
HiGrad: Statistical Inference for Stochastic
Approximation and Online Learning

Weijie Su

University of Pennsylvania

Collaborator

• Yuancheng Zhu (UPenn)

2 / 59

Learning by optimization

Sample Z1, . . . , ZN , and f(θ, z) is cost function

Learning model by minimizing

argmin
θ

1

N

N∑
n=1

f(θ, Zn)

• Maximum likelihood estimation (MLE). More generally, M-estimation

• Often no closed-form solution

• Need optimization

3 / 59

Learning by optimization

Sample Z1, . . . , ZN , and f(θ, z) is cost function

Learning model by minimizing

argmin
θ

1

N

N∑
n=1

f(θ, Zn)

• Maximum likelihood estimation (MLE). More generally, M-estimation

• Often no closed-form solution

• Need optimization

3 / 59

Gradient descent

I Start at some θ0
I Iterate

θj = θj−1 − γj
∑N
n=1∇f(θj−1, Zn)

N
,

where γj are step sizes

Dates back to Newton, Gauss, and Cauchy

4 / 59

Difficulty with gradient descent

Modern machine learning

• Data arrives in a stream

• Number of data points N is exceedingly large

Gradient descent often not feasible due to

• Essentially an offline algorithm

• Evaluating full gradient is computationally expensive

5 / 59

Difficulty with gradient descent

Modern machine learning

• Data arrives in a stream

• Number of data points N is exceedingly large

Gradient descent often not feasible due to

• Essentially an offline algorithm

• Evaluating full gradient is computationally expensive

5 / 59

Difficulty with gradient descent

Modern machine learning

• Data arrives in a stream

• Number of data points N is exceedingly large

Gradient descent often not feasible due to

• Essentially an offline algorithm

• Evaluating full gradient is computationally expensive

5 / 59

Stochastic gradient descent (SGD)

Aka incremental gradient descent
I Start at some θ0
I Iterate

θj = θj−1 − γj∇f(θj−1, Zj)

SGD resolved these challenges

• Online in nature

• One pass over data

• Optimal properties (Nemirovski & Yudin, 1983; Bertsekas, 1999; Agarwal et
al, 2012; Rakhlin et al, 2012; Hardt et al, 2015)

6 / 59

Stochastic gradient descent (SGD)

Aka incremental gradient descent
I Start at some θ0
I Iterate

θj = θj−1 − γj∇f(θj−1, Zj)

SGD resolved these challenges

• Online in nature

• One pass over data

• Optimal properties (Nemirovski & Yudin, 1983; Bertsekas, 1999; Agarwal et
al, 2012; Rakhlin et al, 2012; Hardt et al, 2015)

6 / 59

Stochastic gradient descent (SGD)

Aka incremental gradient descent
I Start at some θ0
I Iterate

θj = θj−1 − γj∇f(θj−1, Zj)

SGD resolved these challenges

• Online in nature

• One pass over data

• Optimal properties (Nemirovski & Yudin, 1983; Bertsekas, 1999; Agarwal et
al, 2012; Rakhlin et al, 2012; Hardt et al, 2015)

6 / 59

Stochastic gradient descent (SGD)

Aka incremental gradient descent
I Start at some θ0
I Iterate

θj = θj−1 − γj∇f(θj−1, Zj)

SGD resolved these challenges

• Online in nature

• One pass over data

• Optimal properties (Nemirovski & Yudin, 1983; Bertsekas, 1999; Agarwal et
al, 2012; Rakhlin et al, 2012; Hardt et al, 2015)

6 / 59

SGD in one line

7 / 59

SGD vs GD

8 / 59

SGD GD

SGD: past and now

Statistics

• Robbins & Monro (1951); Kiefer & Wolfowitz (1952); Robbins & Siegmund
(1971); Ruppert (1988); Polyak & Juditsky (1992)

Machine learning and optimization

• Nesterov & Vial (2008); Nemirovski et al (2009); Bottou (2010); Bach and
Moulines (2011); Duchi et al (2011); Diederik & Ba (2014)

Applications

• Deep learning, recommender systems, MCMC, Kalman filter, phase
retrieval, networks, and many

9 / 59

Using SGD for prediction

Averaged SGD

An estimator of θ∗ := argminEf(θ, Z) is given by averaging

θ =
1

N

N∑
j=1

θj

Recall that θj = θj−1 − γj∇f(θj−1, Zj) for j = 1, . . . , N .

