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Learning by optimization
Sample Z1,...,Zn, and f(6, z) is cost function
Learning model by minimizing

argml

2 \
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Learning by optimization

Sample Z1,...,Zn, and f(6, z) is cost function

Learning model by minimizing

argml

2 \

e Maximum likelihood estimation (MLE). More generally, M -estimation
e Often no closed-form solution

e Need optimization
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Gradient descent

» Start at some 6

> |terate N
Zn:l vf(ajfla Z’n)
N b

0j=10j-1—";

where «; are step sizes

Dates back to Newton, Gauss, and Cauchy
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Difficulty with gradient descent

Modern machine learning

Cradient descent often not feasible due to
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Stochastic gradient descent (SGD)

Aka incremental gradient descent
» Start at some 6

> lterate
0; = 0;1 =7V f(0i-1,7;)
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Stochastic gradient descent (SGD)

Aka incremental gradient descent
» Start at some 6

» |terate
0j=0j—1—7Vf(0;-1,Z))

SGD resolved these challenges

e Online in nature
® One pass over data

e Optimal properties (Nemirovski & Yudin, 1983; Bertsekas, 1999; Agarwal et
al, 2012; Rakhlin et al, 2012; Hardt et al, 2015)
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SGD in one line

S —
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SGD vs GD



SGD: past and now

Statistics

e Robbins & Monro (1951); Kiefer & Wolfowitz (1952); Robbins & Siegmund
(1971); Ruppert (1988); Polyak & Juditsky (1992)

Machine learning and optimization

e Nesterov & Vial (2008); Nemirovski et al (2009); Bottou (2010); Bach and
Moulines (2011); Duchi et al (2011); Diederik & Ba (2014)

Applications

e Deep learning, recommender systems, MCMC, Kalman filter, phase
retrieval, networks, and many
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Using SGD for prediction

Averaged SCD
An estimator of 8* := argmin Ef(6, Z) is given by averaging

] A
GZNZ@-
g=i

Recall that Gj = Gj_l — fijf(Gj_l, ZJ) fOf'j = ]., ceey N.
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Using SGD for prediction

Averaged SCD
An estimator of 6* := argmin Ef (6, Z) is given by averaging

B
0=>0;

Recall that 0j = Gj_l — 'ijf(Gj_l, ZJ) fOf'j = ]., ceey N.

Given a new instance z = (z, y) with y unknown

Interested in fi,(6)

e Linear regression: y,(0) = 2’6

— (L‘Ia

e Logistic regression: p,(6) = ;jreﬁ

e Generalized linear models: ji,(f) = Ez(Y|X = z)
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How much can we trust SGD predictions?

We would observe a different ju,,(6) if

e Re-sample Z1{,...,Z}

e Sample with replacement N times from a finite population z1, ..., z;,
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How much can we trust SGD predictions?

We would observe a different ju,,(6) if

e Re-sample Z1{,...,Z}

e Sample with replacement N times from a finite population 21, . ..

Decision-making requires uncertainty quantification

e Should | invest in Bitcoin?

e How early to leave to catch a flight?
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A real data example

Adult dataset on UCI repository!
e 123 features

e Y = 1ifan individual's annual income exceeds $50,000
® 32,561 instances
Randomly pick 1,000 as a test set. Run SGD 500 times independently, each with

20 epochs and step sizes v; = 0.5 7%-5%. Construct empirical confidence
intervals with o = 10%

Thttps://archive.ics.uci.edu/ml/datasets/Adult 12/59


https://archive.ics.uci.edu/ml/datasets/Adult

High variability of SGD predictions
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What is desired
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What is desired

Can we construct a confidence interval for % := 1, (60*)? J

Remarks

Bootstrap is computationally infeasible

Most existing works concern bounding generalization errors or minimizing
regrets (Shalev-Shwartz et al, 2011; Rakhlin et al, 2012)

Chen et al (2016) proposed a batch-mean estimator of SGD covariance, and
Fang et al (2017) proposed a perturbation-based resampling procedure
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This talk: HiGrad

A new method: Hierarchical Incremental CRAdient Descent
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Preview of HiGrad

My

S~

16 /59



Preview of HiGrad

16 /59



Preview of HiGrad

16 /59



Preview of HiGrad

S~

16 /59



Preview of HiGrad

.

