HiGrad: Statistical Inference for Stochastic Approximation and Online Learning

Weijie Su University of Pennsylvania

Collaborator

• Yuancheng Zhu (UPenn)

Learning by optimization

Sample Z_1, \ldots, Z_N , and $f(\theta, z)$ is cost function Learning model by minimizing

$$\underset{\theta}{\operatorname{argmin}} \ \frac{1}{N} \sum_{n=1}^{N} f(\theta, Z_n)$$

Learning by optimization

Sample Z_1, \ldots, Z_N , and $f(\theta, z)$ is cost function Learning model by minimizing

$$\underset{\theta}{\operatorname{argmin}} \ \frac{1}{N} \sum_{n=1}^{N} f(\theta, Z_n)$$

- Maximum likelihood estimation (MLE). More generally, M-estimation
- Often no closed-form solution
- Need optimization

Gradient descent

- Start at some θ_0
- Iterate

$$\theta_j = \theta_{j-1} - \gamma_j \frac{\sum_{n=1}^N \nabla f(\theta_{j-1}, Z_n)}{N},$$

where γ_j are step sizes

Dates back to Newton, Gauss, and Cauchy

Difficulty with gradient descent

Modern machine learning

Gradient descent often not feasible due to

Difficulty with gradient descent

Modern machine learning

• Data arrives in a stream

Gradient descent often not feasible due to

• Essentially an offline algorithm

Difficulty with gradient descent

Modern machine learning

- Data arrives in a stream
- Number of data points N is exceedingly large

Gradient descent often not feasible due to

- Essentially an offline algorithm
- Evaluating full gradient is *computationally* expensive

Aka incremental gradient descent

- Start at some θ_0
- Iterate

$$\theta_j = \theta_{j-1} - \gamma_j \nabla f(\theta_{j-1}, Z_j)$$

Aka incremental gradient descent

- Start at some θ_0
- Iterate

$$\theta_j = \theta_{j-1} - \gamma_j \nabla f(\theta_{j-1}, Z_j)$$

SGD resolved these challenges

Online in nature

Aka incremental gradient descent

- Start at some θ_0
- Iterate

$$\theta_j = \theta_{j-1} - \gamma_j \nabla f(\theta_{j-1}, Z_j)$$

SGD resolved these challenges

- Online in nature
- One pass over data

Aka incremental gradient descent

- Start at some θ_0
- Iterate

$$\theta_j = \theta_{j-1} - \gamma_j \nabla f(\theta_{j-1}, Z_j)$$

SGD resolved these challenges

- Online in nature
- One pass over data
- Optimal properties (Nemirovski & Yudin, 1983; Bertsekas, 1999; Agarwal et al, 2012; Rakhlin et al, 2012; Hardt et al, 2015)

SGD in one line

$\mathsf{SGD} \lor \mathsf{SGD}$

SCD CD

SGD: past and now

Statistics

 Robbins & Monro (1951); Kiefer & Wolfowitz (1952); Robbins & Siegmund (1971); Ruppert (1988); Polyak & Juditsky (1992)

Machine learning and optimization

 Nesterov & Vial (2008); Nemirovski et al (2009); Bottou (2010); Bach and Moulines (2011); Duchi et al (2011); Diederik & Ba (2014)

Applications

• Deep learning, recommender systems, MCMC, Kalman filter, phase retrieval, networks, and many

Using SGD for prediction

Averaged SGD

An estimator of $\theta^* := \operatorname{argmin} \mathbb{E} f(\theta, Z)$ is given by averaging

$$\overline{\theta} = \frac{1}{N} \sum_{j=1}^{N} \theta_j$$

Recall that $\theta_j = \theta_{j-1} - \gamma_j \nabla f(\theta_{j-1}, Z_j)$ for $j = 1, \dots, N$.

Using SGD for prediction

Averaged SGD

An estimator of $\theta^* := \operatorname{argmin} \mathbb{E} f(\theta, Z)$ is given by averaging

$$\overline{\theta} = \frac{1}{N} \sum_{j=1}^{N} \theta_j$$

Recall that
$$\theta_j = \theta_{j-1} - \gamma_j \nabla f(\theta_{j-1}, Z_j)$$
 for $j = 1, \dots, N$.

Given a new instance z = (x, y) with y unknown

Interested in $\mu_x(\overline{\theta})$

- Linear regression: $\mu_x(\overline{\theta}) = x' \overline{\theta}$
- Logistic regression: $\mu_x(\overline{\theta}) = \frac{e^{x'\overline{\theta}}}{1 + e^{x'\overline{\theta}}}$
- Generalized linear models: $\mu_x(\overline{\theta}) = \mathbb{E}_{\overline{\theta}}(Y|X=x)$

How much can we trust SGD predictions?

We would observe a different $\mu_x(\overline{\theta})$ if

- Re-sample Z'_1, \ldots, Z'_N
- Sample with replacement N times from a finite population z_1, \ldots, z_m

How much can we trust SGD predictions?

We would observe a different $\mu_x(\overline{\theta})$ if

- Re-sample Z'_1, \ldots, Z'_N
- Sample with replacement N times from a finite population z_1, \ldots, z_m

Decision-making requires uncertainty quantification

- Should I invest in Bitcoin?
- How early to leave to catch a flight?

A real data example

Adult dataset on UCI repository¹

- 123 features
- Y = 1 if an individual's annual income exceeds \$50,000
- 32,561 instances

Randomly pick 1,000 as a test set. Run SGD 500 times independently, each with 20 epochs and step sizes $\gamma_j = 0.5 j^{-0.55}$. Construct empirical confidence intervals with $\alpha = 10\%$

¹https://archive.ics.uci.edu/ml/datasets/Adult

High variability of SGD predictions

What is desired

Can we construct a confidence interval for $\mu_x^* := \mu_x(\theta^*)$?

What is desired

Can we construct a confidence interval for $\mu_x^* := \mu_x(\theta^*)$?

