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Abstract. This paper extends the game-theoretic notion of internal regret to the
case of on-line potfolio selection problems. New sequential investment strategies
are designed to minimize the cumulative internal regret for all possible market
behaviors. Some of the introduced strategies, apart from achieving a small internal
regret, achieve an accumulated wealth almost as large as that of the best constantly
rebalanced portfolio. It is argued that the low-internal-regret property is related to
stability and experiments on real stock exchange data demonstrate that the new
strategies achieve better returns compared to some known algorithms.

1. Introduction

The problem of sequential portfolio allocation is well-known to be
closely related to the on-line prediction of individual sequences under
expert advice, see, for example, Cover (1991), Cover and Ordentlich
(1996), Helmbold, Schapire, Singer, and Warmuth (1998), Ordentlich
and Cover (1998), Blum and Kalai (1999), Cesa-Bianchi and Lugosi
(2000). In the on-line prediction problem the goal is to minimize the
predictor’s cumulative loss with respect to the best cumulative loss in
a pool of “experts”. In a certain equivalent game-theoretic formula-
tion of the problem, this is the same as minimizing the predictor’s
external regret, see Foster and Vohra (1999). External regret mea-
sures the difference between the predictor’s cumulative loss and that
of the best expert. However, another notion of regret, called inter-
nal regret in Foster and Vohra (1999) has also been in the focus of
attention mostly in the theory of playing repeated games, see Foster
and Vohra (1998; 1999), Fudenberg and Levine (1999), Hart and Mas-
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Colell (2000; 2001), Cesa-Bianchi and Lugosi (2003). Roughly speaking,
a predictor has a small internal regret if for each pair of experts (i, j),
the predictor does not regret of not having followed expert i each time it
followed expert j. It is easy to see that requiring a small internal regret
is a more difficult problem since a small internal regret in the prediction
problem implies small external regret as well. A brief summary of the
basic properties is given below.

The goal in the sequential investment problem is to distribute one’s
capital in each trading period among a certain number of stocks such
that the total achieved wealth is almost as large as the wealth of the
largest in a certain class of investment strategies. This problem, known
as the minimization of the worst-case logarithmic wealth ratio, is easily
seen to be the generalization of an external regret minimization prob-
lem in the “expert” setting under the logarithmic loss function. The
main purpose of this paper is to extend the notion of internal regret to
the sequential investment problem, understand its relationship to the
worst-case logarithmic wealth ratio, and design investment strategies
minimizing this new notion of regret. The definition of internal regret
given here has a natural interpretation and the investment strategies
designed to minimize it have several desirable properties both in theory
and in the experimental study described in the Appendix.

The paper is organized as follows. In Sections 2 and 3 we briefly
summarize the sequential prediction problem based on expert advice
and describe the notions of internal and external regrets. In Section
4 the sequential portfolio selection problem is described, and basic
properties of Cover’s universal portfolio and the eg investment strategy
are discussed. In Section 5 we introduce the notion of internal regret
for sequential portfolio selection, and describe some basic properties.
In Section 6 new investment strategies are presented aiming at the
minimization of the internal regret. Finally, in Section 7 the notion of
internal regret is generalized for an uncountable class of investment
strategies and an algorithm inspired by Cover’s universal portfolio is
proposed which minimizes the new notion of internal regret.

2. Sequential prediction: external regret

In the (randomized) sequential prediction problem the predictor, at
each time instance t = 1, 2, . . ., chooses a probability distribution Pt =
(P1,t, . . . , PN,t) over the set {1, 2, . . . , N} of experts. After the choice is
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made, expert i suffers loss �i,t, and the predictor suffers loss

�t(Pt) =
N∑

i=1

Pi,t�i,t .

This loss may be interpreted as the expected loss if the predictor
chooses an expert randomly, according to the distribution Pt, and
predicts as the selected expert’s advice. The external regret of the
predictor, after n rounds of play, is

n∑
t=1

�t(Pt) − min
i=1,...,N

n∑
t=1

�i,t = max
i=1,...,N

N∑
j=1

n∑
t=1

Pj,t(�j,t − �i,t) .

If this external regret is o(n) uniformly over all possible values of the
losses, then the corresponding predictor is said to suffer no external
regret. This problem has been extensively studied since Hannan (1957)
and Blackwell (1956).

For example, it is well known (see, e.g., Cesa-Bianchi and Lugosi
(1999)) that if the losses �i,t are all bounded between zero and B >
0, then the exponentially weighted average predictor defined, for t =
1, 2, . . ., by

Pi,t+1 =
exp(−η

∑t
s=1 �i,s)∑N

j=1 exp(−η
∑t

s=1 �j,s)

has an external regret bounded by

ln N

η
+ n

η

8
B2 = B

√
(n/2) ln N , (1)

with the (optimal) choice η = B−1
√

8 ln N/n. The tuning parame-
ter η can be set optimally only when the time length n is known in
advance. However, we recall a simple modification of the exponen-
tially weighted average algorithm, proposed by Auer, Cesa-Bianchi,
and Gentile (2002), which does not need to know n in advance.

A natural adaptive version of the optimal parameter η determined
in the case of known time length is formed by defining the tuning
parameter at round t by ηt = B−1

√
8 ln N/t. Now, the exponentially

weighted average forecaster with time-varying tuning parameter pre-
dicts, at rounds t = 1, 2, . . ., with

Pi,t+1 =
exp (−ηt+1Li,t)∑N

j=1 exp (−ηt+1Lj,t)
,

where Li,t =
∑t

s=1 �i,s. Denote the (expected) cumulative loss of the
algorithm by L̂n =

∑n
t=1 �t(Pt). The following result is proved in Auer,

Cesa-Bianchi, and Gentile (2002).
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Theorem 1. The exponentially weighted average forecaster with time-
varying tuning parameter achieves, uniformly over all possible values
of the losses �i,t ∈ [0, B],

L̂n − min
i=1,...,N

Li,n ≤ B

(
2
√

n

2
ln N +

√
lnN

8

)
.

This result will be used in Section 6.1 to define an investment algo-
rithm which does not need to know in advance the trading time length.
A whole family of predictors with performance guarantees similar to
those of the exponentially weighted forecaster may be defined, see, for
example, Cesa-Bianchi and Lugosi (2003). Some of them do not require
the knowledge of the time length, as is the case of the polynomial
forecaster described below. Nevertheless, it is important to design a
time-adaptive version of the exponentially weighted forecaster, for the
latter is a popular method, usually achieving good results in practical
situations (see also our experimental results in the Appendix).

An important class of “polynomial” forecasters are those of the form

Pi,t+1 =

(∑t
s=1 �s(Ps) − �i,s

)p−1

+∑N
j=1

(∑t
s=1 �s(Ps) − �j,s

)p−1

+

.

where p ≥ 1 and (x)+ = max {x, 0} denotes the nonnegative part of
the real number x.

These forecasters satisfy the following bound, see Cesa-Bianchi and
Lugosi (2003).

Theorem 2. The polynomial forecaster with p ≥ 1 achieves, uniformly
over all possible values of the losses �i,t ∈ [0, B],

L̂n − min
i=1,...,N

Li,n ≤ B
√

(p − 1)nN2/p .

3. Sequential prediction: internal regret

3.1. Definition of the internal regret

The definition of external regret is based on the comparison to an
external pool of strategies, the ones given by each expert. In the def-
inition of the internal regret one is interested in modifications of the
predictor’s strategy obtained by replacing the action of the forecaster by
expert j each time it chooses expert i. This is equivalent to selecting an
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expert according to the distribution Pi→j
t obtained from Pt by putting

probability mass 0 on i and Pi,t+Pj,t on j. This transformation is called
the i → j modified strategy.

We require that none of these modified strategies is much better than
the original strategy, that is, we seek strategies such that the difference
between their (expected) cumulative loss and that of the best modified
strategy is small. Thus,

n∑
t=1

�t(Pt) − min
i,j∈{1,...,N}

n∑
t=1

�t(P
i→j
t )

should be as small as possible. This quantity is called the internal regret
of the sequential predictor Pt. The internal regret may be re-written
as

max
i,j∈{1,...,N}

n∑
t=1

r(i,j),t

where r(i,j),t = Pi,t(�i,t − �j,t). Thus, r(i,j),t expresses the predictor’s
regret of having put the probability mass Pi,t on the i-th expert instead
of on the j-th one, and

R(i,j),n =
n∑

t=1

r(i,j),t =
n∑

t=1

Pi,t(�i,t − �j,t)

is the corresponding cumulative regret. Similarly to the case of the
external regret, if this quantity is uniformly o(n) over all possible values
of the losses, then the corresponding predictor is said to exhibit no
internal regret.

Now clearly, the external regret of the predictor Pt equals

max
j=1,...,N

N∑
i=1

R(i,j),n ≤ N max
i,j∈{1,...,N}

R(i,j),n (2)

which shows that any algorithm with a small (i.e., sublinear in n)
internal regret also has a small external regret. On the other hand, it
is easy to see that a small external regret does not imply small internal
regret. In fact, as it is shown in the next example, even the exponential
weighted average algorithm defined above may have a linearly growing
internal regret.

Example 1. (Weighted average predictor has a large internal regret.)
Consider the following example with three experts, A, B, and C. Let n
be a large multiple of 3 and assume that time is divided in three equally
long regimes, characterized by a constant loss for each expert. These
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Table I. The losses for Example 1.