« 9,=10"+20 B,=10
o uli=p,(0:) =015, p2:=p.(02)=0.11

1 2
e HiGrad estimator is 7z, = £ — (.13
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Preview of HiGrad

S~

0, =17"+20' 5, =10
pl = (01) = 0.15,  p? = p.(02) =0.11

1 2
HiGrad estimator is i, = Y=/ = (.13

The 90% HiCGrad confidence interval for p% is

[ﬁx — t1,0.05V0.375| g, — i3], T, + 11,0.05V/0.375|py — pi|
= [~0.025,0.285]
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Outline

1. Deriving HiGrad
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Problem statement

Minimizing convex f
0* = argmin f(0) =Ef(0,2)
6

Observe i.i.d. Z1, ..., Zy and can evaluate unbiased noisy gradient g(6; Z)

Eg(0,Z) =V f(9)forall§

To be fulfilled

> Online in nature with same computational cost as vanilla SGD
> A confidence interval for p in addition to an estimator
» Estimator (almost) as accurate as vanilla SGD
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The idea of contrasting and sharing

e Need more than one value u, to quantify variability: contrasting
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The idea of contrasting and sharing

e Need more than one value u, to quantify variability: contrasting

e Need to share gradient information to elongate threads: sharing
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The HiCrad tree

e K +1levels
e each k-level segment is of length ny, and is split into By.+1 segments

20/59



The HiGrad tree

o K +1levels

e each k-level segment is of length ny, and is split into By1 segments

ng + Bini + B1Bang + B1BaBans + -+ B1By - - - Bkng = N J

An example of HiCrad tree: By =2,B; =3, K =2 5050



The HiGrad tree
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The HiGrad tree

o K +1levels

e each k-level segment is of length ny, and is split into By1 segments

ng + Bini + B1Bang + B1BaBans + -+ B1By - - - Bkng = N J

> i :
> i :

An example of HiCrad tree: By =2,B; =3, K =2 5050



lterate along HiGrad tree

Recall: noisy gradient g(6, Z) unbiased for V f(0); partition {Z*} of
{Z1,...,Zn};and L :=ng + -+ + ng
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lterate along HiGrad tree

Recall: noisy gradient g(6, Z) unbiased for V f(0); partition {Z*} of
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lterate along HiGrad tree

Recall: noisy gradient g(6, Z) unbiased for V f(0); partition {Z*} of
{Z1,...,Zn};and L :=ng + -+ + ng,

> lterate along level O segment: 6; = 0;_1 —v;V f(0;_1,Z;) forj =1,...

starting from some 6y
> lterate along each level 1 segment s = (by) for 1 < b; < By
9; = 9;@1 - ’Yj+Log(9;L1a Zf)
forj =1,...,n4, starting from 6,,,,
> Generally, for the segment s = (b; - - - by,), iterate
9; = 95!1 = Vi+Lik-1 9(9;717 Zf)

forj =1,...,ng, starting from gélll_-.l.bk_l)

» 10,
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A second look at the HiGrad tree

An example of HiCrad tree: By = 2,By =3, K =2
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A second look at the HiGrad tree

An example of HiCrad tree: By = 2,By =3, K =2

e Online in nature with same computational cost as vanilla SGD \/

Easier to parallelize than vanilla SGD! 22/59|




The HiGrad algorithm in action

Require: g(-, -), Zl, ey ZN, (TL07TL17 e ,TLK), (Bh ey BK), (’71, e ,’}/NK)790
8° = 0 for all segments s
function NodeTreeSGD(0, s)
65 =0
k=#s
for j = 1tony do
9; — 9;—1 — Vj+Lir-1 9(6;—1, Z;)
0° 0 + 03/
end for
if £ < K then
for bk+1 =1to Bk+1 do
st < (8,bry1)
execute NodeTreeSGD (63, , sT)
end for
end if
end function
execute NodeTreeSGD(fg, 1)
output: 8 for all segments s
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Outline