Given a new instance z = (x, y) with y unknown

Interested in µx(θ)

• Linear regression: µx(θ) = x′ θ

• Logistic regression: µx(θ) = ex
′ θ

1+ex′ θ

• Generalized linear models: µx(θ) = Eθ(Y |X = x)

10 / 59

Using SGD for prediction

Averaged SGD

An estimator of θ∗ := argminEf(θ, Z) is given by averaging

θ =
1

N

N∑
j=1

θj

Recall that θj = θj−1 − γj∇f(θj−1, Zj) for j = 1, . . . , N .

Given a new instance z = (x, y) with y unknown

Interested in µx(θ)

• Linear regression: µx(θ) = x′ θ

• Logistic regression: µx(θ) = ex
′ θ

1+ex′ θ

• Generalized linear models: µx(θ) = Eθ(Y |X = x)

10 / 59

How much can we trust SGD predictions?

We would observe a different µx(θ) if

• Re-sample Z ′1, . . . , Z
′
N

• Sample with replacement N times from a finite population z1, . . . , zm

Decision-making requires uncertainty quantification

• Should I invest in Bitcoin?

• How early to leave to catch a flight?

11 / 59

How much can we trust SGD predictions?

We would observe a different µx(θ) if

• Re-sample Z ′1, . . . , Z
′
N

• Sample with replacement N times from a finite population z1, . . . , zm

Decision-making requires uncertainty quantification

• Should I invest in Bitcoin?

• How early to leave to catch a flight?

11 / 59

A real data example

Adult dataset on UCI repository1

• 123 features

• Y = 1 if an individual’s annual income exceeds $50,000

• 32,561 instances

Randomly pick 1,000 as a test set. Run SGD 500 times independently, each with
20 epochs and step sizes γj = 0.5j−0.55. Construct empirical confidence
intervals with α = 10%

1https://archive.ics.uci.edu/ml/datasets/Adult 12 / 59

https://archive.ics.uci.edu/ml/datasets/Adult

High variability of SGD predictions

0.01%

0.1%

1%

10%

100%

0% 25% 50% 75% 100%

Predicted probability

C
on

fi
d
en

ce
in

te
rv

al
le

n
gt

h

13 / 59

What is desired

Can we construct a confidence interval for µ∗x := µx(θ∗)?

Remarks

• Bootstrap is computationally infeasible

• Most existing works concern bounding generalization errors or minimizing
regrets (Shalev-Shwartz et al, 2011; Rakhlin et al, 2012)

• Chen et al (2016) proposed a batch-mean estimator of SGD covariance, and
Fang et al (2017) proposed a perturbation-based resampling procedure

14 / 59

What is desired

Can we construct a confidence interval for µ∗x := µx(θ∗)?

Remarks

• Bootstrap is computationally infeasible

• Most existing works concern bounding generalization errors or minimizing
regrets (Shalev-Shwartz et al, 2011; Rakhlin et al, 2012)

• Chen et al (2016) proposed a batch-mean estimator of SGD covariance, and
Fang et al (2017) proposed a perturbation-based resampling procedure

14 / 59

This talk: HiGrad

A new method: Hierarchical Incremental GRAdient Descent

Properties of HiGrad

I Online in nature with same computational cost as vanilla SGD
I A confidence interval for µ∗x in addition to an estimator
I Estimator (almost) as accurate as vanilla SGD

15 / 59

This talk: HiGrad

A new method: Hierarchical Incremental GRAdient Descent

Properties of HiGrad
I Online in nature with same computational cost as vanilla SGD

I A confidence interval for µ∗x in addition to an estimator
I Estimator (almost) as accurate as vanilla SGD

15 / 59

This talk: HiGrad

A new method: Hierarchical Incremental GRAdient Descent

Properties of HiGrad
I Online in nature with same computational cost as vanilla SGD
I A confidence interval for µ∗x in addition to an estimator