Regimes �A,t �B,t �C,t

1 ≤ t ≤ n/3 0 1 5

n/3 + 1 ≤ t ≤ 2n/3 1 0 5

2n/3 + 1 ≤ t ≤ n 2 1 0

losses are summarized in Table I. We claim that the regret R(B,C),n of
B versus C grows linearly with n, that is,

lim inf
n→∞

1
n

n∑
t=1

PB,t (�B,t − �C,t) = γ > 0 ,

where

PB,t =
e−ηLB,t

e−ηLA,t + e−ηLB,t + e−ηLC,t

denotes the weight assigned by the exponential weighted average pre-
dictor to expert B, where Li,t =

∑t
s=1 �(i, s) denotes the cumulative

loss of expert i and η is chosen to minimize the external regret, that is,
η = (1/5)

√
(8 ln 3)/n = 1/(K

√
n) with K = 5/

√
8 ln 3. (Note that the

same argument leads to a similar lower bound for η = γ/
√

n, where
γ > 0 is any constant.) The intuition behind this example is that at the
end of the second regime the predictor quickly switches from A to B,
and the weight of expert C can never recover because of its disastrous
behavior in the first two regimes. But since expert C behaves much
better than B in the third regime, the weighted average predictor will
regret of not having followed the advice of C each time it followed B.

More precisely, we show that during the first two regimes, the num-
ber of times when PB,t is more than ε is of the order of

√
n and that,

in the third regime, PB,t is always more than a fixed constant (1/3,
say). This is illustrated in Figure 1. In the first regime, a sufficient
condition for PB,t ≤ ε is that e−ηLB,t ≤ ε. This occurs whenever
t ≥ t0 = K (− ln ε)

√
n. For the second regime, we lower bound the

time instant t1 when PB,t gets larger than ε. To this end, note that
PB,t ≥ ε implies

(1 − ε)e−ηLB,t ≥ ε
(
e−ηLA,t + e−ηLC,t

) ≥ εe−ηLA,t ,

which leads to t1 ≥ 2n
3 + K

(
ln ε

1−ε

)√
n. Finally, in the third regime,

we have at each time instant LB,t ≤ LA,t and LB,t ≤ LC,t, so that
PB,t ≥ 1/3. Putting these three steps together, we obtain the following
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Figure 1. The evolution of the weight assigned to B in Example 1 for n = 10000.

lower bound for the internal regret of B versus C:
n∑

t=1

PB,t (�B,t − �C,t) ≥ n

9
− 5

(
2n
3

ε + K

(
ln

1 − ε

ε2

)√
n

)
,

which is of the order n, for a sufficiently small ε > 0.

3.2. A general way to design internal regret minimizing

algorithms

The example above shows that special algorithms need to be designed
to guarantee a small internal regret. Indeed, such predictors exist, as
was shown by Foster and Vohra (1998), see also Fudenberg and Levine
(1999), Hart and Mas-Colell (2000; 2001). Here we briefly give a new
insight on predictors studied in Cesa-Bianchi and Lugosi (2003) (see
the remark at the end of this section), and based on Hart and Mas-
Colell (2001), as well as a new, simple analysis of their performance
guarantees.

Consider the case of sequential prediction under expert advice, with
N experts. At round t, the forecaster has already chosen the probabil-
ity distributions P1, . . . ,Pt−1. We define N(N − 1) fictitious experts,
indexed by pairs of integers i �= j, by their losses at time instants
1 ≤ s ≤ t − 1, which equal �s(P

i→j
s ).

Define now a probability distribution ∆t over the pairs i �= j by
running one of the algorithms of Section 2 on this pool of fictitious
experts, and choose Pt such that the fixed point equality

Pt =
∑

(i,j):i�=j

∆(i,j),tP
i→j
t , (3)
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holds. (We say that ∆t induces Pt.) The existence and the practical
computation of such a Pt is an application of Lemma 1 below.

For instance, ∆t = (∆(i,j),t)i�=j may be given by

∆(i,j),t =
exp

(
−η
∑t−1

s=1 �s(P
i→j
s )

)
∑

(k,l):k �=l exp
(
−η
∑t−1

s=1 �s(Pk→l
s )

) ,

tuned, as suggested by the theory, with η = 4B−1
√

ln N/n in case of
known time horizon n.

Indeed, this choice of η and the application of the bound (1) (with
N(N − 1) upper bounded by N2) lead to

n∑
t=1

∑
i�=j

∆(i,j),t�t(P
i→j
t ) ≤ min

i�=j

n∑
t=1

�t(P
i→j
t ) + B

√
n ln N ,

that is, recalling the fixed point equality (3), the cumulative internal
regret of the above strategy is bounded by

max
i�=j

R(i,j),n ≤ B
√

n lnN .

Note that this improves the bound given in Corollary 8 of Cesa-Bianchi
and Lugosi (2003), by a factor of two.

The same analysis can be carried over for the polynomial forecasters
or the time-adaptive version of the exponentially weighted forecaster,
using Theorems 1 and 2, and is summarized in the following theorem.

Theorem 3. The above exponentially weighted predictor achieves, uni-
formly over all possible values of the losses �i,t ∈ [0, B],

max
i�=j

R(i,j),n ≤ B
√

n lnN.

With a time-adaptive tuning parameter the upper bound becomes

max
i�=j

R(i,j),n ≤ B

(
2
√

n ln N +

√
ln N

2

)
.

Finally, with a polynomial predictor of order p ≥ 1,

max
i�=j

R(i,j),n ≤ B
√

(p − 1)nN4/p .

Remark. The conversion trick illustrated above is a general trick
which extends to any weighted average predictor, that is, to any pre-
dictor which, at each round, maintains one weight per expert. More
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precisely, any weighted average predictor whose external regret is small
may be converted into a strategy whose internal regret remains small.
This will be illustrated for convex loss functions in Section 6.1 and for
exp-concave ones in Section 7.1 and 7.2. Note also that in the case of
randomized prediction under expert advice Blum and Mansour (2004)
propose a different conversion trick, with about the same algorithmic
complexity.

Such tricks are valuable to extend results in an effortless way from
the case of no external to no internal regret, like the time-adaptive
exponentially weighted average predictor suited for the minimization
of internal regret proposed by Theorem 3.

It only remains to see the existence and the way to compute a fixed
point of the equality (3). The following lemma proposes a more general
result, needed for subsequent analysis in Section 7.1. The meaning of
this result is that each probability distribution over the expert pairs
induces naturally a probability distribution over the experts.

Lemma 1. Let Q be a probability distributions over the N experts.
For all probability distributions ∆ over the pairs of different experts
i �= j and α ∈ [0, 1], there exists a probability distribution P over the
experts such that

P = (1 − α)
∑
i�=j

∆(i,j)P
i→j + αQ .

Moreover, P may be easily computed by a Gaussian elimination over
a simple N × N matrix.

Proof. The equality

P = (1 − α)
∑
i�=j

∆(i,j)P
i→j + αQ

means that for all m ∈ {1, . . . , N},

Pm = (1 − α)
∑
i�=j

∆(i,j)P
i→j
m + αQm

⎛⎝ N∑
j=1

Pj

⎞⎠ ,

or equivalently,⎛⎝α (1 − Qm) + (1 − α)
∑
j �=m

∆(m,j)

⎞⎠Pm =
∑
i�=m

(
(1 − α)∆(i,m) + αQm

)
Pi ,

that is, P is an element of the kernel of the matrix A defined by
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− if i �= m, Am,i = wm,i,

− Am,m = −∑j �=m, 1≤j≤N wj,m,

where, for i �= m,

wm,i = (1 − α)∆(i,m) + αQm .

The elements of A have a modulus less than 1. An element of the
kernel of A is a fixed point of the matrix S = A + IN , where IN is
the N × N identity matrix. But S is a column stochastic matrix (its
columns are probability distributions), and thus admits a probability
distribution P as a fixed point.

Foster and Vohra (1999) suggest a Gaussian elimination method
over A for the practical computation of P.

Remark. Cesa-Bianchi and Lugosi (2003) show that, writing rt for
the N(N − 1)-vector with components r(i,j),t and Rt =

∑t
s=1 rs, any

predictor satisfying the so-called “Blackwell condition”

∇Φ(Rt−1) · rt ≤ 0 (4)

for all t ≥ 1, with Φ being either an exponential potential

Φ(u) =
N∑

i=1

exp (ηui) ,

with η possibly depending on t (when time-adaptive versions are con-
sidered) or a polynomial potential

Φ(u) =
N∑

i=1

(ui)p+ ,

has the performance guarantees given by Theorem 3.
But the choice (3) ensures that the Blackwell condition is satisfied

with an equality, as

∇Φ(Rt−1) · rt

=
N∑

i=1

�i,t

⎛⎝ ∑
j=1,...,N, j �=i

∇(i,j)Φ(Rt−1)Pi,t −
∑

j=1,...,N, j �=i

∇(j,i)Φ(Rt−1)Pj,t

⎞⎠
(see, e.g., Cesa-Bianchi and Lugosi (2003) for the details), which equals
0 as soon as∑

j=1,...,N, j �=i

∇(i,j)Φ(Rt−1)Pi,t −
∑

j=1,...,N, j �=i

∇(j,i)Φ(Rt−1)Pj,t = 0
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for all i = 1, . . . , N . The latter set of equations may be seen to be
equivalent to (3), with the choice

∆(i,j),t =
∇(i,j)Φ(Rt−1)∑
k �=l ∇(k,l)Φ(Rt−1)

,

which was indeed the probability distribution proposed by the conver-
sion trick introduced at the beginning of this section.