2. Constructing Confidence Intervals
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Estimate p through each thread

Average over each segment s = (by,...,bg)
1 &
0°=—N "p°
ng 2—:1 J
=
Given weights wo, w1, . . ., wx that sum up to 1, weighted average along thread

t=(by,....bx)is

K
b= wd"
k=0
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Estimate ) through each thread

Average over each segment s = (by,...,bg)
1 &
" =—N "p°
Nk Z J
Jj=1
Given weights wo, w1, . . ., wx that sum up to 1, weighted average along thread
t=(by,...,bx)is

25/59



How to construct a confidence interval based on
T := BBy --- Bx many such ut estimates?
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Assume normality

Denote by u, the T-dimensional vector consisting of all uf,

Normality of p,. (to be proved soon)

VN (p, — pt1) converges weakly to normal distribution A/(0,%) as N — oo

26/59



Convert to simple linear regression

From p, ~ N (pi1,%/N) we get

S p, (TR 2 2~ N(0,I/N)
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Convert to simple linear regression

From g, ~ N (pi1,%/N) we get
ST, ~ (STl + 2, 2~ N(0,I/N)
Simple linear regression! Least-squares estimator of u* given as
(G0 0D Yk 5 s 1 Sk yut-F78
=@z,

1
= T Mg 55721
T

HiGrad estimator
Just the sample mean i,
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A t-based confidence interval

A pivot for p
ﬁ.z — /j/;(; 4 t
SEm T-1,

where the standard error is given as

B — w; 1) (e — 1) VUSL
v T-1 T
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A t-based confidence interval

A pivot for p
ﬁz — M;
SE,

where the standard error is given as

a
~tr_1,

T T-1 T

HiCrad confidence interval of coverage 1 — «

(B, —tr—11-¢ SEs, Ty +tr-11-g SE]
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Do we know the covariance .7
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An extension of Ruppert-Polyak normality

Given a thread t = (by,...,bk ), denote by segments s = (b1, ba, ..., b)

Fact (informal)

Vo0 —6%), /(87 = 6%),..., (@ — 6*) converge to i.i.d. centered

normal distributions
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An extension of Ruppert-Polyak normality

Given a thread t = (by,...,bk ), denote by segments s = (b1, ba, ..., b)

Fact (informal)

Vo0 —6%), /(87 = 6%),..., (@ — 6*) converge to i.i.d. centered

normal distributions

e Hessian H = V2f(0*) and V = E [g(0*, Z)g(0*, Z)']. Ruppert (1988), Polyak
(1990), and Polyak and Juditsky (1992) prove

VN@y —6%) = N(O,H 'VH™)

e Difficult to estimate sandwich covariance H='V H~! (Chen et al, 2016)

e 7o know covariance of {11.(0¢)}, really need to know H=*VH~'?
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Covariance determined by number of shared segments

Consider p, () = T'(x)" 6 and observe
o Vio(ua(07) = 1), v/ (1 (07) = 1), -, /I (e (07 ) — pi3) converge

to i.i.d. centered univariate normal distributions
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Covariance determined by number of shared segments

Consider p, () = T'(x)" 6 and observe
o Vo(na(07) = p13), V(e (07) = 13, -, /I (0 (87") — p3) converge

to i.i.d. centered univariate normal distributions

o b — k=, (0y) — Zwk (Mx u;)

Fact (informal)

For any two threads t and ¢’ that agree at the first k segments and differ
henceforth, we have

k9

Cov (i, 1) = (L4 o(1))0® Y- 2%

i=0

30/59



Specify ¥ up to a multiplicative factor
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Specify ¥ up to a multiplicative factor

e Do we need to know C' as well?
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Specify 3 up to a multiplicative factor