I Estimator (almost) as accurate as vanilla SGD

15 / 59

This talk: HiGrad

A new method: Hierarchical Incremental GRAdient Descent

Properties of HiGrad
I Online in nature with same computational cost as vanilla SGD
I A confidence interval for µ∗x in addition to an estimator
I Estimator (almost) as accurate as vanilla SGD

15 / 59

Preview of HiGrad

• θ1 = 1
3θ
∅

+ 2
3θ

1
, θ2 = 1

3θ
∅

+ 2
3θ

2

• µ1
x := µx(θ1) = 0.15, µ2

x := µx(θ2) = 0.11

• HiGrad estimator is µx =
µ1
x+µ

2
x

2 = 0.13

• The 90% HiGrad confidence interval for µ∗x is[
µx − t1,0.95

√
0.375|µ1

x − µ2
x|, µx + t1,0.95

√
0.375|µ1

x − µ2
x|
]

= [−0.025, 0.285]

16 / 59

θ
∅

θ
2

θ
1

Preview of HiGrad

• θ1 = 1
3θ
∅

+ 2
3θ

1
, θ2 = 1

3θ
∅

+ 2
3θ

2

θ1 = 1
3θ
∅

+ 2
3θ

1
, θ2 = 1

3θ
∅

+ 2
3θ

2

• µ1
x := µx(θ1) = 0.15, µ2

x := µx(θ2) = 0.11

• HiGrad estimator is µx =
µ1
x+µ

2
x

2 = 0.13

• The 90% HiGrad confidence interval for µ∗x is[
µx − t1,0.95

√
0.375|µ1

x − µ2
x|, µx + t1,0.95

√
0.375|µ1

x − µ2
x|
]

= [−0.025, 0.285]

16 / 59

θ
∅

θ
2

θ
1

Preview of HiGrad

• θ1 = 1
3θ
∅

+ 2
3θ

1
, θ2 = 1

3θ
∅

+ 2
3θ

2

θ1 = 1
3θ
∅

+ 2
3θ

1
, θ2 = 1

3θ
∅

+ 2
3θ

2

• µ1
x := µx(θ1) = 0.15, µ2

x := µx(θ2) = 0.11

• HiGrad estimator is µx =
µ1
x+µ

2
x

2 = 0.13

• The 90% HiGrad confidence interval for µ∗x is[
µx − t1,0.95

√
0.375|µ1

x − µ2
x|, µx + t1,0.95

√
0.375|µ1

x − µ2
x|
]

= [−0.025, 0.285]

16 / 59

θ
∅

θ
2

θ
1

Preview of HiGrad

• θ1 = 1
3θ
∅

+ 2
3θ

1
, θ2 = 1

3θ
∅

+ 2
3θ

2

• µ1
x := µx(θ1) = 0.15, µ2

x := µx(θ2) = 0.11

• HiGrad estimator is µx =
µ1
x+µ

2
x

2 = 0.13

• The 90% HiGrad confidence interval for µ∗x is[
µx − t1,0.95

√
0.375|µ1

x − µ2
x|, µx + t1,0.95

√
0.375|µ1

x − µ2
x|
]

= [−0.025, 0.285]

16 / 59

θ
∅

θ
2

θ
1

Preview of HiGrad

• θ1 = 1
3θ
∅

+ 2
3θ

1
, θ2 = 1

3θ
∅

+ 2
3θ

2

• µ1
x := µx(θ1) = 0.15, µ2

x := µx(θ2) = 0.11

• HiGrad estimator is µx =
µ1
x+µ

2
x

2 = 0.13

• The 90% HiGrad confidence interval for µ∗x is[
µx − t1,0.95

√
0.375|µ1

x − µ2
x|, µx + t1,0.95

√
0.375|µ1

x − µ2
x|
]

= [−0.025, 0.285]

16 / 59

θ
∅

θ
2

θ
1

Preview of HiGrad

• θ1 = 1
3θ
∅

+ 2
3θ

1
, θ2 = 1

3θ
∅

+ 2
3θ

2

• µ1
x := µx(θ1) = 0.15, µ2

x := µx(θ2) = 0.11

• HiGrad estimator is µx =
µ1
x+µ

2
x

2 = 0.13

• The 90% HiGrad confidence interval for µ∗x is[
µx − t1,0.95

√
0.375|µ1

x − µ2
x|, µx + t1,0.95

√
0.375|µ1

x − µ2
x|
]