4. Sequential portfolio selection

In this section we describe the problem of sequential portfolio selection,
recall some previous results, and take a new look at the eg strategy of
Helmbold, Schapire, Singer, and Warmuth (1998).

A market vector x = (x1, . . . , xN ) for N assets is a vector of nonneg-
ative numbers representing price relatives for a given trading period.
In other words, the quantity xi ≥ 0 denotes the ratio of closing to
opening price of the i-th asset for that period. Hence, an initial wealth
invested in the N assets according to fractions Q1, . . . , QN multiplies
by a factor of

∑N
i=1 xiQi at the end of period. The market behavior

during n trading periods is represented by a sequence xn
1 = (x1, . . . ,xn)

of market vectors. xj,t, the j-th component of xt, denotes the factor by
which the wealth invested in asset j increases in the t-th period. We
denote the probability simplex in R

N by X .
An investment strategy Q for n trading periods consists in a sequence

Q1, . . . ,Qn of vector-valued functions Qt : (RN
+ )t−1 → X , where the

i-th component Qi,t(xt−1
1 ) of the vector Qt(xt−1

1 ) denotes the fraction
of the current wealth invested in the i-th asset at the beginning of the
t-th period based on the past market behavior xt−1

1 . We use

Sn(Q,xn
1 ) =

n∏
t=1

(
N∑

i=1

xi,tQi,t(xt−1
1 )

)
to denote the wealth factor of strategy Q after n trading periods.

The simplest examples of investment strategies are the so called
buy-and-hold strategies. A buy-and-hold strategy simply distributes its
initial wealth among the N assets according to some distribution Q1 ∈
X before the first trading period, and does not trade anymore, which
amounts to investing, at day t and for 1 ≤ i ≤ N , as

Qi,t(xt−1
1 ) =

Qi,1
∏t−1

s=1 xi,s∑N
k=1 Qk,1

∏t−1
s=1 xk,s

.
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The wealth factor of such a strategy, after n periods, is simply

Sn(Q,xn
1 ) =

N∑
j=1

Qj,1Sn(j) ,

where

Sn(j) =
n∏

t=1

xj,t

is the accumulated wealth of stock j. Clearly, the wealth factor of any
buy-and-hold strategy is at most as large as the gain maxj=1,...,N Sn(j)
of the best stock over the investment period, and achieves this maximal
wealth if Q1 concentrates on the best stock.

Another simple and important class of investment strategies is the
class of constantly rebalanced portfolios. Such a strategy B is paramet-
rized by a probability vector B = (B1, . . . , BN ) ∈ X , and simply
Qt(xt−1

1 ) = B regardless of t and the past market behavior xt−1
1 .

Thus, an investor following such a strategy rebalances, at every trading
period, his current wealth according to the distribution B by investing
a proportion B1 of his wealth in the first stock, a proportion B2 in the
second stock, etc. The wealth factor achieved after n trading periods is

Sn(B,xn
1 ) =

n∏
t=1

(
N∑

i=1

xi,tBi

)
.

Now given a class Q of investment strategies, we define the worst-case
logarithmic wealth ratio of strategy P by

Wn(P,Q) = sup
xn

1

sup
Q∈Q

ln
Sn(Q,xn

1 )
Sn(P,xn

1 )
.

The worst-case logarithmic wealth ratio is the analog of the external
regret in the sequential portfolio selection problem. Wn(P,Q) = o(n)
means that the investment strategy P achieves the same exponent of
growth as the best reference strategy in the class Q for all possible
market behaviors.

For example, it is immediate to see that if Q is the class of all buy-
and-hold strategies, then if P is chosen to be the buy-and-hold strategy
based on the uniform distribution Q1, then Wn(P,Q) ≤ ln N .

The class of constantly rebalanced portfolios is a significantly richer
class and achieving a small worst-case logarithmic wealth ratio is a
greater challenge. Cover’s universal portfolio (1991) was the first exam-
ple to achieve this goal. The universal portfolio strategy P is defined
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by

Pj,t(xt−1
1 ) =

∫
X BjSt−1(B,xt−1

1 )φ(B)dB∫
X St−1(B,xt−1

1 )φ(B)dB
, j = 1, . . . , N, t = 1, . . . , n

where φ is a density function on X . In the simplest case φ is the uniform
density over X . In that case, the worst-case logarithmic wealth ratio of
P with respect to the class Q of all universal portfolios satisfies

Wn(P,Q) ≤ (N − 1) ln(n + 1) .

If the universal portfolio is defined using the Dirichlet(1/2, · · · , 1/2)
density φ, then the bound improves to

Wn(P,Q) ≤ N − 1
2

ln n + ln
Γ(1/2)N

Γ(N/2)
+

N − 1
2

ln 2 + o(1) ,

see Cover and Ordentlich (1996). The worst-case performance of the
universal portfolio is basically unimprovable (see Ordentlich and Cover
(1998)) but it has some practical disadvantages, including computa-
tional difficulties for not very small values of N . Helmbold, Schapire,
Singer, and Warmuth (1998) suggest their eg strategy to overcome
these difficulties.

The eg strategy is defined by

Pi,t+1 =
Pi,t exp (ηxi,t/Pt · xt)∑N

j=1 Pj,t exp (ηxj,t/Pt · xt)
. (5)

Helmbold, Schapire, Singer, and Warmuth (1998) prove that if the
market values xi,t all fall between the positive constants m and M , then
the worst-case logarithmic wealth ratio of the eg investment strategy
is bounded by

ln N

η
+

nη

8
M2

m2
=

M

m

√
n

2
ln N ,

where the equality holds for the choice η = (m/M)
√

(8 ln N)/n. Here
we give a simple new proof of this result, mostly because the main idea
is at the basis of other arguments that follow. Recall that the worst-case
logarithmic wealth ratio is

max
xn

1

max
B∈X

ln
∏n

t=1 B · xt∏n
t=1 Pt · xt

where in this case the first maximum is taken over market sequences
satisfying the boundedness assumption. By using the elementary in-
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equality ln(1 + u) ≤ u, we obtain

ln
∏n

t=1 B · xt∏n
t=1 Pt · xt

=
n∑

t=1

ln
(

1 +
(B− Pt) · xt

Pt · xt

)

≤
n∑

t=1

N∑
i=1

(Bi − Pi,t)xi,t

Pt · xt

=
n∑

t=1

⎛⎝ N∑
j=1

N∑
i=1

Pi,t
Bjxj,t

Pt · xt
−

N∑
i=1

N∑
j=1

Bj
Pi,txi,t

Pt · xt

⎞⎠
=

N∑
j=1

Bj

(
n∑

t=1

N∑
i=1

Pi,t

(
xj,t

Pt · xt
− xi,t

Pt · xt

))
. (6)

Under the boundedness assumption 0 < m ≤ xi,t ≤ M , the quantities

�i,t = M/m − xi,t/(Pt · xt)

are within [0,M/m] and can therefore be interpreted as bounded loss
functions. Thus, the minimization of the above upper bound on the
worst-case logarithmic wealth ratio may be cast as a sequential predic-
tion problem as described in Section 2. Observing that the eg invest-
ment algorithm is just the exponentially weighted average predictor
for this prediction problem, and using the performance bound (1) we
obtain the cited inequality of Helmbold, Schapire, Singer, and Warmuth
(1998).

Note that in (5), we could replace the fixed η by a time-adaptive ηt =
(m/M)

√
(8 ln N)/t. Applying Theorem 3 to the linear upper bound (6),

we may prove that this still leads to a worst-case logarithmic wealth
ratio less than something of the order of (M/m)

√
n ln N .

Remark. (Sub-optimality of the eg investment strategy.) Using the
approach of bounding the worst-case logarithmic wealth ratio linearly
as above is inevitably suboptimal. Indeed, the right-hand side of the
linear upper bounding

N∑
j=1

Bj

(
n∑

t=1

(
N∑

i=1

Pi,t�i,t

)
− �j,t

)
=

N∑
j=1

Bj

N∑
i=1

(
n∑

t=1

Pi,t (�i,t − �j,t)

)

is maximized for a constantly rebalanced portfolio B lying in a corner of
the simplex X , whereas the left-hand side is concave in B and therefore
is possibly maximized in the interior of the simplex. Thus, no algorithm
trying to minimize (in a worst-case sense) the linear upper bound on
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the external regret can be minimax optimal. However, as it is shown
in Helmbold, Schapire, Singer, and Warmuth (1998), on real data good
performance may be achieved.

Note also that the bound obtained for the worst-case logarithmic
wealth ratio of the eg strategy grows as

√
n whereas that of Cover’s uni-

versal portfolio has only a logarithmic growth. In Helmbold, Schapire,
Singer, and Warmuth (1998) it is asked whether the suboptimal bound
for the eg strategy is an artifact of the analysis or it is inherent in the
algorithm. The next simple example shows that no bound of a smaller
order than

√
n holds. Consider a market with two assets and market

vectors xt = (1, 1−ε), for all t. Then every wealth allocation Pt satisfies
1 − ε ≤ Pt · xt ≤ 1. Now, the best constantly rebalanced portfolio is
clearly (1, 0), and the worst-case logarithmic wealth ratio is simply

n∑
t=1

ln
1

1 − P2,tε
≥

n∑
t=1

P2,tε .