If uz(6) = T(x)" 6, then for any two threads t and ¢’ that agree only at the first &

segments,
k

Sew = (1+0(1)C Y

-~
i=0 "

wZN

e Do we need to know C as well?
e No! Standard error of 7z, invariant under multiplying ¥ by a scalar

o T-1 T
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Some remarks

e In generalized linear models, y, often takes the form jui,.(0) = n=1(T'(z)'6)
for an increasing . Construct confidence interval for (u,.) and then invert

e For general nonlinear but smooth y,.(9) , use delta method

o Need less than Ruppert-Polyak: remains to hold if VN ( — 6*) converges
to some centered normal distribution
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Formal statement of theoretical results
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Assumptions

@ Local strong convexity. f(6) = Ef (0, Z) convex, differentiable, with
Lipschitz gradients. Hessian V2 f(6) locally Lipschitz and positive-definite at
0*

@ Noise regularity. V(0) = E[g(0, Z)g(0, Z)'] Lipschitz and does not grow too
fast. Noisy gradient ¢(0, Z) has 2 + o(1) moment locally at *

33/59



Examples satisfying assumptions

e Linear regression: f(6,2) = 3(y — x'0)%
e Logistic regression: f(0,z) = —yx 0 + log (1 + e"”Te).
e Penalized regression: Add a ridge penalty \||0]|%.

e Huber regression: f(0,2) = px(y — 2 0), where py(a) = a?/2 for |a| < A
and py(a) = Ma| — A\?/2 otherwise.

Sufficient conditions
X in generic position, and E|| X [|*T°M) < oo and E|Y [>T || X |2+ < oo
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Main theoretical results

Theorem (S. and Zhu)
., Bi are fixed, n, <« N as N — oo, and i, has a nonzero
derivative at 0*. Taking ; < j~* for a € (0.5,1) gives

Assume K and By, ..

Izw __/L;
— —> ti7_
SIEw T—1
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Main theoretical results

Theorem (S. and Zhu)

Assume K and By, ..., Bk are fixed, n < N as N — oo, and i, has a nonzero
derivative at 0*. Taking ; < j~* for a € (0.5,1) gives

Hy — Py i
SE;

Confidence intervals

Jim P (W5 € [By —tr—1,1-3 SEq, Fy+tr-11-¢SE;]) =1-a

— tr_1

4

Fulfilled

e Online in nature with same computational cost as vanilla SGD \/

e A confidence interval for u% in addition to an estimator v’
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How accurate is the HiGrad estimator?
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Optimal variance with optimal weights

By Cauchy-Schwarz

K k
N Var(fi,) = (14 o(1))o? lz ne [ B:
k=

K
> (1+0(1))0? [Z Vuz| =1 +o)e?

with equality if
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Optimal variance with optimal weights

By Cauchy-Schwarz

K k
N Var(fi,) = (14 o(1))o? lz ne [ B:
k=

K
> (1+0(1))0? [Z Vuz| =1 +o)e?

with equality if
k
* ng Hi:l BZ
wk, -
N
e Segments at an early level weighted less
e HiCrad estimator has the same asymptotic variance as vanilla SGD
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Optimal variance with optimal weights

By Cauchy-Schwarz

K k
N Var(fi,) = (14 o(1))o? lz ne [ B:
k=

K
> (1+0(1))0? [Z Vuz| =1 +o)e?

with equality if
k
* ng Hi:l BZ
wk, -
N
e Segments at an early level weighted less
e HiCrad estimator has the same asymptotic variance as vanilla SGD

e Achieves Cramér-Rao lower bound when model specified
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Prediction intervals for vanilla SGD

Theorem (S. and Zhu)

Run vanilla SGD on a fresh dataset of the same size, producing p3P. Then,
with optimal weights,

lim P <M§CGD € [ﬁz = \/§tT_1’1_% SE., @, + \/§tT_1’1_% SEz]) =1-oa.