Remarks

- Bootstrap is computationally infeasible
- Most existing works concern bounding generalization errors or minimizing regrets (Shalev-Shwartz et al, 2011; Rakhlin et al, 2012)
- Chen et al (2016) proposed a batch-mean estimator of SGD covariance, and Fang et al (2017) proposed a perturbation-based resampling procedure

A new method: Hierarchical Incremental GRAdient Descent

A new method: Hierarchical Incremental GRAdient Descent

Properties of HiGrad

Online in nature with same computational cost as vanilla SGD

A new method: Hierarchical Incremental GRAdient Descent

Properties of HiGrad

- Online in nature with same computational cost as vanilla SGD
- A confidence interval for μ_x^* in addition to an estimator

A new method: Hierarchical Incremental GRAdient Descent

Properties of HiGrad

- Online in nature with same computational cost as vanilla SGD
- A confidence interval for μ_x^* in addition to an estimator
- Estimator (almost) as accurate as vanilla SGD

• $\overline{\theta}_1 = \frac{1}{3}\overline{\theta}^0 + \frac{2}{3}\overline{\theta}^1$, $\overline{\theta}_2 = \frac{1}{3}\overline{\theta}^0 + \frac{2}{3}\overline{\theta}^2$

• $\overline{\theta}_1 = \frac{1}{3}\overline{\theta}^0 + \frac{2}{3}\overline{\theta}^1$, $\overline{\theta}_2 = \frac{1}{3}\overline{\theta}^0 + \frac{2}{3}\overline{\theta}^2$

- $\overline{\theta}_1 = \frac{1}{3}\overline{\theta}^{\emptyset} + \frac{2}{3}\overline{\theta}^1$, $\overline{\theta}_2 = \frac{1}{3}\overline{\theta}^{\emptyset} + \frac{2}{3}\overline{\theta}^2$
- $\mu_x^1 := \mu_x(\overline{\theta}_1) = 0.15, \quad \mu_x^2 := \mu_x(\overline{\theta}_2) = 0.11$

•
$$\overline{\theta}_1 = \frac{1}{3}\overline{\theta}^{\emptyset} + \frac{2}{3}\overline{\theta}^1$$
, $\overline{\theta}_2 = \frac{1}{3}\overline{\theta}^{\emptyset} + \frac{2}{3}\overline{\theta}^2$

•
$$\mu_x^1 := \mu_x(\overline{\theta}_1) = 0.15, \quad \mu_x^2 := \mu_x(\overline{\theta}_2) = 0.11$$

• HiGrad estimator is
$$\overline{\mu}_x = \frac{\mu_x^1 + \mu_x^2}{2} = 0.13$$

•
$$\overline{\theta}_1 = \frac{1}{3}\overline{\theta}^{\emptyset} + \frac{2}{3}\overline{\theta}^1$$
, $\overline{\theta}_2 = \frac{1}{3}\overline{\theta}^{\emptyset} + \frac{2}{3}\overline{\theta}^2$

- $\mu_x^1 := \mu_x(\overline{\theta}_1) = 0.15, \quad \mu_x^2 := \mu_x(\overline{\theta}_2) = 0.11$
- HiGrad estimator is $\overline{\mu}_x = \frac{\mu_x^1 + \mu_x^2}{2} = 0.13$
- The 90% HiGrad confidence interval for μ_x^* is

$$\left[\overline{\mu}_x - t_{1,0.95}\sqrt{0.375}|\mu_x^1 - \mu_x^2|, \ \overline{\mu}_x + t_{1,0.95}\sqrt{0.375}|\mu_x^1 - \mu_x^2|\right] = \left[-0.025, 0.285\right]$$

Outline

1. Deriving HiGrad

2. Constructing Confidence Intervals

3. Configuring HiGrad

4. Empirical Performance

Problem statement

Minimizing convex f

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \ f(\theta) \equiv \mathbb{E}f(\theta, Z)$$

Observe i.i.d. Z_1, \ldots, Z_N and can evaluate unbiased noisy gradient $g(\theta; Z)$

$$\mathbb{E} g(\theta, Z) = \nabla f(\theta)$$
 for all θ

To be fulfilled

- Online in nature with same computational cost as vanilla SGD
- A confidence interval for μ_x^* in addition to an estimator
- Estimator (almost) as accurate as vanilla SGD

The idea of contrasting and sharing

• Need more than one value μ_x to quantify variability: contrasting
The idea of contrasting and sharing

- Need more than one value μ_x to quantify variability: contrasting
- Need to share gradient information to elongate threads: sharing

- K+1 levels
- each k-level segment is of length n_k and is split into B_{k+1} segments

- K+1 levels
- each k-level segment is of length n_k and is split into B_{k+1} segments

An example of HiGrad tree:
$$B_1 = 2, B_2 = 3, K = 2$$

- K+1 levels
- each k-level segment is of length n_k and is split into B_{k+1} segments

An example of HiGrad tree:
$$B_1 = 2, B_2 = 3, K = 2$$

- K+1 levels
- each k-level segment is of length n_k and is split into B_{k+1} segments

An example of HiGrad tree:
$$B_1 = 2, B_2 = 3, K = 2$$

Recall: noisy gradient $g(\theta, Z)$ unbiased for $\nabla f(\theta)$; partition $\{Z^s\}$ of $\{Z_1, \ldots, Z_N\}$; and $L_k := n_0 + \cdots + n_k$

Recall: noisy gradient $g(\theta, Z)$ unbiased for $\nabla f(\theta)$; partition $\{Z^s\}$ of $\{Z_1, \ldots, Z_N\}$; and $L_k := n_0 + \cdots + n_k$

► Iterate along level 0 segment: $\theta_j = \theta_{j-1} - \gamma_j \nabla f(\theta_{j-1}, Z_j)$ for $j = 1, ..., n_0$, starting from some θ_0

Recall: noisy gradient $g(\theta, Z)$ unbiased for $\nabla f(\theta)$; partition $\{Z^s\}$ of $\{Z_1, \ldots, Z_N\}$; and $L_k := n_0 + \cdots + n_k$