In the case of the eg strategy,

P2,t =
exp

(
η
∑t−1

s=1
(1−ε)
Ps·xs

)
exp

(
η
∑t−1

s=1
1

Ps·xs

)
+ exp

(
η
∑t−1

s=1
(1−ε)
Ps·xs

)
=

exp
(
−ηε

∑t−1
s=1

1
Ps·xs

)
1 + exp

(
−ηε

∑t−1
s=1

1
Ps·xs

)
≥ exp (−η (ε/(1 − ε)) (t − 1))

2
.

Thus, the logarithmic wealth ratio of the eg algorithm is lower bounded
by

n∑
t=1

ε
exp (−η (ε/(1 − ε)) (t − 1))

2
=

ε

2
1 − exp (−η (ε/(1 − ε)) n)
1 − exp (−η (ε/(1 − ε)))

=
1
2

√
n

8 ln N
+ o(

√
n) .

5. Internal regret of investment strategies

The aim of this section is to introduce the notion of internal regret
to the sequential investment problem. In the latter, the loss function
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we consider is defined by �′(Q,x) = − lnQ · x for a portfolio Q and a
market vector x. This is no longer a linear function of Q (as this was
the case in Sections 2 and 3 for the expected loss of the predictor).

Recall that in the framework of sequential prediction described in
Section 2, the cumulative internal regret R(i,j),n for the pair of experts
(i, j) may be interpreted as how much the predictor would have gained,
had he replaced all values Pi,t (t ≤ n) by zero and all values Pj,t by
Pi,t +Pj,t. Analogously, given an investment strategy P = (P1,P2, . . .),
we may define the internal regret of P with respect to the pair of assets
(i, j) at day t (where 1 ≤ i, j ≤ N) by

r̃(i,j),t = �′(Pt,xt) − �′(Pi→j
t ,xt) = ln

Pi→j
t · xt

Pt · xt

where the probability vector Pi→j
t is defined such that its i-th compo-

nent equals zero, its j-th component equals Pj,t + Pi,t, and all other
components are equal to those of Pt. r̃(i,j),t expresses the regret the
investor using strategy P suffers after trading day t of not having
invested all the capital he invested in stock i in stock j instead. The
cumulative internal regret of P with respect to the pair (i, j) after n
trading periods is simply

R̃(i,j),n =
n∑

t=1

r̃(i,j),n .

This notion of internal regret in on-line portfolio selection may be
seen as a special case of the definition of internal regret for general
loss functions proposed in Stoltz and Lugosi (2004), with the class of
departure functions given by those functions that move all probability
mass from a given component to another one. In Section 7.2, we study
internal regret with respect to a much larger class, whose size is of the
power of the continuum. It is a desirable property of an investment
strategy that its cumulative internal regret grows sub-linearly for all
possible pairs of assets, independently of the market outcomes. Indeed,
otherwise the investor could exhibit a simple modification of his betting
strategy which would have led to exponentially larger wealth. In this
sense, the notion of internal regret is a measure of the efficiency of
the strategy: the aim of the broker is not that the owner of the stocks
gets rich, but that the owner cannot criticize easily the chosen strategy.
Note that the worst-case logarithmic wealth ratio corresponds to the
case when the owner compares his achieved wealths to those obtained
by others who have different brokers. Based on this, we define the
internal regret of the investment strategy P by

R̃n = max
1≤i,j≤N

R̃(i,j),n
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and ask whether it is possible to guarantee that R̃n = o(n) for all
possible market sequences. Thus, an investor using a strategy with a
small internal regret is guaranteed that for any pair of stocks the total
regret of not investing in one stock instead of the other becomes negli-
gible. (Note that in Section 7.2 we introduce a richer class of possible
departures from the original investment strategies.)

The next two examples show that it is not trivial to achieve a small
internal regret. Indeed, the buy-and-hold and eg investment strate-
gies have linearly increasing internal regret for some bounded market
sequences.

Example 2. (Buy-and-hold strategies may have large internal regret.)
Consider a market with N = 3 assets which evolves according to the
following repeated scheme:

(1 − ε, ε, ε), (ε, 1 − ε, 1 − ε), (1 − ε, ε, ε), (ε, 1 − ε, 1 − ε), . . .

where ε < 1 is a fixed positive number. The buy-and-hold strategy,
which distributes its initial wealth uniformly among the assets invests,
at odd t’s, with

Pt =
(

1
3
,
1
3
,
1
3

)
, so that P2→1

t =
(

2
3
, 0,

1
3

)
,

and at even t’s, with

Pt =
(

1 − ε

1 + ε
,

ε

1 + ε
,

ε

1 + ε

)
, so that P2→1

t =
(

1
1 + ε

, 0,
ε

1 + ε

)
.

Straightforward calculation now shows that for an even n, the cumula-
tive internal regret R̃(2,1),n of this strategy equals

n

2

(
ln

(2 − ε)2

3(1 − ε)(1 + ε)

)
,

showing that even for bounded markets, the naive buy-and-hold strat-
egy may incur a large internal regret. Later we will see a generalization
of buy-and-hold with small internal regret.

Example 3. (The eg strategy may have large internal regret.) The
next example, showing that for some market sequence the eg algorithm
of Helmbold, Schapire, Singer, and Warmuth (1998) has a linearly
growing internal regret, is inspired by Example 1 above. Consider a
market of three stocks A, B, and C. Divide the n trading periods into
three different regimes of lengths n1, n2, and n3. The wealth ratios
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Table II. The market vectors for Example 3.

Regimes xA,t xB,t xC,t

1 ≤ t ≤ T1 = n1 2 1 0.5

T1 + 1 ≤ t ≤ T2 = n1 + n2 1 2 0.5

T2 + 1 ≤ t ≤ T3 = n 1 2 2.05

(which are constant in each regime) are summarized in the Table II.
We show that it is possible to set n1, n2, and n3 in such a way that
the cumulative internal regret R(B,C),n is lower bounded by a positive
constant times n for n sufficiently large.

The internal regret of B versus C can be lower bounded by using
the inequality ln(1 + u) ≤ u:

n∑
t=1

ln
QB→C

t · xt

Qt · xt
≥

n∑
t=1

QB,t

(
xC,t

QB→C
t · xt

− xB,t

QB→C
t · xt

)
,

where the difference in the parenthesis is larger than −1 in the first
regime, −3 in the second one and 0.05/2.05 in the third one. It suffices
now to estimate QB,t:

QB,t =
eηGB,t

eηGA,t + eηGB,t + eηGC,t
, (7)

where

η = 4.1

√
8 ln 3

n
=̂

1
Cη

√
n

and GB,t =
t∑

s=1

xB,s

Qs · xs

(and similarly for the two other stocks).
We take n1 = dn, where d > 0 will be determined later. In the first

regime, a sufficient condition for QB,t ≤ ε is that eηGB,t/eηGA,t ≤ ε,
which can be ensured by

GA,t − GB,t =
t∑

s=1

1
Qs · xs

≥ − ln ε

η
,

which is implied, since Qs · xs ≤ 2, by

t ≥ t0 = 2Cη (− ln ε)
√

n.

In the second regime, the QB,t’s increase. Let T2 denote the first
time instant t when QB,t ≥ 1/2, and denote by n2 = T2 − T1 the
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length of this second regime. Now, it is easy to see that n2 ≥ n1/4 and
n2 ≤ 4n1 + (2 ln 2)Cη

√
n ≤ 5dn, for n sufficiently large. Moreover, the

number of times that QB,t is larger than ε in this regime is less than

Cη

(
ln
(

2
1 − ε

ε

))√
n.

At the beginning of the third regime, we then have QB,t ≥ 1/2, which
means that GA,t ≤ GB,t and GC,t ≤ GB,t. The first inequality remains
true during the whole regime and we set n3 such that the second one
also remains true. This will imply that QB,t ≥ 1/3 during the third
regime. Now by the bounds on Qs · xs in the different regimes, a
sufficient condition on n3 is

0.05n3 ≤ n1

4
+

3n2

4
,

which, recalling the lower bound n2 ≥ n1/4, is implied by

n3 ≤ 35
4

dn.

It remains to set the value of d. We have to ensure that n3 is not
larger than 35dn/4 and that it is larger than γn, where γ is a universal
constant denoting the fraction of time spent in the third regime. That
is, we have to find d and γ such that{

d + 5d + γ ≤ 1
d + 1

4d + 35
4 d ≥ 1 ,

where we used n1/n + n2/n + n3/n = 1 and the various bounds and
constraints described above. γ = 1/7 and d = 1/7 are adequate choices.

Summarizing, we have proved the following lower bound on the
internal regret

n∑
t=1

ln
QB→C

t · xt

Qt · xt
≥ 1

3
γ

0.05
2.05

n − ε (3(1 − γ)) n + Ω
(
(− ln ε)

√
n
)
,

and the proof that the eg strategy has a large internal regret is con-
cluded by choosing ε > 0 small enough (for instance, ε = 1/5000).
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6. Investment strategies with small internal regret

The investment algorithm introduced in the next section has the sur-
prising property that, apart from a guaranteed sublinear internal regret,
it also achieves a sublinear worst-case logarithmic wealth ratio not
only with respect to the class of buy-and-hold strategies, but also with
respect to the class of all constantly rebalanced portfolios.

6.1. A strategy with small internal and external regrets

The investment strategy introduced in this section–which we call b1exp–
is based on the same kind of linear upper bound on the internal regret as
the one that was used in our proof of the performance of the eg strategy
in Section 4. This strategy may be seen as the algorithm that results
from an application of the conversion trick explained in Section 3 to the
eg strategy. However, this only proves the no-internal-regret property.
Since the worst-case logarithmic wealth ratio is also minimized, we
provide a detailed analysis below.