N —oc0

e 5GP can be replaced by the HiGrad estimator with the same structure

e |Interpretable even under model misspecification
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HiCrad enjoys three appreciable properties

Under certain assumptions, for example, f being locally strongly convex

e Online in nature with same computational cost as vanilla SGD /
e A confidence interval for x% in addition to an estimator \/

e Estimator (almost) as accurate as vanilla SGD \/
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Outline

3. Configuring HiGrad
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Length of confidence intervals

Denote by Lcy = 2t7-1,1- ¢ SE, the length of HiGrad confidence interval

Proposition (S. and Zhu)

202ty il il— I (%)
VT —1T (557)

VNELc; —
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Length of confidence intervals

Denote by Lcy = 2t7-1,1- ¢ SE, the length of HiGrad confidence interval

Proposition (S. and Zhu)

202ty il il— I (%)
VT —1T (557)

VNELc; —

11—%F(§)
VT-1T (53)

e The function is decreasing in T' > 2
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Length of confidence intervals

Denote by Lcy = 2t7-1,1- ¢ SE, the length of HiGrad confidence interval

Proposition (S. and Zhu)

20\/2tr_ 1,1-2 (%)

NEL H
VNELcy — T—1T (T )
_oI' (5
e The function \/Ti; (T( 1)) is decreasing in T' > 2

e The more threads, the shorter the HiCrad confidence interval on average
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Length of confidence intervals

Denote by Lcy = 2t7-1,1- ¢ SE, the length of HiGrad confidence interval

Proposition (S. and Zhu)

20\/2tr_ 1,1-2 (%)

VNELq — JT—TT ()

<3,

e The function is decreasing in T' > 2

e The more threads, the shorter the HiCrad confidence interval on average

e More contrasting leads to shorter confidence interval

41/59



Really want to set 7" = 10007

Y
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T = 4 is sufficient

6 8 10
T

tr—1,0.9750 (T'/2)
Plot of ’
T —1ir(T/2-05)

e Too many threads result in inaccurate normality (unless N is huge)
e large T leads to much contrasting and little sharing
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How to choose (nq, ...,nk)?

ng + Bini + B1Bong + B1BsBsng + -+ B1By--- Bgng = N

Length of each thread

Lg:=ng+ni+--+ng
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How to choose (nq, ...,nk)?

o + Blnl + BlBgnz + BlBngng + -4+ BlBQ s BKTLK =N

Length of each thread

Lg:=ng+ni+--+ng

e Sharing: want a larger Lg by settingng > ny > --- > ng

e Contrasting: wantng <nj; < --- < ng
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Outline

4. Empirical Performance
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General simulation setup

X generated asi.i.d. N(0,1)and Z = (X,Y) € R? x R. Set N = 10% and use
v; = 0.55705
e Linear regression Y ~ N (ux(0*),1), where p1,(6) = 2’60
e Logistic regression Y ~ Bernoulli(ux (6*)), where
ea:'@
T 0 = T 0

Criteria
e Accuracy: || — 6*||?, where 0 averaged over T threads

e Coverage probability and length of confidence interval

46/59



Accuracy

Dimension d = 50. MSE || — 6*||? normalized by that of vanilla SCD

e null case wheref; = -+ =050 =0
e dense case where ) = -+ =059 = \/%
e sparse case where 01 = --- =05 = % Og="-=05=0

47/59



Accuracy

Linear regression, null Linear regression, sparse Linear regression, dense
o 2 2
2 4 ] 2
s 2 3 s
g = g g
E £ g
2 24 2 2
o I 2
8 4 8 8
=T T T T El T T T = T T T
le+04 5e+04 2e+05  5e+05 Te+04 5e+04 2e+05  5e+05 1e+04 5e+04 2e+05  5e+05
Total number of steps Total number of steps Total number of steps
Logistic regression, null Logistic regression, sparse Logistic regression, dense
2 2 2
2 4 ] ]+
24 3 84 s 24
4 z i g i
El 2 24 2 24
g 2 2
8 4 8 4 8 -
- T T T T T T - T T T T T T - T T T T T
le+04 5e+04 2e+05  5e+05 Te+04 5e+04 2e+05  5e+05 le+04 5e+04 2e+05  5e+05
Total number of steps Total number of steps Total number of steps
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Coverage and Cl length