- ► Iterate along level 0 segment: $\theta_j = \theta_{j-1} \gamma_j \nabla f(\theta_{j-1}, Z_j)$ for $j = 1, ..., n_0$, starting from some θ_0
- ▶ Iterate along each level 1 segment $s = (b_1)$ for $1 \le b_1 \le B_1$

$$\theta_j^s = \theta_{j-1}^s - \gamma_{j+L_0} g(\theta_{j-1}^s, Z_j^s)$$

for $j = 1, \ldots, n_1$, starting from θ_{n_0}

Recall: noisy gradient $g(\theta, Z)$ unbiased for $\nabla f(\theta)$; partition $\{Z^s\}$ of $\{Z_1, \ldots, Z_N\}$; and $L_k := n_0 + \cdots + n_k$

- ► Iterate along level 0 segment: $\theta_j = \theta_{j-1} \gamma_j \nabla f(\theta_{j-1}, Z_j)$ for $j = 1, ..., n_0$, starting from some θ_0
- ▶ Iterate along each level 1 segment $s = (b_1)$ for $1 \le b_1 \le B_1$

$$\theta_j^s = \theta_{j-1}^s - \gamma_{j+L_0} g(\theta_{j-1}^s, Z_j^s)$$

for $j = 1, \ldots, n_1$, starting from θ_{n_0}

 \blacktriangleright Generally, for the segment $oldsymbol{s} = (b_1 \cdots b_k)$, iterate

$$\theta_j^s = \theta_{j-1}^s - \gamma_{j+L_{k-1}} g(\theta_{j-1}^s, Z_j^s)$$

for $j = 1, \ldots, n_k$, starting from $\theta_{n_{k-1}}^{(b_1 \cdots b_{k-1})}$

A second look at the HiGrad tree

An example of HiGrad tree: $B_1 = 2, B_2 = 3, K = 2$

A second look at the HiGrad tree

An example of HiGrad tree: $B_1 = 2, B_2 = 3, K = 2$

Fulfilled

• Online in nature with same computational cost as vanilla SGD

A second look at the HiGrad tree

An example of HiGrad tree: $B_1 = 2, B_2 = 3, K = 2$

Fulfilled

• Online in nature with same computational cost as vanilla SGD

Bonus

Easier to parallelize than vanilla SGD!

The HiGrad algorithm in action

Require: $g(\cdot, \cdot), Z_1, \ldots, Z_N, (n_0, n_1, \ldots, n_K), (B_1, \ldots, B_K), (\gamma_1, \ldots, \gamma_{N_{k'}}), \theta_0$ $\overline{\theta}^{s} = 0$ for all segments s function NodeTreeSGD(θ , s) $\theta_0^s = \theta$ k = # sfor j = 1 to n_k do $\theta_i^{\mathbf{s}} \leftarrow \theta_{i-1}^{\mathbf{s}} - \gamma_{i+L_{k-1}} g(\theta_{i-1}^{\mathbf{s}}, Z_i^{\mathbf{s}})$ $\overline{\theta}^{s} \leftarrow \overline{\theta}^{s} + \theta_{i}^{s}/n_{k}$ end for if k < K then for $b_{k+1} = 1$ to B_{k+1} do $s^+ \leftarrow (s, b_{k+1})$ execute NodeTreeSGD($\theta_{n_s}^s, s^+$) end for end if end function **execute** NodeTreeSGD(θ_0, \emptyset) **output:** $\overline{\theta}^{s}$ for all segments s

Outline

1. Deriving HiGrad

2. Constructing Confidence Intervals

3. Configuring HiGrad

4. Empirical Performance

Estimate μ_x^* through each thread

Average over each segment $\boldsymbol{s} = (b_1, \ldots, b_k)$

$$\overline{ heta}^{m{s}} = rac{1}{n_k} \sum_{j=1}^{n_k} heta_j^{m{s}}$$

Given weights w_0, w_1, \ldots, w_K that sum up to 1, weighted average along thread $m{t} = (b_1, \ldots, b_K)$ is

$$\overline{\theta}_{t} = \sum_{k=0}^{K} w_{k} \overline{\theta}^{(b_{1},\dots,b_{k})}$$

Estimate μ_x^* through each thread

Average over each segment $\boldsymbol{s} = (b_1, \ldots, b_k)$

$$\overline{ heta}^{m{s}} = rac{1}{n_k} \sum_{j=1}^{n_k} heta_j^{m{s}}$$

Given weights w_0, w_1, \ldots, w_K that sum up to 1, weighted average along thread $m{t} = (b_1, \ldots, b_K)$ is

$$\overline{\theta}_{t} = \sum_{k=0}^{K} w_{k} \overline{\theta}^{(b_{1},...,b_{k})}$$

Estimator yielded by thread t

$$\mu^{\boldsymbol{t}}_x := \mu_x(\overline{\theta}_{\boldsymbol{t}})$$

How to construct a confidence interval based on $T := B_1 B_2 \cdots B_K$ many such μ_x^t estimates?

Assume normality

Denote by μ_x the T-dimensional vector consisting of all μ_x^t

Normality of μ_x (to be proved soon)

 $\sqrt{N}(\mu_x - \mu_x^* \mathbf{1})$ converges weakly to normal distribution $\mathcal{N}(\mathbf{0}, \Sigma)$ as $N \to \infty$

Convert to simple linear regression

From $\boldsymbol{\mu}_x \stackrel{a}{\sim} \mathcal{N}(\mu_x^* \mathbf{1}, \Sigma/N)$ we get

$$\Sigma^{-\frac{1}{2}}\boldsymbol{\mu}_x \approx (\Sigma^{-\frac{1}{2}}\mathbf{1})\boldsymbol{\mu}_x^* + \boldsymbol{\tilde{z}}, \quad \boldsymbol{\tilde{z}} \sim \mathcal{N}(0, \boldsymbol{I}/N)$$