The same argument as for the eg strategy may be used to upper
bound the cumulative internal regret as

R̃(i,j),n =
n∑

t=1

ln
(
Pi→j

t · xt

)
− ln (Pt · xt)

≤
n∑

t=1

Pi,t

(
xj,t

Pt · xt
− xi,t

Pt · xt

)
.

Introducing again
�i,t = − xi,t

Pt · xt
,

we may use the internal-regret minimizing prediction algorithm of Sec-
tion 3. For simplicity, we use exponential weighting. This definition,
of course, requires the boundedness of the values of �i,t. This may
be guaranteed by the same assumption as in the analysis of the eg

investment strategy, that is, by assuming that the returns xi,t all fall
in the interval [m,M ] where m < M are positive constants. Then the
internal regret of the algorithm b1exp may be bounded by the result
of Theorem 3. An important additional property of the algorithm is
that its worst-case logarithmic wealth ratio, with respect to the class
of all constantly rebalanced portfolios, may be bounded similarly as
that of the eg algorithm. These main properties are summarized in the
following theorem.

Theorem 4. Assume that m ≤ xi,t ≤ M for all 1 ≤ i ≤ N and
1 ≤ t ≤ n. Then the cumulative internal regret of the b1exp strategy
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P is bounded by

R̃n ≤ ln N(N − 1)
η

+
nη

8
M2

m2
=

M

m

√
n lnN ,

where we set η = 4(m/M)
√

(ln N)/n. In addition, if Q denotes the class
of all constantly rebalanced portfolios, then the worst-case logarithmic
wealth ratio of P is bounded by

Wn(P,Q) ≤ N
M

m

√
n ln N .

Proof. The bound for the internal regret R̃n follows from the linear
upper bound described above and Theorem 3.

To bound the worst-case logarithmic wealth ratio Wn(P,Q), recall
that by inequality (6), for any constantly rebalanced portfolio B,

Wn(P,Q) ≤
N∑

j=1

Bj

N∑
i=1

(
n∑

t=1

Pi,t (�i,t − �j,t)

)

≤ N max
1≤i,j≤N

n∑
t=1

Pi,t

(
xj,t

Pt · xt
− xi,t

Pt · xt

)
which is not larger than N times the upper bound obtained on the
cumulative internal regret R̃n which completes the proof.

Remark. The computation of the investment strategy requires the
inversion of an N × N matrix at each trading period (see Lemma 1).
This is quite feasible even for large markets in which N may be as large
as about 100.

Remark. Recalling Section 3 we observe that the b1exp strategy
may be considered as an instance of the exponentially weighted average
predictor, which uses the fictitious strategies Pi→j

t as experts. Thus,
instead of considering the single stocks, as eg, b1exp considers pairs
of stocks and their relative behaviors. This may explain the greater
stability observed on real data (see the Appendix).

Remark. Just like in the case of the sequential prediction problem,
exponential weighting may be replaced by others such as polynomial
weighting. In that case the cumulative internal regret is bounded by
M
m

√
n(p − 1)N2/p which is approximately optimized by the choice p =
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4 ln N . We call this investment strategy b1pol. Even though this strat-
egy has comparable theoretical guarantees to those of b1exp, our ex-
periments show a clear superiority of the use of exponential weighting.
This and other practical issues are discussed in the Appendix.

Remark. Similarly to eg, the strategy b1exp requires the knowledge
of the time horizon n and the ratio M/m of the bounds assumed on
the market. This first disadvantage may be avoided by either using the
well-known “doubling trick” or considering a time-varying value of η
and applying the second bound of Theorem 3. Both methods lead to
internal regret and worst-case logarithmic wealth ratios bounded by
quantities of the order of

√
n.

6.2. Another strategy with small internal regret

In this section we introduce a new algorithm, called b2pol. We use
polynomial weighting and assume bounded market evolutions. The
Blackwell condition (4) is sufficient to ensure the property of small
internal regret. It may be written as∑

i�=j

∆(i,j),tr̃(i,j),t ≤ 0 (8)

where

∆(i,j),t =

(
R̃(i,j),t−1

)p−1

+∑
a�=b

(
R̃(a,b),t−1

)p−1

+

.

Note that the ∆(i,j),t’s are nonnegative and sum up to one. The con-
cavity of the logarithm and the definition of r̃(i,j),t lead to

∑
i�=j

∆(i,j),tr̃(i,j),t =

⎛⎝∑
i�=j

∆(i,j),t ln
(
Pi→j

t · xt

)⎞⎠− ln (Pt · xt)

≤ ln

⎛⎝∑
i�=j

∆(i,j),tP
i→j
t · xt

⎞⎠− ln (Pt · xt) .

It is now obvious that the Blackwell condition (4) is satisfied whenever

Pt =
∑
i�=j

∆(i,j),tP
i→j
t .

InternalPortfolioRev2.tex; 19/11/2004; 13:54; p.22



23

Lemma 1 shows that such a portfolio Pt indeed exists for all t. This
defines a strategy which we call b2pol. The following theorem is an im-
mediate consequence of Corollary 1 of Cesa-Bianchi and Lugosi (2003).

Theorem 5. Assume that m ≤ xi,t ≤ M for all 1 ≤ i ≤ N and
1 ≤ t ≤ n. Then the cumulative internal regret of the b2pol strategy
P is bounded by

R̃n ≤
(

ln
M

m

)√
n(p − 1)N2/p .

The above bound is approximately minimized for p = 4 ln N . Note
also that it only differs from the bound on the cumulative internal
regret of the b1pol strategy by a constant factor which is smaller here
(ln(M/m) instead of M/m).

7. Generalizations

7.1. Generalized buy-and-hold strategy

The gbh strategy performs buy-and-hold on the N(N − 1) fictitious
modified strategies, using the conversion trick explained in Section 3
(and, in the particular case of N = 2 assets, it reduces to the simple
buy-and-hold strategy–hence its name). The main property of this in-
vestment strategy is that its internal regret is bounded by a constant,
as stated by the theorem below.

More precisely, the gbh strategy is defined such that at each round
t, we have the fixed point equality

Pt =
∑
i�=j

W i→j
t−1∑

k �=l W
k→l
t−1

Pi→j
t , (9)

where Wt =
∏t

s=1 Ps · xs is the wealth achieved by the investment
strategy we consider and W i→j

t =
∏t

s=1 Pi→j
s ·xs is the fictitious wealth

obtained by the i → j modified version of it. The existence and the
practical computation of such a portfolio Pt are given by Lemma 1.

Theorem 6. The gbh investment strategy incurs a cumulative inter-
nal regret R̃n ≤ lnN(N − 1) for all n.

Proof. The proof is done by a simple telescoping argument:

Wn =
n∏

t=1

Pt · xt =
n∏

t=1

∑
i�=j

W i→j
t−1 Pi→j

t · xt∑
k �=l W

k→l
t−1
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=

∑
i�=j W i→j

n

N(N − 1)
.

The advantage of this algorithm is that its performance bounds do
not depend on the market.

Remark. Unlike in the sequential prediction problem described in
Section 2, a small internal regret in the problem of sequential portfo-
lio selection does not necessarily imply a small worst-case logarithmic
wealth ratio, not even with respect to the class of all buy-and-hold
strategies. This may be seen by considering the following numerical
counterexample. Let the market be formed by three stocks and let it
be cyclic such that at odd-indexed rounds the wealth ratios are respec-
tively 1/2, 1, 2 and at even ones they equal 2, 1.1, 1/2. The accumulated
wealth of the best stock increases exponentially fast whereas the one
of the gbh strategy is bounded.

The reason is that the loss function �′ associated to this problem is
no longer linear, and therefore, the argument of Equation (2) does not
extend to it.

However, there is a simple modification of the gbh strategy leading
to internal regret less than 2 ln N and external regret with respect to
buy-and-hold strategies less than 2 ln N . We call this modification the
gbh2 algorithm.

Instead of (9), the gbh2 strategy is such that

Pt =

∑
1≤k≤N St−1(k)ek +

∑
i�=j W i→j

t−1 Pi→j
t∑

1≤k≤N St−1(k) +
∑

i�=j W i→j
t−1

, (10)

for every t, where ek denotes the portfolio that invests all its wealth in
the k-th stock. Now a telescoping argument similar to that of the proof
of Theorem 6 shows that the final wealth equals

Wn =
1

N2

⎛⎝ ∑
1≤k≤N

Sn(k) +
∑
i�=j

W i→j
n

⎞⎠ ,

thus ensuring that both regrets are less than the claimed upper bound
2 ln N . Lemma 1 shows that (10) can be satisfied and how the portfolios
Pt are computed.