HiGrad configurations
o K=1thenni=ny=r=1;
e K =2,thenni/ng =ny/n; =r€{0.75,1,1.25,1.5}

Setff = (i—1)/dfori=1,...,dand a = 5%. Use measure

20

25 D e, (67) € CLy)

i=1

49/59



Linear regression: d = 20

- 1,4,1
- 1,81 -
- 1,12,1 -
- 1,16,1 -
- 1,20, 1 -
- 2,21
-2,2,1.25 -
- 2,215 -
2,2,2
- 3,21
-3,2,1.25 -
- 3,2,15 -
- 3,22
- 2,31
-2,3,1.25 -
2,3,15 -
- 2,32
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Linear regression: d = 100

- 1,4,1
- 1,81 -
- 1,12,1 -
- 1,16,1 -
- 1,20, 1 -
- 2,21
-2,2,1.25 -
- 2,215 -
2,2,2
- 3,21
-3,2,1.25 -
- 3,2,15 -
- 3,22
- 2,31
-2,3,1.25 -
2,3,15 -
- 2,32
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A real data example: setup

From the 1994 census data based on UCI repository. Y indicates if an individual's
annual income exceeds $50,000

e 123 features
e 32,561 instances

e Randomly pick 1,000 as a test set

Use N = 10%,a = 10%, and v; = 0.557%-55. Run HiCrad for L = 500 times. Use
measure

L
1 .
coverage; = m E E 1 (Pie, € Plis,)
£y LaFly
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A real data example: histogram

300-

200-

Count

100~

00 01 02 03 04 05 0'6
Coverage probability

'
0.7

'
0.8

'
0.9

'
1.0
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Comparisons of HiGrad configurations

Configurations

Accuracy

Coverage

Cl length

12000 ¢
100 0 0A¢
1.8 PARAS
b0 ¢ 94
100 ¢ 94
Lot . 0 0

YOS
) 0.0.0.0 ¢
0.0 ¢ 0 ¢
0.0 0 0A¢
0.0 0 0A¢
0.0 ¢ 0X¢

YAgAgA gk g g
) 0 pAgAais
) 0.0 0 gA¢
) 000 7S
) 0.0.0 7S
) 0.0 0 074
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Default HiGrad parameters

HiGrad R package default values

N
K = 2,131 = 2,132 = 2,710 = N1 = N2 = j?
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Concluding Remarks
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Straightforward extensions

e Flexible tree structures
HiGrad tree can be asymmetric

e N unknown
Grow the tree assuming a lower bound on N

e Burn-in
Get a better initial point

e A criterion for stopping
Need to incorporate selective inference

e Mini-batch sizes
Evaluate (less) noisy gradient

1 m
g(ev Zl:m) == E Z; 9(97 Zz)
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Future extensions

Improving statistical properties
> Finite-sample guarantee
o Better coverage probability
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Future extensions

Improving statistical properties
> Finite-sample guarantee
o Better coverage probability

» Extend Ruppert-Polyak to high dimensions
e Number of unknown variables growing

A new template for online learning

» Adaptive step sizes and pre-conditioned SGD
e AdaGrad (Duchi et al, 2011) and Adam (Diederik & Ba, 2014)

» GCeneral convex optimization and non-convex problems
e SVM, regularized GLM, and deep learning

57/59



Take-home messages

Contrasting and sharing through hierarchical splitting I
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Take-home messages

Contrasting and sharing through hierarchical splitting I

Properties (local strong convexity)

> Online in nature with same computational cost as vanilla SGD
> A confidence interval for p in addition to an estimator
» Estimator (almost) as accurate as vanilla SGD

Easier to parallelize than vanilla SGD! I
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Thanks!

e Reference. Statistical Inference for Stochastic Approximation and Online
Learning via Hierarchical Incremental Gradient Descent,

Weijie Su and Yuancheng Zhu, coming soon

e Software. R package HiGrad, coming soon
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