Convert to simple linear regression

From $\boldsymbol{\mu}_x \stackrel{a}{\sim} \mathcal{N}(\boldsymbol{\mu}_x^* \mathbf{1}, \boldsymbol{\Sigma}/N)$ we get

$$\Sigma^{-\frac{1}{2}}\boldsymbol{\mu}_x \approx (\Sigma^{-\frac{1}{2}}\mathbf{1})\boldsymbol{\mu}_x^* + \tilde{\boldsymbol{z}}, \quad \tilde{\boldsymbol{z}} \sim \mathcal{N}(0, \boldsymbol{I}/N)$$

Simple linear regression! Least-squares estimator of μ_x^* given as

$$(\mathbf{1}'\Sigma^{-\frac{1}{2}}\Sigma^{-\frac{1}{2}}\mathbf{1})^{-1}\mathbf{1}'\Sigma^{-\frac{1}{2}}\Sigma^{-\frac{1}{2}}\boldsymbol{\mu}_x$$
$$=(\mathbf{1}'\Sigma^{-1}\mathbf{1})^{-1}\mathbf{1}'\Sigma^{-1}\boldsymbol{\mu}_x$$
$$=\frac{1}{T}\sum_{\boldsymbol{t}\in\mathcal{T}}\boldsymbol{\mu}_x^{\boldsymbol{t}}\equiv\overline{\boldsymbol{\mu}}_x$$

HiGrad estimator

Just the sample mean $\overline{\mu}_x$

A *t*-based confidence interval

A *pivot* for μ_x^*

$$\frac{\overline{\mu}_x - \mu_x^*}{\mathrm{SE}_x} \stackrel{a}{\sim} t_{T-1},$$

where the standard error is given as

$$SE_x = \sqrt{\frac{(\boldsymbol{\mu}'_x - \overline{\mu}_x \mathbf{1}')\Sigma^{-1}(\boldsymbol{\mu}_x - \overline{\mu}_x \mathbf{1})}{T - 1}} \cdot \frac{\sqrt{\mathbf{1}'\Sigma\mathbf{1}}}{T}$$

A *t*-based confidence interval

A *pivot* for μ_x^*

$$\frac{\overline{\mu}_x - \mu_x^*}{\mathrm{SE}_x} \stackrel{a}{\sim} t_{T-1},$$

where the standard error is given as

$$SE_x = \sqrt{\frac{(\boldsymbol{\mu}'_x - \overline{\mu}_x \mathbf{1}')\Sigma^{-1}(\boldsymbol{\mu}_x - \overline{\mu}_x \mathbf{1})}{T - 1}} \cdot \frac{\sqrt{\mathbf{1}'\Sigma\mathbf{1}}}{T}$$

HiGrad confidence interval of coverage $1 - \alpha$

$$\left[\overline{\mu}_x - t_{T-1,1-\frac{\alpha}{2}}\operatorname{SE}_x, \quad \overline{\mu}_x + t_{T-1,1-\frac{\alpha}{2}}\operatorname{SE}_x\right]$$

Do we know the covariance Σ ?

Given a thread $\boldsymbol{t} = (b_1, \dots, b_K)$, denote by segments $\boldsymbol{s}_k = (b_1, b_2, \dots, b_k)$

Fact (informal) $\sqrt{n_0}(\overline{\theta}^{s_0} - \theta^*), \sqrt{n_1}(\overline{\theta}^{s_1} - \theta^*), \dots, \sqrt{n_K}(\overline{\theta}^{s_K} - \theta^*)$ converge to i.i.d. centered normal distributions

Given a thread $\boldsymbol{t} = (b_1, \ldots, b_K)$, denote by segments $\boldsymbol{s}_k = (b_1, b_2, \ldots, b_k)$

Fact (informal) $\sqrt{n_0}(\overline{\theta}^{s_0} - \theta^*), \sqrt{n_1}(\overline{\theta}^{s_1} - \theta^*), \dots, \sqrt{n_K}(\overline{\theta}^{s_K} - \theta^*)$ converge to i.i.d. centered normal distributions

• Hessian $H = \nabla^2 f(\theta^*)$ and $V = \mathbb{E}[g(\theta^*, Z)g(\theta^*, Z)']$. Ruppert (1988), Polyak (1990), and Polyak and Juditsky (1992) prove

$$\sqrt{N}(\overline{\theta}_N - \theta^*) \Rightarrow \mathcal{N}(0, H^{-1}VH^{-1})$$

Given a thread $\boldsymbol{t} = (b_1, \ldots, b_K)$, denote by segments $\boldsymbol{s}_k = (b_1, b_2, \ldots, b_k)$

Fact (informal) $\sqrt{n_0}(\overline{\theta}^{s_0} - \theta^*), \sqrt{n_1}(\overline{\theta}^{s_1} - \theta^*), \dots, \sqrt{n_K}(\overline{\theta}^{s_K} - \theta^*)$ converge to i.i.d. centered normal distributions

• Hessian $H = \nabla^2 f(\theta^*)$ and $V = \mathbb{E}[g(\theta^*, Z)g(\theta^*, Z)']$. Ruppert (1988), Polyak (1990), and Polyak and Juditsky (1992) prove

$$\sqrt{N}(\overline{\theta}_N - \theta^*) \Rightarrow \mathcal{N}(0, H^{-1}VH^{-1})$$

• Difficult to estimate sandwich covariance $H^{-1}VH^{-1}$ (Chen et al, 2016)

Given a thread $\boldsymbol{t} = (b_1, \ldots, b_K)$, denote by segments $\boldsymbol{s}_k = (b_1, b_2, \ldots, b_k)$

Fact (informal) $\sqrt{n_0}(\overline{\theta}^{s_0} - \theta^*), \sqrt{n_1}(\overline{\theta}^{s_1} - \theta^*), \dots, \sqrt{n_K}(\overline{\theta}^{s_K} - \theta^*)$ converge to i.i.d. centered normal distributions

• Hessian $H = \nabla^2 f(\theta^*)$ and $V = \mathbb{E}[g(\theta^*, Z)g(\theta^*, Z)']$. Ruppert (1988), Polyak (1990), and Polyak and Juditsky (1992) prove

$$\sqrt{N}(\overline{\theta}_N - \theta^*) \Rightarrow \mathcal{N}(0, H^{-1}VH^{-1})$$

- Difficult to estimate sandwich covariance $H^{-1}VH^{-1}$ (Chen et al, 2016)
- To know covariance of $\{\mu_x(\overline{\theta}_t)\}$, really need to know $H^{-1}VH^{-1}$?