The next section is an extension of gbh and gbh2 strategies to a
continuum of fictitious experts.
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7.2. A generalized universal portfolio

Next we extend the notion of internal regret for investment strategies.
Recall that the definition of internal regret R̃n considers the regret
suffered by not moving one’s capital from one stock to another. Moving
the capital from one stock to another may be considered as a simple
linear function from the probability simplex X to X . A more exigent
definition is obtained by considering all linear functions g : X → X .
Clearly, any such function may be written as g(Pt) = APt where A
is a column-stochastic matrix. Denote the set of all column-stochastic
matrices of order N by A and let the linear modifications APt of the
master strategy be denoted by PA

t . The generalized internal regret is
defined as

max
A∈A

ln
WA

n

Wn

where WA
n =

∏n
t=1

∑N
i=1 PA

i,txi,t.
Linear modifications were already considered (in finite number) by

Greenwald and Jafari (2003) in the case of sequential prediction. In
that case, due to the linearity of the loss function �(Pt), it is not more
difficult to have a low generalized internal regret than the usual internal
regret. On the contrary here, due to the concavity of the logarithm,
minimizing the generalized internal regret turns out to be a greater
challenge. Since the algorithms b1exp and b1pol are based on a lin-
ear upper bounding of the internal regret, it is easy to see that their
generalized internal regret is bounded by N times the bounds derived
for the internal regret in Sections 6.1, leading to upper bounds both of
the order of N

√
n ln N .

The main result of this section is that there exist investment strate-
gies that achieve a much smaller generalized internal regret. The proof
below is inspired by Theorem 6 and uses some techniques introduced by
Blum and Kalai (1999). The investment strategy presented above may
be seen as a modification of Cover’s universal portfolio (1991) through
a conversion trick to deal with generalized internal regret of the same
flavor as the one explained in Section 3.

Theorem 7. There exists an investment strategy P such that

max
A∈A

ln
WA

n

Wn
≤ N(N − 1) ln(n + 1) + 1 .

Remark. The algorithm given in the proof has a computational
complexity exponential in the number of stocks (at least in its straight-
forward implementation). However, it provides a theoretical bound
which is likely to be of the best achievable order.
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The algorithm could also be easily modified, using the techniques
of Section 7.1, to be competitive with respect to the best constantly
rebalanced portfolio as well as to suffer a low generalized internal regret,
with associated performance bounds for both of the order N2 ln n.

Proof. Denote a column-stochastic matrix A by [a1, . . . ,aN ], where
the aj’s are the columns of A. Let µ be the uniform measure over the
simplex and let ν be the measure over A given by the product of N
independent instances of µ:

ν(A) =
N∏

j=1

µ(aj) .

If the investment strategy, at each time instant t, satisfied the equality

Pt =

∫
A∈A WA

t−1P
A
t dν(A)∫

A∈A WA
t−1dν(A)

, (11)

then the final wealth would be given by an average over all modified
strategies, that is,

Wn =
∫
A∈A

WA
n dν(A). (12)

Fix a matrix A and consider the set χα,A of column-stochastic ma-
trices of the form (1−α)A + αz, z ∈ A. Similarly, denote by χα,aj the
set of probability vectors of the form (1−α)aj +αzj , zj ∈ X . It is easy
to see that (with a slight abuse of notation)

χα,A =
N∏

j=1

χα,aj . (13)

Any element A′ of χα,A may be seen to satisfy (component-wise)

PA′
t ≥ (1 − α)PA

t ,

for all t and therefore

WA′
n ≥ (1 − α)nWA

n .

Finally, using equality (13), we have

ν (χα,A) =
N∏

j=1

µ
(
χα,aj

)
=
(
αN−1

)N
,
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implying ∫
A′∈χα,A

WA′
n dν(A′) ≥ (1 − α)n αN(N−1)WA

n .

Taking α = 1/(n + 1), recalling that

(1 − α)n αN(N−1) ≥ e−1

(n + 1)N(N−1)
,

and combining this with 12, we obtain the theorem.
Thus, it suffices to see that one may satisfy the set of linear equations

(11). We denote an element A ∈ A by A = [A(i,j)]. Writing only the
equality for the ith components of both sides,(∫

A∈A
WA

t−1dν(A)
)

Pi,t

=
∫
A∈A

WA
t−1

(
N∑

k=1

A(i,k)Pk,t

)
dν(A) ,

we see that Pt has to be an element of the kernel of the matrix T
defined by

− if i �= k, Ti,k = wi,k,

− Ti,i = −∑j �=i, 1≤j≤N wj,i,

where

wi,k =
∫
A∈A

WA
t−1A(i,k)dν(A).

The same argument as in the proof of Lemma 1 shows that such a
vector exists (and the computability of the latter depends on how easy
it is to compute the elements of the matrix T ).
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Appendix

In this appendix we present an experimental comparison of the per-
formance of the new algorithms with existing ones. In the experiments
we used a data set of daily wealth ratios of 36 stocks of the New York
Stock Exchange that has been used by various authors including Cover
(1991), Cover and Ordentlich (1996), Helmbold, Schapire, Singer, and
Warmuth (1998), Blum and Kalai (1999), Singer (1997), and Borodin,
El-Yaniv, and Gogan (2000), We also considered monthly wealth ratios
(taking 20 days for a month).

We first give an overview of the methodology we used to derive our
investment algorithms. A strategy is given by the choice of a measure
of the regret rt and of a potential function Φ (see Sections 2 and 3).
We consider three ways of measuring the regrets:

1. Linear approximation to the instantaneous external regret (see Sec-
tion 4):

ri,t = − xi,t

Pt · xt
,

2. Instantaneous internal regret (see Sections 6.2 and 7.1):

r̃(i,j),t =
(
Pi→j

t · xt

)
− ln (Pt · xt) ,

3. Linear approximation to the instantaneous external regret (see Sec-
tion 6.1):

r(i,j),t = Pi,t

(
xj,t

Pt · xt
− xi,t

Pt · xt

)
.

Also, both the exponential and the polynomial potentials are used.
Each combination of rt and Φ induces an investment strategy as sum-
marized in Table III.

Table III. A summary of invest-
ment strategies.

Φ ri,t er(i,j),t r(i,j),t

Exp eg gbh b1exp

Pol – b2pol b1pol
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The tuning of the eg and b1exp strategies

The first experiment compares the behavior of the b1exp and eg

strategies whose results are summarized in Tables IV and V and Figure
2. We compared the strategies eg and b1exp for various choices of
the tuning parameter η. We used the parameters suggested by theory
η∗ = α

√
8 ln N/n and η∗ = 4α

√
lnN/n, respectively, in case of known

time horizon n, and also the time varying versions η∗t = α
√

8 ln N/t

and η∗t = 4α
√

ln N/t where the ratio α = m/M is taken to be 0.5 for
daily rebalancing and 0.3 for monthly rebalancing. (These values are
estimated on the data.)

Tables IV and V show the arithmetic averages of the wealths achieved
on random samples of size 100. For example, the numbers in the columns
“ten stocks” have been obtained by choosing ten of the 36 stocks
randomly to form a market of N = 10 assets. This experiment was
repeated 100 times and the averages of the achieved wealth factors
appear in the table. The column “Freq.” contains the number of times
b1exp outperformed eg of these 100 experiments. The average wealth
ratios for both strategies were calculated for different fixed and time
varying parameters. One of the interesting conclusions is that time
varying updating never affects the performance of b1exp while that of
eg drops in case of monthly rebalancing or when the number of stocks
is large.

In the rest of this experimental study both algorithms are used with
their respective time varying theoretical optimal parameter η∗t .

It is also seen in Tables IV and V that eg is less robust against a bad
choice of η. Its performance degrades faster when η or ηt is increased.

Interestingly, the increase of the external regret when the tuning
parameter is increased corresponds to an increase in the internal regret,
as shown in Figure 2. (This behavior was checked to be typical indeed.)
The increase of the internal regret is far larger for the eg strategy. This
suggests that minimizing internal regret results in more stability.

Tuning of b1pol and b2pol

Table VI shows that for b1pol and b2pol the theoretically (almost)
optimal parameter p = 4 ln N performs quite poorly in our experiments,
for it leads to too fast wealth reallocations. The values of p with better
numerical performance are usually far smaller than the ones prescribed
by theory. Thus, for the rest of this experimental study and the sub-
sequent simulations, we choose p = 2, as it was originally suggested
by Blackwell (1956). (Note that in Table VI we show the geometric
averages instead of the arithmetic ones, to take into account the huge
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Table IV. Evolution of the achieved wealths according to
the tuning parameter of eg and b1exp both for fixed
and time varying parameters. Computations are realized
on random samples of size 100, arithmetic means are
displayed. Monthly rebalancing.

η Monthly rebalancing

(para- Three stocks Ten stocks

meter) eg b1exp Freq. eg b1exp Freq.

2 14.7 15.5 73 12.8 19.2 95

1.5 15.1 16.0 76 14.0 19.9 96

1 15.9 16.7 80 16.0 20.6 97

0.5 17.3 18.0 84 18.8 21.3 97

0.2 18.7 19.0 84 20.7 21.6 97

0.15 18.9 19.2 84 21.0 21.7 95

0.1 19.2 19.4 84 21.3 21.8 94

0.05 19.5 19.6 82 21.6 21.8 94

0.03 19.6 19.7 82 21.7 21.8 94

0.02 19.7 19.7 82 21.8 21.9 94

0.01 19.7 19.7 82 21.8 21.9 94

η∗ 19.5 19.5 80 21.4 21.8 94

η∗
t 19.3 19.4 80 21.2 21.7 95

0.1 η∗
t 19.7 19.7 81 21.8 21.9 95

0.2 η∗
t 19.7 19.7 80 21.7 21.8 95

0.5 η∗
t 19.6 19.6 79 21.5 21.8 95

2 η∗
t 18.9 19.0 81 20.5 21.5 95

5 η∗
t 17.8 17.9 77 18.7 20.8 97

10 η∗
t 16.5 16.7 71 16.1 19.8 94

25 η∗
t 14.7 15.4 61 12.5 17.8 92

dispersion of the wealths achieved by these two investment strategies –
see also Table X and the related comments.)