= [−0.025, 0.285]

16 / 59

θ
∅

θ
2

θ
1

Outline

1. Deriving HiGrad

2. Constructing Confidence Intervals

3. Configuring HiGrad

4. Empirical Performance

17 / 59

Problem statement

Minimizing convex f
θ∗ = argmin

θ
f(θ) ≡ Ef(θ, Z)

Observe i.i.d. Z1, . . . , ZN and can evaluate unbiased noisy gradient g(θ;Z)

E g(θ, Z) = ∇f(θ) for all θ

To be fulfilled
I Online in nature with same computational cost as vanilla SGD
I A confidence interval for µ∗x in addition to an estimator
I Estimator (almost) as accurate as vanilla SGD

18 / 59

The idea of contrasting and sharing

• Need more than one value µx to quantify variability: contrasting

• Need to share gradient information to elongate threads: sharing

19 / 59

The idea of contrasting and sharing

• Need more than one value µx to quantify variability: contrasting

• Need to share gradient information to elongate threads: sharing

19 / 59

The HiGrad tree

• K + 1 levels

• each k-level segment is of length nk and is split into Bk+1 segments

n0 +B1n1 +B1B2n2 +B1B2B3n3 + · · ·+B1B2 · · ·BKnK = N

An example of HiGrad tree: B1 = 2, B2 = 3,K = 2

20 / 59

The HiGrad tree

• K + 1 levels

• each k-level segment is of length nk and is split into Bk+1 segments

n0 +B1n1 +B1B2n2 +B1B2B3n3 + · · ·+B1B2 · · ·BKnK = N

An example of HiGrad tree: B1 = 2, B2 = 3,K = 2
20 / 59

The HiGrad tree

• K + 1 levels

• each k-level segment is of length nk and is split into Bk+1 segments

n0 +B1n1 +B1B2n2 +B1B2B3n3 + · · ·+B1B2 · · ·BKnK = N

An example of HiGrad tree: B1 = 2, B2 = 3,K = 2
20 / 59

The HiGrad tree

• K + 1 levels

• each k-level segment is of length nk and is split into Bk+1 segments

n0 +B1n1 +B1B2n2 +B1B2B3n3 + · · ·+B1B2 · · ·BKnK = N

An example of HiGrad tree: B1 = 2, B2 = 3,K = 2
20 / 59

Iterate along HiGrad tree

Recall: noisy gradient g(θ, Z) unbiased for∇f(θ); partition {Zs} of
{Z1, . . . , ZN}; and Lk := n0 + · · ·+ nk

I Iterate along level 0 segment: θj = θj−1 − γj∇f(θj−1, Zj) for j = 1, . . . , n0,
starting from some θ0

I Iterate along each level 1 segment s = (b1) for 1 ≤ b1 ≤ B1

θsj = θsj−1 − γj+L0g(θsj−1, Z
s
j)

for j = 1, . . . , n1, starting from θn0

I Generally, for the segment s = (b1 · · · bk), iterate

θsj = θsj−1 − γj+Lk−1
g(θsj−1, Z

s
j)

for j = 1, . . . , nk, starting from θ
(b1···bk−1)
nk−1

21 / 59

Iterate along HiGrad tree

Recall: noisy gradient g(θ, Z) unbiased for∇f(θ); partition {Zs} of
{Z1, . . . , ZN}; and Lk := n0 + · · ·+ nk

I Iterate along level 0 segment: θj = θj−1 − γj∇f(θj−1, Zj) for j = 1, . . . , n0,
starting from some θ0

I Iterate along each level 1 segment s = (b1) for 1 ≤ b1 ≤ B1

θsj = θsj−1 − γj+L0g(θsj−1, Z
s
j)

for j = 1, . . . , n1, starting from θn0

I Generally, for the segment s = (b1 · · · bk), iterate

θsj = θsj−1 − γj+Lk−1
g(θsj−1, Z

s
j)

for j = 1, . . . , nk, starting from θ
(b1···bk−1)
nk−1

21 / 59

Iterate along HiGrad tree

Recall: noisy gradient g(θ, Z) unbiased for∇f(θ); partition {Zs} of
{Z1, . . . , ZN}; and Lk := n0 + · · ·+ nk