Covariance determined by number of shared segments

Consider $\mu_x(\theta) = T(x)' \theta$ and observe

• $\sqrt{n_0}(\mu_x(\overline{\theta}^{s_0}) - \mu_x^*), \sqrt{n_1}(\mu_x(\overline{\theta}^{s_1}) - \mu_x^*), \dots, \sqrt{n_K}(\mu_x(\overline{\theta}^{s_K}) - \mu_x^*)$ converge to i.i.d. centered univariate normal distributions

•
$$\mu_x^{\boldsymbol{t}} - \mu_x^* = \mu_x(\overline{\theta}_{\boldsymbol{t}}) - \mu_x^* = \sum_{k=0}^K w_k \left(\mu_x(\overline{\theta}^{\boldsymbol{s}_k}) - \mu_x^* \right)$$

Covariance determined by number of shared segments

Consider $\mu_x(\theta) = T(x)' \theta$ and observe

• $\sqrt{n_0}(\mu_x(\overline{\theta}^{s_0}) - \mu_x^*), \sqrt{n_1}(\mu_x(\overline{\theta}^{s_1}) - \mu_x^*), \dots, \sqrt{n_K}(\mu_x(\overline{\theta}^{s_K}) - \mu_x^*)$ converge to i.i.d. centered univariate normal distributions

•
$$\mu_x^{\mathbf{t}} - \mu_x^* = \mu_x(\overline{\theta}_{\mathbf{t}}) - \mu_x^* = \sum_{k=0}^K w_k \left(\mu_x(\overline{\theta}^{\mathbf{s}_k}) - \mu_x^* \right)$$

Fact (informal)

For any two threads t and t' that agree at the first k segments and differ henceforth, we have

$$\operatorname{Cov}\left(\mu_x^{\boldsymbol{t}}, \mu_x^{\boldsymbol{t}'}\right) = (1 + o(1))\sigma^2 \sum_{i=0}^k \frac{w_i^2}{n_i}$$

Specify $\boldsymbol{\Sigma}$ up to a multiplicative factor

If $\mu_x(\theta)=T(x)'\,\theta,$ then for any two threads t and t' that agree only at the first k segments,

$$\Sigma_{t,t'} = (1+o(1))C\sum_{i=0}^{\kappa} \frac{\omega_i^2 N}{n_i}$$

Specify $\boldsymbol{\Sigma}$ up to a multiplicative factor

If $\mu_x(\theta)=T(x)'\,\theta,$ then for any two threads t and t' that agree only at the first k segments,

$$\Sigma_{\boldsymbol{t},\boldsymbol{t}'} = (1+o(1))C\sum_{i=0}^{k} \frac{\omega_i^2 N}{n_i}$$

• Do we need to know C as well?

Specify $\boldsymbol{\Sigma}$ up to a multiplicative factor

If $\mu_x(\theta)=T(x)'\,\theta,$ then for any two threads t and t' that agree only at the first k segments,

$$\Sigma_{t,t'} = (1+o(1))C\sum_{i=0}^{k} \frac{\omega_i^2 N}{n_i}$$

- Do we need to know C as well?
- No! Standard error of $\overline{\mu}_x$ invariant under multiplying Σ by a scalar

$$SE_x = \sqrt{\frac{(\boldsymbol{\mu}'_x - \overline{\mu}_x \mathbf{1}')\Sigma^{-1}(\boldsymbol{\mu}_x - \overline{\mu}_x \mathbf{1})}{T - 1}} \cdot \frac{\sqrt{\mathbf{1}'\Sigma\mathbf{1}}}{T}$$

Some remarks

- In generalized linear models, μ_x often takes the form $\mu_x(\theta) = \eta^{-1}(T(x)'\theta)$ for an increasing η . Construct confidence interval for $\eta(\mu_x)$ and then invert
- For general nonlinear but smooth $\mu_x(\theta)$, use delta method
- Need less than Ruppert–Polyak: remains to hold if $\sqrt{N}(\overline{\theta}_N \theta^*)$ converges to some centered normal distribution

Formal statement of theoretical results

Assumptions

- Local strong convexity. $f(\theta) \equiv \mathbb{E}f(\theta, Z)$ convex, differentiable, with Lipschitz gradients. Hessian $\nabla^2 f(\theta)$ locally Lipschitz and positive-definite at θ^*
- **One is a set of a s**

Examples satisfying assumptions

- Linear regression: $f(\theta, z) = \frac{1}{2}(y x^{\top}\theta)^2$.
- Logistic regression: $f(\theta, z) = -yx^{\top}\theta + \log\left(1 + e^{x^{\top}\theta}\right)$.
- **Penalized regression**: Add a ridge penalty $\lambda \|\theta\|^2$.
- Huber regression: $f(\theta, z) = \rho_{\lambda}(y x^{\top}\theta)$, where $\rho_{\lambda}(a) = a^2/2$ for $|a| \leq \lambda$ and $\rho_{\lambda}(a) = \lambda |a| - \lambda^2/2$ otherwise.