Global comparison

In the next experiment various different investment strategies are com-
pared, which we denominate by eg, b1exp, b1pol, gbh, gbh2, b2pol,
Cover’s, ubh, b-crp, and u-crp. For the first six strategies we have
already described how to tune (some of them do not require any tun-
ing). The algorithm “Cover’s” stands for Cover’s universal portfolio
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Table V. Evolution of the achieved wealths according to
the tuning parameter of eg and b1exp both for fixed
and time varying parameters. Computations are realized
on random samples of size 100, arithmetic means are
displayed. Daily rebalancing.

η Daily rebalancing

(para- Three stocks Ten stocks

meter) eg b1exp Freq. eg b1exp Freq.

2 13.2 14.5 77 12.4 21.7 93

1.5 14.1 15.6 80 14.0 23.2 95

1 15.7 17.4 86 17.0 24.7 95

0.5 18.8 20.4 89 22.0 25.8 94

0.2 22.1 23.1 89 25.2 26.3 92

0.15 22.8 23.6 89 25.6 26.3 91

0.1 23.6 24.2 89 26.0 26.4 88

0.05 24.5 24.8 88 26.3 26.4 83

0.03 24.8 25.0 88 26.4 26.5 82

0.02 25.0 25.1 88 26.4 26.5 82

0.01 25.2 25.3 88 26.4 26.5 82

η∗ 25.0 25.0 89 26.4 26.5 82

η∗
t 24.8 24.8 86 26.2 26.4 94

0.1 η∗
t 25.3 25.3 88 26.5 26.5 91

0.2 η∗
t 25.3 25.3 88 26.4 26.5 91

0.5 η∗
t 25.1 25.1 87 26.3 26.4 92

2 η∗
t 24.2 24.3 86 25.8 26.3 94

5 η∗
t 22.6 22.7 85 24.5 26.0 98

10 η∗
t 20.4 20.5 82 22.0 25.2 98

25 η∗
t 16.2 16.4 72 15.2 22.3 99

based on the uniform density. To compute the universal portfolio, we
drew at random 103 different constantly rebalanced portfolios and took
the average on the wealth ratio sequences to compute each instance of
Cover’s algorithm. (The value 103 may seem to be too small in view
of the 108 used in Helmbold, Schapire, Singer, and Warmuth (1998)
but calculations using the Chebyshev bound of Blum and Kalai (1999)
indicate that this value is sufficient to have a good idea of the order of
the wealth achieved by the universal portfolio.) To compute the best
constantly rebalanced portfolio (called b-crp) we used a technique
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Figure 2. Evolution of both external and internal regrets for the optimal time vary-
ing tuning parameter (top) and a 25 times too large one (bottom). Stocks used: Dow
Chemical, Coke, gte, Mei Corp., Gulf, Iroquois, Kin Arc, Amer Brands, Fischbach,
Lukens.

described in Cover (1984), with (according to the notations therein)
ε = 10−4 for daily rebalancing and ε = 10−5 for monthly rebalancing.
This guarantees an estimate within a multiplicative factor of 1.0028 of
the wealth achieved by the best contantly rebalanced portfolio in case
of a monthly rebalancing and 1.7596 in case of a daily rebalancing.
Nevertheless, the values thus obtained are often even closer to the op-
timal, despite the weak guarantees in case of daily rebalancing. We also
considered the uniform buy-and-hold strategy (denoted by ubh) and,
following Borodin, El-Yaniv, and Gogan (2000), the uniform constantly
rebalanced portfolio (u-crp).

Transaction costs were also taken into account (whose amount is
indicated in the column tc of the tables) according to the model defined
in Blum and Kalai (1999). In particular, transaction fees are paid at
purchase only. We implemented Blum and Kalai’s optimal rebalancing
algorithm, using different transaction costs. Here, we summarize the
results for zero transaction cost and a heavy 2% at-purchase transaction
cost in case of monthly rebalancing and a milder 1% transaction cost
when the rebalancing occurs daily.
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Table VI. Evolution of the achieved wealths according to the tuning parameter
of b1pol and b2pol. Computations are realized on random samples of size 100,
geometric means are displayed.

p Monthly rebalancing Daily rebalancing

(para- Three stocks Ten stocks Three stocks Ten stocks

meter) b1pol b2pol b1pol b2pol b1pol b2pol b1pol b2pol

p∗ 11.5 9.5 15.7 12.4 9.1 7.3 11.1 9.7

1.1 13.3 10.9 16.2 13.5 12.7 9.5 16.5 13.5

1.2 13.1 10.9 16.0 13.9 12.3 9.5 16.4 13.5

1.3 13.0 10.9 16.0 13.8 12.1 9.3 16.4 13.8

1.5 12.9 11.0 16.5 14.1 11.5 8.9 16.5 13.5

2 12.3 10.4 16.9 13.5 10.7 8.5 15.9 13.5

2.5 12.0 10.1 16.1 14.4 10.3 8.1 15.6 13.2

3 11.8 9.9 16.9 15.4 9.9 7.8 15.4 12.9

3.5 11.7 9.8 17.0 15.2 9.5 7.5 15.0 12.6

4 11.5 9.7 17.8 14.3 9.3 7.4 14.8 12.5

4.5 11.5 9.5 17.1 14.5 9.1 7.3 14.7 12.0

5 11.5 9.4 17.1 14.6 9.1 7.3 14.5 11.7

6 11.5 9.4 16.2 14.0 8.6 7.1 13.8 11.8

8 11.2 9.4 14.5 11.9 8.1 7.0 12.3 9.8

10 10.4 9.0 14.3 11.9 7.8 6.8 10.7 8.4

All these algorithms were run on randomly chosen sets of stocks. The
number of selected stocks is shown in the first column of Tables VII
and VIII. These tables indicate the arithmetic averages of the wealths
achieved. In each line, the results of the algorithm which outperformed
its competitors the more often are set in bold face. Globally, b1exp

seems to have the best results in terms of accumulated wealth, but
there are some fine variations which should be mentioned. First, eg

is better than b1exp when the portfolio is reduced to two stocks
only. The reason that in this case the internal regret is nothing else
than the external regret and the exponential weighted algorithm on
which eg is based is known to be optimal for the minimization of the
external regret. Second, in the presence of transaction costs and for
a daily rebalancing, gbh performs well. This is due to its closeness
to buy-and-hold. Interestingly enough, it performs considerably better
than buy-and-hold, which is known to be valuable in the presence of
such heavy transaction costs. Surprisingly enough, gbh2, which was
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Table VII. Arithmetic means of the wealths achieved on randomly selected sets of
stocks, repeated 100 times. Monthly rebalancing. A different sample was drawn for
each line of this table. Top lines correspond to a no transaction cost setting, whereas
the bottom lines consider the case of 2% transaction costs.

st. eg b1exp b1pol gbh gbh2 b2pol Cover’s ubh b-crp

2 16.2 16.2 12.4 13.6 13.6 12.0 15.5 13.6 21.0

3 19.3 19.4 15.6 16.1 15.5 13.8 18.4 14.9 30.2

5 20.0 20.3 16.6 18.0 16.3 13.2 19.6 14.9 39.6

8 21.3 21.7 20.9 20.2 17.6 17.4 21.2 15.4 53.9

10 21.2 21.7 19.3 20.6 17.7 15.3 21.3 15.2 61.2

12 20.9 21.5 18.1 20.5 17.3 16.0 21.1 14.6 62.4

15 21.9 22.5 20.4 21.8 18.3 17.6 22.2 15.3 72.3

18 21.0 21.6 17.8 21.1 17.9 16.0 21.4 15.0 76.3

20 21.3 21.9 19.7 21.5 18.1 17.5 21.8 15.2 80.3

25 21.4 22.0 20.5 21.6 18.2 17.1 21.9 15.2 85.9

2 14.9 14.9 10.6 13.7 13.7 10.6 14.5 13.7 20.2

3 16.8 16.8 11.1 14.9 14.5 9.9 16.2 14.2 26.9

5 18.5 18.6 11.5 17.2 16.1 9.6 18.1 15.0 36.3

8 17.8 17.9 9.6 17.2 15.9 9.3 17.6 14.7 46.1

10 18.9 19.1 10.3 18.3 16.5 8.6 18.8 14.9 51.2

12 19.0 19.2 10.4 18.7 17.0 9.4 19.0 15.4 57.4

15 19.9 20.1 10.2 19.7 17.6 9.0 19.9 15.7 65.1

18 19.1 19.3 8.9 19.0 17.0 7.7 19.2 15.1 67.3

20 18.5 18.7 9.2 18.5 16.6 7.7 18.6 14.9 68.1

25 19.1 19.3 10.0 19.2 17.2 7.7 19.3 15.3 75.8

designed to be a modification of gbh suffering a low external regret
with respect to buy-and-hold, performs quite poorly compared to gbh.
Actually, the wealths achieved by gbh2 seem to interpolate those of
gbh and the uniform buy-and-hold strategy. Finally, the at first sight
naive u-crp strategy seems to have interesting results, as already noted
in Borodin, El-Yaniv, and Gogan (2000), even though there are no
theoretical guarantees for its universality (see for instance Table XII).