I Iterate along level 0 segment: θj = θj−1 − γj∇f(θj−1, Zj) for j = 1, . . . , n0,
starting from some θ0

I Iterate along each level 1 segment s = (b1) for 1 ≤ b1 ≤ B1

θsj = θsj−1 − γj+L0g(θsj−1, Z
s
j)

for j = 1, . . . , n1, starting from θn0

I Generally, for the segment s = (b1 · · · bk), iterate

θsj = θsj−1 − γj+Lk−1
g(θsj−1, Z

s
j)

for j = 1, . . . , nk, starting from θ
(b1···bk−1)
nk−1

21 / 59

Iterate along HiGrad tree

Recall: noisy gradient g(θ, Z) unbiased for∇f(θ); partition {Zs} of
{Z1, . . . , ZN}; and Lk := n0 + · · ·+ nk

I Iterate along level 0 segment: θj = θj−1 − γj∇f(θj−1, Zj) for j = 1, . . . , n0,
starting from some θ0

I Iterate along each level 1 segment s = (b1) for 1 ≤ b1 ≤ B1

θsj = θsj−1 − γj+L0g(θsj−1, Z
s
j)

for j = 1, . . . , n1, starting from θn0

I Generally, for the segment s = (b1 · · · bk), iterate

θsj = θsj−1 − γj+Lk−1
g(θsj−1, Z

s
j)

for j = 1, . . . , nk, starting from θ
(b1···bk−1)
nk−1

21 / 59

A second look at the HiGrad tree

An example of HiGrad tree: B1 = 2, B2 = 3,K = 2

Fulfilled

• Online in nature with same computational cost as vanilla SGD

Bonus
Easier to parallelize than vanilla SGD!

22 / 59

A second look at the HiGrad tree

An example of HiGrad tree: B1 = 2, B2 = 3,K = 2

Fulfilled

• Online in nature with same computational cost as vanilla SGD

Bonus
Easier to parallelize than vanilla SGD!

22 / 59

A second look at the HiGrad tree

An example of HiGrad tree: B1 = 2, B2 = 3,K = 2

Fulfilled

• Online in nature with same computational cost as vanilla SGD

Bonus
Easier to parallelize than vanilla SGD!

22 / 59

The HiGrad algorithm in action

Require: g(·, ·), Z1, . . . , ZN , (n0, n1, . . . , nK), (B1, . . . , BK), (γ1, . . . , γNK), θ0
θ
s

= 0 for all segments s
function NodeTreeSGD(θ, s)
θs0 = θ
k = #s
for j = 1 to nk do
θsj ← θsj−1 − γj+Lk−1

g(θsj−1, Z
s
j)

θ
s ← θ

s
+ θsj /nk

end for
if k < K then

for bk+1 = 1 to Bk+1 do
s+ ← (s, bk+1)
execute NodeTreeSGD

(
θsnk , s

+
)

end for
end if
end function
execute NodeTreeSGD(θ0, ∅)
output: θ

s
for all segments s

23 / 59

Outline

1. Deriving HiGrad

2. Constructing Confidence Intervals

3. Configuring HiGrad

4. Empirical Performance

24 / 59

Estimate µ∗x through each thread

Average over each segment s = (b1, . . . , bk)

θ
s

=
1

nk

nk∑
j=1

θsj

Given weights w0, w1, . . . , wK that sum up to 1, weighted average along thread
t = (b1, . . . , bK) is

θt =

K∑
k=0

wkθ
(b1,...,bk)

Estimator yielded by thread t

µt
x := µx(θt)

25 / 59

Estimate µ∗x through each thread

Average over each segment s = (b1, . . . , bk)

θ
s

=
1

nk

nk∑
j=1

θsj

Given weights w0, w1, . . . , wK that sum up to 1, weighted average along thread
t = (b1, . . . , bK) is

θt =

K∑
k=0

wkθ
(b1,...,bk)

Estimator yielded by thread t

µt
x := µx(θt)

25 / 59

How to construct a confidence interval based on
T := B1B2 · · ·BK many such µtx estimates?