Sufficient conditions

 $X \text{ in } generic \text{ position, and } \mathbb{E}\|X\|^{4+o(1)} < \infty \text{ and } \mathbb{E}|Y|^{2+o(1)}\|X\|^{2+o(1)} < \infty$
Main theoretical results

Theorem (S. and Zhu)

Assume K and B_1, \ldots, B_K are fixed, $n_k \propto N$ as $N \to \infty$, and μ_x has a nonzero derivative at θ^* . Taking $\gamma_j \simeq j^{-\alpha}$ for $\alpha \in (0.5, 1)$ gives

$$\frac{\overline{\mu}_x - \mu_x^*}{\mathrm{SE}_x} \Longrightarrow t_{T-1}$$

Main theoretical results

Theorem (S. and Zhu)

Assume K and B_1, \ldots, B_K are fixed, $n_k \propto N$ as $N \to \infty$, and μ_x has a nonzero derivative at θ^* . Taking $\gamma_j \asymp j^{-\alpha}$ for $\alpha \in (0.5, 1)$ gives

$$\frac{\overline{\mu}_x - \mu_x^*}{\mathrm{SE}_x} \Longrightarrow t_{T-1}$$

Confidence intervals

$$\lim_{N \to \infty} \mathbb{P}\left(\mu_x^* \in \left[\overline{\mu}_x - t_{T-1,1-\frac{\alpha}{2}} \operatorname{SE}_x, \quad \overline{\mu}_x + t_{T-1,1-\frac{\alpha}{2}} \operatorname{SE}_x\right]\right) = 1 - \alpha$$

Main theoretical results

Theorem (S. and Zhu)

Assume K and B_1, \ldots, B_K are fixed, $n_k \propto N$ as $N \to \infty$, and μ_x has a nonzero derivative at θ^* . Taking $\gamma_j \asymp j^{-\alpha}$ for $\alpha \in (0.5, 1)$ gives

$$\frac{\overline{\mu}_x - \mu_x^*}{\mathrm{SE}_x} \Longrightarrow t_{T-1}$$

Confidence intervals

$$\lim_{N \to \infty} \mathbb{P}\left(\mu_x^* \in \left[\overline{\mu}_x - t_{T-1,1-\frac{\alpha}{2}} \operatorname{SE}_x, \quad \overline{\mu}_x + t_{T-1,1-\frac{\alpha}{2}} \operatorname{SE}_x\right]\right) = 1 - \alpha$$

Fulfilled

- Online in nature with same computational cost as vanilla SGD
- A confidence interval for μ_x^* in addition to an estimator

How accurate is the HiGrad estimator?

By Cauchy–Schwarz

$$\begin{split} N \operatorname{\mathbb{V}ar}(\overline{\mu}_x) &= (1+o(1))\sigma^2 \left[\sum_{k=0}^K n_k \prod_{i=1}^k B_i\right] \left[\sum_{k=0}^K \frac{w_k^2}{n_k \prod_{i=1}^k B_i}\right] \\ &\geq (1+o(1))\sigma^2 \left[\sum_{k=0}^K \sqrt{w_k^2}\right]^2 = (1+o(1))\sigma^2, \end{split}$$

with equality if

$$w_k^* = \frac{n_k \prod_{i=1}^k B_i}{N}$$

By Cauchy–Schwarz

$$\begin{split} N \operatorname{\mathbb{V}ar}(\overline{\mu}_x) &= (1+o(1))\sigma^2 \left[\sum_{k=0}^K n_k \prod_{i=1}^k B_i\right] \left[\sum_{k=0}^K \frac{w_k^2}{n_k \prod_{i=1}^k B_i}\right] \\ &\geq (1+o(1))\sigma^2 \left[\sum_{k=0}^K \sqrt{w_k^2}\right]^2 = (1+o(1))\sigma^2, \end{split}$$

with equality if

$$w_k^* = \frac{n_k \prod_{i=1}^k B_i}{N}$$

• Segments at an early level weighted less

By Cauchy–Schwarz

$$\begin{split} N \, \mathbb{V}\mathrm{ar}(\overline{\mu}_x) &= (1+o(1))\sigma^2 \left[\sum_{k=0}^K n_k \prod_{i=1}^k B_i\right] \left[\sum_{k=0}^K \frac{w_k^2}{n_k \prod_{i=1}^k B_i}\right] \\ &\geq (1+o(1))\sigma^2 \left[\sum_{k=0}^K \sqrt{w_k^2}\right]^2 = (1+o(1))\sigma^2, \end{split}$$

with equality if

$$w_k^* = \frac{n_k \prod_{i=1}^k B_i}{N}$$

- Segments at an early level weighted less
- HiGrad estimator has the same asymptotic variance as vanilla SGD

By Cauchy–Schwarz

$$\begin{split} N \, \mathbb{V}\mathrm{ar}(\overline{\mu}_x) &= (1+o(1))\sigma^2 \left[\sum_{k=0}^K n_k \prod_{i=1}^k B_i\right] \left[\sum_{k=0}^K \frac{w_k^2}{n_k \prod_{i=1}^k B_i}\right] \\ &\geq (1+o(1))\sigma^2 \left[\sum_{k=0}^K \sqrt{w_k^2}\right]^2 = (1+o(1))\sigma^2, \end{split}$$

with equality if

$$w_k^* = \frac{n_k \prod_{i=1}^k B_i}{N}$$

- Segments at an early level weighted less
- HiGrad estimator has the same asymptotic variance as vanilla SGD
- Achieves Cramér–Rao lower bound when model specified

Prediction intervals for vanilla SGD

Theorem (S. and Zhu)

Run vanilla SGD on a fresh dataset of the same size, producing $\mu_x^{\rm SGD}.$ Then, with optimal weights,

$$\lim_{N \to \infty} \mathbb{P}\left(\mu_x^{\text{SGD}} \in \left[\overline{\mu}_x - \sqrt{2}t_{T-1, 1-\frac{\alpha}{2}} \operatorname{SE}_x, \quad \overline{\mu}_x + \sqrt{2}t_{T-1, 1-\frac{\alpha}{2}} \operatorname{SE}_x\right]\right) = 1 - \alpha.$$

- $\mu_x^{
 m SGD}$ can be replaced by the HiGrad estimator with the same structure
- Interpretable even under model misspecification

HiGrad enjoys three appreciable properties

Under certain assumptions, for example, f being locally strongly convex

Outline

- 1. Deriving HiGrad
- 2. Constructing Confidence Intervals
- 3. Configuring HiGrad
- 4. Empirical Performance

Which one?