Finer comparisons

After this global comparison, we compare b1exp more carefully with
the best opponents in case of no transaction costs, which are eg and
b1pol. The comparison to eg is done in table IX which shows the geo-
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Table VIII. Arithmetic means of the wealths achieved on randomly selected sets of
stocks, repeated 100 times. Daily rebalancing. A different sample was drawn for each
line of this table. Top lines correspond to a no transaction cost setting, whereas the
bottom lines consider the case of 1% transaction costs.

st. eg b1exp b1pol gbh gbh2 b2pol Cover’s ubh b-crp

2 19.3 19.2 11.4 13.6 13.6 10.3 17.2 13.6 20.4

3 24.8 24.8 13.0 16.2 15.1 10.8 21.6 13.9 28.8

5 31.6 32.0 16.5 23.6 19.4 11.9 29.1 15.6 47.9

8 28.2 28.5 16.7 25.2 19.6 13.9 27.4 15.1 59.5

10 26.2 26.4 17.5 24.7 19.1 15.2 25.8 14.5 67.3

12 29.0 29.3 18.5 27.8 20.4 15.5 28.7 14.6 87.1

15 27.6 27.8 18.0 27.2 20.2 15.3 27.7 14.7 98.6

18 29.3 29.5 19.1 29.0 21.2 16.2 29.3 15.1 121.8

20 28.1 28.4 18.3 28.0 20.8 16.4 28.3 15.0 120.3

25 28.9 29.0 19.1 28.9 21.2 17.3 29.0 15.1 153.9

2 18.4 18.3 9.7 15.9 15.9 8.3 17.5 15.9 19.0

3 17.4 17.4 8.0 15.3 14.9 6.8 16.6 14.4 21.1

5 18.6 18.6 5.7 17.0 15.8 4.4 18.0 14.5 28.2

8 18.9 18.9 5.0 18.0 15.9 3.9 18.5 13.7 36.7

10 20.3 20.3 5.2 19.9 17.5 3.7 20.1 15.1 43.5

12 20.9 20.9 5.3 20.5 17.4 4.0 20.7 14.5 51.3

15 19.7 19.6 4.6 19.8 17.0 3.7 19.6 14.5 55.3

18 20.7 20.6 4.8 20.8 17.8 3.9 20.6 14.9 66.3

20 20.3 20.2 4.2 20.4 17.4 3.4 20.2 14.7 71.6

25 20.5 20.3 4.5 20.6 17.7 3.6 20.4 15.0 83.7

metric and arithmetic averages obtained, as well as the number of times
b1exp won and also by how much each algorithm outperformed the
other. The value of ∆+ indicates the maximal gap between b1exp and
eg (in the favour of the former) on the 100 elements of the randomly
selected sample and ∆− is in favour of the latter. We conclude from
this table that (in case of no transaction costs) b1exp is quite often
better than eg, and even when it is outperformed by eg, the wealth
then achieved by eg is just a bit smaller. The difference between the
two algorithms seems to be especially large when η is large, that is, for
monthly rebalancing and/or many stocks.

Table X reveals that b1pol and b2pol are not serious contenders
because of their huge standard deviation and the extreme values. This
is also illustrated by the catastrophic results of these algorithms in the
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Table IX. Extensive comparison between the performances of eg

and b1exp on the samples of Table VII.

Geom. Avg. Arith. Avg. Max.

st. tc eg b1exp eg b1exp Freq. ∆− ∆+

2 0 % 14.0 13.9 16.2 16.2 12 0.47 0.19

3 0 % 17.0 17.0 19.3 19.4 80 0.02 0.17

5 0 % 18.5 18.6 20.0 20.3 82 0.12 2.23

8 0 % 20.4 20.8 21.3 21.7 92 0.17 2.30

10 0 % 20.6 21.1 21.2 21.7 95 0.21 1.53

12 0 % 20.5 21.0 20.9 21.5 99 0.05 1.66

15 0 % 21.5 22.1 21.9 22.5 98 0.08 1.45

18 0 % 20.7 21.3 21.0 21.6 100 1.65

20 0 % 21.2 21.7 21.3 21.9 100 1.74

25 0 % 21.3 21.9 21.4 22.0 100 1.18

2 2 % 13.0 12.9 14.9 14.9 27 0.30 0.22

3 2 % 15.0 15.0 16.8 16.8 65 0.05 0.09

5 2 % 17.4 17.5 18.5 18.6 72 0.20 1.42

8 2 % 17.2 17.3 17.8 17.9 72 0.42 1.36

10 2 % 18.2 18.4 18.9 19.1 82 0.19 1.46

12 2 % 18.6 18.8 19.0 19.2 73 0.27 1.30

15 2 % 19.6 19.8 19.9 20.1 84 0.18 0.85

18 2 % 18.8 19.0 19.1 19.3 81 0.19 1.20

20 2 % 18.3 18.5 18.5 18.7 84 0.30 0.70

25 2 % 19.1 19.3 19.1 19.3 88 0.23 0.50

presence of transaction costs and for a daily rebalancing, see Table
VIII. The reason is that b1pol and b2pol reallocate just too quickly,
which can be good or bad. This happens because of the property of the
polynomial potential that only the nonnegative internal regrets count
in the computation of the wealth allocation, and therefore when one
stock dominates, almost all the weight is put on it, which is of course
dangerous.

Tables XI and XII are given for sake of completeness as well as
to allow comparison with Helmbold, Schapire, Singer, and Warmuth
(1998). The algorithms are run on portfolios chosen according to the
volatilities of the stocks. Three groups were formed by putting the 12
lowest volatility stocks in the first group (L12), then the 12 highest
in the second (H12) and the 12 remaining in the third group (M12).
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Table X. Statistical characterization of the wealths achieved on the random
sample corresponding to 12 stocks without transaction costs and monthly re-
balancing. The minimum, arithmetic and geometric averages, maximum, and
standard deviation of the achieved wealths are shown.

Stat. eg b1exp b1pol gbh gbh2 b2pol Cover’s ubh

Min. 13.2 13.6 6.6 13.0 11.5 4.7 13.4 8.8

Ar. av. 20.9 21.5 18.1 20.5 17.3 16.0 21.1 14.6

Geo. av. 20.5 21.0 16.1 20.1 17.0 13.8 20.7 14.4

Max. 32.9 34.6 56.3 31.7 24.9 60.9 33.7 20.9

St. dev. 4.6 4.9 9.3 4.3 3.2 9.5 4.7 2.8

Table XI. Volatilities (multiplied by 100) for portfolios chosen according to their
volatilities, for monthly rebalancing (top lines) as well as for daily rebalancing
(bottom lines).

Ptf. eg b1exp b1pol gbh gbh2 b2pol Cover’s ubh u-crp

L12 4.20 4.20 4.61 4.21 4.25 4.64 4.20 4.31 4.20

M12 4.68 4.67 6.32 4.68 4.77 6.71 4.68 4.93 4.67

H12 6.79 6.74 8.12 6.78 6.89 8.32 6.77 7.13 6.73

L24 4.32 4.30 5.66 4.31 4.40 5.84 4.31 4.55 4.30

H24 5.40 5.35 7.40 5.37 5.44 7.94 5.35 5.61 5.35

A36 4.87 4.81 6.94 4.83 4.94 7.21 4.81 5.13 4.81

L12 0.83 0.83 0.88 0.83 0.84 0.89 0.83 0.85 0.83

M12 0.88 0.88 1.11 0.88 0.90 1.14 0.88 0.93 0.88

H12 1.17 1.16 1.82 1.20 1.20 1.96 1.17 1.28 1.15

L24 0.82 0.82 1.01 0.83 0.84 1.03 0.82 0.86 0.82

H24 0.92 0.91 1.45 0.93 0.96 1.54 0.92 1.03 0.91

A36 0.85 0.85 1.25 0.85 0.88 1.28 0.85 0.94 0.85

The group formed by L12 and M12 is called L24, the one of M12 and
H12 is denoted by H24. Finally, the set of all 36 stocks is refered to
as A36. Note that the b1exp strategy has almost always the lowest
volatilities. Thanks to its agressive rebalancing, the b1pol strategy has
interesting achieved wealths for monthly rebalancing. Nevertheless, the
b1exp investment scheme has globally the higher returns.
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Table XII. Wealths achieved by the portfolios of Table XI. In each line, the wealth
obtained by the best adaptive algorithm is set in bold face.

Ptf. eg b1exp b1pol gbh gbh2 b2pol Cover’s ubh u-crp

L12 10.9 11.1 7.6 10.8 10.1 7.7 11.0 9.4 11.2

M12 17.2 17.1 22.9 17.1 16.9 21.9 17.0 16.7 17.1

H12 36.3 39.0 12.8 34.6 25.3 10.2 37.8 17.6 39.8

L24 13.9 14.0 19.8 14.0 13.5 15.7 14.1 13.1 14.1

H24 26.7 27.8 41.3 27.1 21.8 21.7 27.6 17.2 28.0

A36 20.5 21.1 30.9 20.8 17.5 22.5 20.7 14.5 21.1

L12 12.3 12.4 6.7 12.0 11.1 6.5 12.2 10.1 12.4

M12 16.1 16.2 9.9 15.8 14.8 9.4 16.0 13.9 16.2

H12 78.1 81.0 40.8 67.9 40.2 21.9 76.0 19.5 81.9

L24 14.3 14.4 9.3 14.2 13.1 9.0 14.4 12.0 14.4

H24 38.2 38.7 25.6 38.1 26.1 21.9 38.6 16.7 38.8

A36 26.9 27.1 20.2 27.1 20.2 17.4 27.0 14.5 27.1
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