25 / 59

Assume normality

Denote by µx the T-dimensional vector consisting of all µt
x

Normality of µx (to be proved soon)
√
N(µx − µ∗x1) converges weakly to normal distributionN (0,Σ) as N →∞

26 / 59

Convert to simple linear regression

From µx
a∼ N (µ∗x1,Σ/N) we get

Σ−
1
2µx ≈ (Σ−

1
21)µ∗x + z̃, z̃ ∼ N (0, I/N)

Simple linear regression! Least-squares estimator of µ∗x given as

(1′Σ−
1
2 Σ−

1
21)−11′Σ−

1
2 Σ−

1
2µx

= (1′Σ−11)−11′Σ−1µx

=
1

T

∑
t∈T

µt
x ≡ µx

HiGrad estimator
Just the sample mean µx

27 / 59

Convert to simple linear regression

From µx
a∼ N (µ∗x1,Σ/N) we get

Σ−
1
2µx ≈ (Σ−

1
21)µ∗x + z̃, z̃ ∼ N (0, I/N)

Simple linear regression! Least-squares estimator of µ∗x given as

(1′Σ−
1
2 Σ−

1
21)−11′Σ−

1
2 Σ−

1
2µx

= (1′Σ−11)−11′Σ−1µx

=
1

T

∑
t∈T

µt
x ≡ µx

HiGrad estimator
Just the sample mean µx

27 / 59

A t-based confidence interval

A pivot for µ∗x
µx − µ∗x

SEx

a∼ tT−1,

where the standard error is given as

SEx =

√
(µ′x − µx1′)Σ−1(µx − µx1)

T − 1
·
√
1′Σ1

T

HiGrad confidence interval of coverage 1− α[
µx − tT−1,1−α2 SEx, µx + tT−1,1−α2 SEx

]

28 / 59

A t-based confidence interval

A pivot for µ∗x
µx − µ∗x

SEx

a∼ tT−1,

where the standard error is given as

SEx =

√
(µ′x − µx1′)Σ−1(µx − µx1)

T − 1
·
√
1′Σ1

T

HiGrad confidence interval of coverage 1− α[
µx − tT−1,1−α2 SEx, µx + tT−1,1−α2 SEx

]

28 / 59

Do we know the covariance Σ?

28 / 59

An extension of Ruppert–Polyak normality

Given a thread t = (b1, . . . , bK), denote by segments sk = (b1, b2, . . . , bk)

Fact (informal)
√
n0(θ

s0 − θ∗),√n1(θ
s1 − θ∗), . . . ,√nK(θ

sK − θ∗) converge to i.i.d. centered
normal distributions

• Hessian H = ∇2f(θ∗) and V = E [g(θ∗, Z)g(θ∗, Z)′]. Ruppert (1988), Polyak
(1990), and Polyak and Juditsky (1992) prove

√
N(θN − θ∗)⇒ N (0, H−1V H−1)

• Difficult to estimate sandwich covariance H−1V H−1 (Chen et al, 2016)

• To know covariance of {µx(θt)}, really need to know H−1V H−1?

29 / 59

An extension of Ruppert–Polyak normality

Given a thread t = (b1, . . . , bK), denote by segments sk = (b1, b2, . . . , bk)

Fact (informal)
√
n0(θ

s0 − θ∗),√n1(θ
s1 − θ∗), . . . ,√nK(θ

sK − θ∗) converge to i.i.d. centered
normal distributions

• Hessian H = ∇2f(θ∗) and V = E [g(θ∗, Z)g(θ∗, Z)′]. Ruppert (1988), Polyak
(1990), and Polyak and Juditsky (1992) prove

√
N(θN − θ∗)⇒ N (0, H−1V H−1)

• Difficult to estimate sandwich covariance H−1V H−1 (Chen et al, 2016)

• To know covariance of {µx(θt)}, really need to know H−1V H−1?