Denote by $L_{\text{CI}} = 2t_{T-1,1-\frac{\alpha}{2}} \operatorname{SE}_x$ the length of HiGrad confidence interval

Proposition (S. and Zhu) $\sqrt{N}\mathbb{E}L_{\mathrm{CI}} \rightarrow \frac{2\sigma\sqrt{2}t_{T-1,1-\frac{\alpha}{2}}\Gamma\left(\frac{T}{2}\right)}{\sqrt{T-1}\Gamma\left(\frac{T-1}{2}\right)}$

Denote by $L_{\rm CI} = 2t_{T-1,1-\frac{\alpha}{2}} \operatorname{SE}_x$ the length of HiGrad confidence interval

Proposition (S. and Zhu)

$$\sqrt{N}\mathbb{E}L_{\mathrm{CI}} \to \frac{2\sigma\sqrt{2}t_{T-1,1-\frac{\alpha}{2}}\Gamma\left(\frac{T}{2}\right)}{\sqrt{T-1}\Gamma\left(\frac{T-1}{2}\right)}$$

• The function
$$\frac{t_{T-1,1-\frac{\alpha}{2}}\Gamma\left(\frac{T}{2}\right)}{\sqrt{T-1}\Gamma\left(\frac{T-1}{2}\right)}$$
 is decreasing in $T \ge 2$

Denote by $L_{\rm CI} = 2t_{T-1,1-\frac{\alpha}{2}} \operatorname{SE}_x$ the length of HiGrad confidence interval

Proposition (S. and Zhu)

$$\sqrt{N}\mathbb{E}L_{\mathrm{CI}} \to \frac{2\sigma\sqrt{2}t_{T-1,1-\frac{\alpha}{2}}\Gamma\left(\frac{T}{2}\right)}{\sqrt{T-1}\Gamma\left(\frac{T-1}{2}\right)}$$

• The function
$$\frac{t_{T-1,1-\frac{\alpha}{2}}\Gamma\left(\frac{T}{2}\right)}{\sqrt{T-1}\Gamma\left(\frac{T-1}{2}\right)}$$
 is decreasing in $T \ge 2$

• The more threads, the shorter the HiGrad confidence interval on average

Denote by $L_{\text{CI}} = 2t_{T-1,1-\frac{\alpha}{2}} \operatorname{SE}_x$ the length of HiGrad confidence interval

Proposition (S. and Zhu)

$$\sqrt{N}\mathbb{E}L_{\mathrm{CI}} \to \frac{2\sigma\sqrt{2}t_{T-1,1-\frac{\alpha}{2}}\Gamma\left(\frac{T}{2}\right)}{\sqrt{T-1}\Gamma\left(\frac{T-1}{2}\right)}$$

• The function
$$\frac{t_{T-1,1-\frac{\alpha}{2}}\Gamma\left(\frac{T}{2}\right)}{\sqrt{T-1}\Gamma\left(\frac{T-1}{2}\right)}$$
 is decreasing in $T \ge 2$

- The more threads, the shorter the HiGrad confidence interval on average
- More contrasting leads to shorter confidence interval

Really want to set T = 1000?

T = 4 is sufficient

- Too many threads result in inaccurate normality (unless N is huge)
- Large T leads to much contrasting and little sharing

How to choose (n_0, \ldots, n_K) ?

 $n_0 + B_1 n_1 + B_1 B_2 n_2 + B_1 B_2 B_3 n_3 + \dots + B_1 B_2 \dots B_K n_K = N$

Length of each thread

 $L_K := n_0 + n_1 + \dots + n_K$

How to choose (n_0, \ldots, n_K) ?

 $n_0 + B_1 n_1 + B_1 B_2 n_2 + B_1 B_2 B_3 n_3 + \dots + B_1 B_2 \dots B_K n_K = N$

Length of each thread

 $L_K := n_0 + n_1 + \dots + n_K$

• Sharing: want a larger L_K by setting $n_0 > n_1 > \cdots > n_K$

How to choose (n_0, \ldots, n_K) ?

 $n_0 + B_1 n_1 + B_1 B_2 n_2 + B_1 B_2 B_3 n_3 + \dots + B_1 B_2 \dots B_K n_K = N$

Length of each thread

 $L_K := n_0 + n_1 + \dots + n_K$

- Sharing: want a larger L_K by setting $n_0 > n_1 > \cdots > n_K$
- Contrasting: want $n_0 < n_1 < \cdots < n_K$

Outline

- 1. Deriving HiGrad
- 2. Constructing Confidence Intervals
- 3. Configuring HiGrad
- 4. Empirical Performance

General simulation setup

X generated as i.i.d. $\mathcal{N}(0,1)$ and $Z=(X,Y)\in\mathbb{R}^d\times\mathbb{R}.$ Set $N=10^6$ and use $\gamma_j=0.5j^{-0.55}$

- Linear regression $Y \sim \mathcal{N}(\mu_X(\theta^*), 1)$, where $\mu_x(\theta) = x'\theta$
- Logistic regression $Y \sim \text{Bernoulli}(\mu_X(\theta^*))$, where

$$\mu_x(\theta) = \frac{\mathrm{e}^{x'\theta}}{1 + \mathrm{e}^{x'\theta}}$$

Criteria

- Accuracy: $\|\overline{\theta} \theta^*\|^2$, where $\overline{\theta}$ averaged over T threads
- Coverage probability and length of confidence interval

Accuracy

Dimension d = 50. MSE $\|\overline{\theta} - \theta^*\|^2$ normalized by that of vanilla SGD

• *null* case where
$$\theta_1 = \cdots = \theta_{50} = 0$$

• dense case where
$$\theta_1 = \cdots = \theta_{50} = \frac{1}{\sqrt{50}}$$

• sparse case where
$$\theta_1 = \cdots = \theta_5 = \frac{1}{\sqrt{5}}, \ \theta_6 = \cdots = \theta_{50} = 0$$

Accuracy

Coverage and CI length

HiGrad configurations

•
$$K = 1$$
, then $n_1 = n_0 = r = 1$;

