubstituting k& = ﬂ gives
8M AM 4
> ————(2dln ——=—=+In- ). 1
mz 0{21/(1—2)\) < na}/m—i— né) ( 30)
We choose A = 1/18 for readability, yielding
IM 17TM 4
> 2dIn ———=—+1n - 131
"=y < (a\/a)l/—i—né) (131)

which is the desired bound. O
For comparison, we give the following theorem from [12], which was obtained using a completely different
technique, due to Pollard [16, Theorem 4.7].

Theorem 17 Let F be a set* of random variables on S such that there exists M € Rt with 0 < f(&) < M
forall f € F and £ € S. Assume 0 < v <4M/d, 0 < o < 1 and m > 1. Suppose that £ is generated by m
independent random draws according to the fized measure D on S. Suppose also that P-dim(F) < d. Then

d
166M 16e M 2
Pri3f € F:d,(E < —otvm/8M. 132
r{3f € F 1 d,(Be(f), B() > a} < 8< w>e (132)
Moreover, for
m> M 8M <2dl 8eM +1n ?) (133)
oy av

this probability is less than 6.

4 Again, the same measurability assumptions as Theorem 12 are required.
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4 Conclusion

We have given tight bounds on the cardinality of a subset of [[,{0,..., N;} of a certain dimension for two
generalizations of the VC-dimension: namely the pseudo dimension discussed by Pollard [15] and the graph
dimension introduced by Natarajan [14]. We also have used a similar technique obtain tighter bounds for
another generalization of the VC-dimension introduced by Natarajan, which we have called the Natarajan
dimension. The problem of obtaining tight bounds for the Natarajan dimension remains open.

In addition, we have applied this result to bound the rate of convergence of empirical estimates of the
expectations of a sequence of random variables to their true expectations, obtaining bounds similar to those
already derived in [15] [12]. These results can be extended to bound the sample size required for learning
under the computational model of learnability discussed in [12].

The primary motivation for this research, however, was to attempt to find some simple property of a
class of functions that would characterize the uniform rate of convergence of estimates to true means. While
the finiteness of any of the dimensions discussed in this paper is sufficient for rapid convergence, none of
them are necessary. We hope that the insight gained by studying these generalizations of the VC-dimension
will aid us in this pursuit.

Towards this end, we are currently investigating the following conjecture. Let m € Zt, N € IN. Define vy
as in the definition of N-dimension given previously. Let G = (V, E) be a graph with V' = {0,..., N}. Form
G™ = (V™ E™) as follows. Let V™ = {0, ..., N}, as the notation suggests. Let

£ ={(f,9): F,se V™", 3,1 <i<m(fi,g:) € E}. (134)

Let ' C V™ be a clique in G™. Let I C [m]. We say I is GN-shattered by F if there exist f,§ € F such
that for all i € I, (f;, 9;) € G, and B

{0,311 C 5(F,, £.9)- (135)
We define the GN-dimension of F' to be the cardinality of the largest subset of [m] shattered by F'. Our
conjecture is that if the GN-dimension of F' is no greater than d, then

F) < 2 (M) ("5 1) (136)

Note that if G is the complete graph, any F' C V™ induces a clique, and the GN-dimension of F' reduces to
its N-dimension, so the above bound follows from Corollary 5.

If such a result could be obtained, it would lead to a new characterization of conditions that ensure rapid
uniform convergence similar to the conditions outlined by Vapnik [23].

We are also working on the problem of characterizing those functions ¢ (or ¥) such that a bound on the
¢-dimension of a set gives the bounds of Theorem 2, or more generally, characterizing the functions ¢ such
that there exist bounds polynomial in m and N on the cardinality of subsets of 1‘[;’;1{0, ...; N} of a given
¢-dimension.
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