•
$$K = 2$$
, then $n_1/n_0 = n_2/n_1 = r \in \{0.75, 1, 1.25, 1.5\}$

Set $\theta_i^* = (i-1)/d$ for $i = 1, \dots, d$ and $\alpha = 5\%$. Use measure

$$\frac{1}{20}\sum_{i=1}^{20}\mathbf{1}(\mu_{x_i}(\theta^*) \in \mathsf{Cl}_{x_i})$$

Linear regression: d = 20

0.9	56	-	1, 4, 1	-	0.0851
0.9	938	-	1, 8, 1	-	0.0683
0.	9185	-	1,12,1	-	0.0653
0).887	-	1,16,1	-	0.0637
	0.8488	-	1, 20, 1	-	0.0637
0.9	0425	-	2, 2, 1	-	0.0801
0.9	0472	-	2, 2, 1.25	-	0.0811
0.9	0452	-	2, 2, 1.5	-	0.0828
0.9	0448	-	2, 2, 2	-	0.0815
0.9	924	-	3, 2, 1	-	0.061
0.9	9318	-	3, 2, 1.25	-	0.0614
0.9	935	-	3, 2, 1.5	-	0.062
0.9	9378	-	3, 2, 2	-	0.0633
0.9	925	-	2, 3, 1	-	0.0605
0.	9185	-	2,3,1.25	-	0.0606
0.9	9245	-	2, 3, 1.5	-	0.0618
0.9	9348	-	2, 3, 2	-	0.0621

Linear regression: d = 100

0.9472	- 1, 4, 1 -	0.2403
0.9478	- 1, 8, 1 -	0.2197
0.9308	- 1, 12, 1 -	0.2312
0.92	- 1, 16, 1 -	0.2495
0.9125	- 1, 20, 1 ·	0.2649
0.9312	- 2, 2, 1 ·	0.1917
0.9338	- 2, 2, 1.25 -	0.1927
0.9358	- 2, 2, 1.5 -	0.1946
0.9302	- 2, 2, 2 -	0.1972
0.9	- 3, 2, 1 -	0.1412
0.9065	3, 2, 1.25	0.1428
0.9148	- 3, 2, 1.5 -	0.1453
0.917	- 3, 2, 2 -	0.1489
0.894	- 2, 3, 1 -	0.1457
0.8992	2, 3, 1.25	0.1466
0.897	- 2, 3, 1.5 -	0.1491
0.9115	- 2, 3, 2 -	0.15

A real data example: setup

From the 1994 census data based on UCI repository. Y indicates if an individual's annual income exceeds \$50,000

- 123 features
- 32,561 instances
- Randomly pick 1,000 as a test set

Use $N=10^{6}, \alpha=10\%$, and $\gamma_{j}=0.5j^{-0.55}.$ Run HiGrad for L=500 times. Use measure

$$\operatorname{coverage}_{i} = \frac{1}{L(L-1)} \sum_{\ell_{1}}^{L} \sum_{\ell_{2} \neq \ell_{1}} \mathbf{1} \left(\hat{p}_{i\ell_{1}} \in \operatorname{PI}_{i\ell_{2}} \right)$$

A real data example: histogram

Comparisons of HiGrad configurations

Configurations	Accuracy	Coverage	CI length
	****	***	****
	★★★★☆	****	******
	★★★☆☆	*****	★★★★ ☆
	★★★☆☆	★★★★ ☆	★★★★ ☆
	★★★★☆☆	****	★★★★ ☆
	★★★★☆	★★★★ ☆	★★★★☆

Default HiGrad parameters

HiGrad R package default values $K=2, B_1=2, B_2=2, n_0=n_1=n_2=rac{N}{7}$

Concluding Remarks

Straightforward extensions

• Flexible tree structures

HiGrad tree can be asymmetric

• N unknown

Grow the tree assuming a lower bound on ${\cal N}$

- Burn-in Get a better initial point
- A criterion for stopping Need to incorporate selective inference
- Mini-batch sizes Evaluate (less) noisy gradient

$$\overline{g}(\theta, Z_{1:m}) = \frac{1}{m} \sum_{i=1}^{m} g(\theta, Z_i)$$

Future extensions

Improving statistical properties

- ► Finite-sample guarantee
 - Better coverage probability

Future extensions

Improving statistical properties

- ► Finite-sample guarantee
 - Better coverage probability
- Extend Ruppert-Polyak to high dimensions
 - Number of unknown variables growing
Future extensions

Improving statistical properties

- Finite-sample guarantee
 - Better coverage probability
- Extend Ruppert-Polyak to high dimensions
 - Number of unknown variables growing

A new template for online learning

- Adaptive step sizes and pre-conditioned SGD
 - AdaGrad (Duchi et al, 2011) and Adam (Diederik & Ba, 2014)

Future extensions

Improving statistical properties

- Finite-sample guarantee
 - Better coverage probability
- Extend Ruppert-Polyak to high dimensions
 - Number of unknown variables growing

A new template for online learning

- Adaptive step sizes and pre-conditioned SGD
 - AdaGrad (Duchi et al, 2011) and Adam (Diederik & Ba, 2014)
- General convex optimization and non-convex problems
 - SVM, regularized GLM, and deep learning

Take-home messages

Idea

Contrasting and sharing through hierarchical splitting

Take-home messages

Idea

Contrasting and sharing through hierarchical splitting

Properties (local strong convexity)

- Online in nature with same computational cost as vanilla SGD
- A confidence interval for μ_x^* in addition to an estimator
- Estimator (almost) as accurate as vanilla SGD

Take-home messages

Idea

Contrasting and sharing through hierarchical splitting

Properties (local strong convexity)

- Online in nature with same computational cost as vanilla SGD
- A confidence interval for μ_x^* in addition to an estimator
- Estimator (almost) as accurate as vanilla SGD

Bonus

Easier to parallelize than vanilla SGD!

Thanks!

- **Reference.** Statistical Inference for Stochastic Approximation and Online Learning via Hierarchical Incremental Gradient Descent, Weijie Su and Yuancheng Zhu, coming soon
- Software. R package HiGrad, coming soon