29 / 59

An extension of Ruppert–Polyak normality

Given a thread t = (b1, . . . , bK), denote by segments sk = (b1, b2, . . . , bk)

Fact (informal)
√
n0(θ

s0 − θ∗),√n1(θ
s1 − θ∗), . . . ,√nK(θ

sK − θ∗) converge to i.i.d. centered
normal distributions

• Hessian H = ∇2f(θ∗) and V = E [g(θ∗, Z)g(θ∗, Z)′]. Ruppert (1988), Polyak
(1990), and Polyak and Juditsky (1992) prove

√
N(θN − θ∗)⇒ N (0, H−1V H−1)

• Difficult to estimate sandwich covariance H−1V H−1 (Chen et al, 2016)

• To know covariance of {µx(θt)}, really need to know H−1V H−1?

29 / 59

An extension of Ruppert–Polyak normality

Given a thread t = (b1, . . . , bK), denote by segments sk = (b1, b2, . . . , bk)

Fact (informal)
√
n0(θ

s0 − θ∗),√n1(θ
s1 − θ∗), . . . ,√nK(θ

sK − θ∗) converge to i.i.d. centered
normal distributions

• Hessian H = ∇2f(θ∗) and V = E [g(θ∗, Z)g(θ∗, Z)′]. Ruppert (1988), Polyak
(1990), and Polyak and Juditsky (1992) prove

√
N(θN − θ∗)⇒ N (0, H−1V H−1)

• Difficult to estimate sandwich covariance H−1V H−1 (Chen et al, 2016)

• To know covariance of {µx(θt)}, really need to know H−1V H−1?

29 / 59

Covariance determined by number of shared segments

Consider µx(θ) = T (x)′ θ and observe

• √
n0(µx(θ

s0
)− µ∗x),

√
n1(µx(θ

s1
)− µ∗x), . . . ,

√
nK(µx(θ

sK
)− µ∗x) converge

to i.i.d. centered univariate normal distributions

• µt
x − µ∗x = µx(θt)− µ∗x =

K∑
k=0

wk

(
µx(θ

sk
)− µ∗x

)

Fact (informal)
For any two threads t and t′ that agree at the first k segments and differ
henceforth, we have

Cov
(
µt
x, µ

t′

x

)
= (1 + o(1))σ2

k∑
i=0

w2
i

ni

30 / 59

Covariance determined by number of shared segments

Consider µx(θ) = T (x)′ θ and observe

• √
n0(µx(θ

s0
)− µ∗x),

√
n1(µx(θ

s1
)− µ∗x), . . . ,

√
nK(µx(θ

sK
)− µ∗x) converge

to i.i.d. centered univariate normal distributions

• µt
x − µ∗x = µx(θt)− µ∗x =

K∑
k=0

wk

(
µx(θ

sk
)− µ∗x

)

Fact (informal)
For any two threads t and t′ that agree at the first k segments and differ
henceforth, we have

Cov
(
µt
x, µ

t′

x

)
= (1 + o(1))σ2

k∑
i=0

w2
i

ni

30 / 59

Specify Σ up to a multiplicative factor

If µx(θ) = T (x)′ θ, then for any two threads t and t′ that agree only at the first k
segments,

Σt,t′ = (1 + o(1))C

k∑
i=0

ω2
iN

ni

• Do we need to know C as well?

• No! Standard error of µx invariant under multiplying Σ by a scalar

SEx =

√
(µ′x − µx1′)Σ−1(µx − µx1)

T − 1
·
√
1′Σ1

T

31 / 59

Specify Σ up to a multiplicative factor

If µx(θ) = T (x)′ θ, then for any two threads t and t′ that agree only at the first k
segments,

Σt,t′ = (1 + o(1))C

k∑
i=0

ω2
iN

ni

• Do we need to know C as well?

• No! Standard error of µx invariant under multiplying Σ by a scalar

SEx =

√
(µ′x − µx1′)Σ−1(µx − µx1)

T − 1
·
√
1′Σ1

T

31 / 59

Specify Σ up to a multiplicative factor

If µx(θ) = T (x)′ θ, then for any two threads t and t′ that agree only at the first k
segments,

Σt,t′ = (1 + o(1))C

k∑
i=0

ω2
iN

ni

• Do we need to know C as well?

• No! Standard error of µx invariant under multiplying Σ by a scalar

SEx =

√
(µ′x − µx1′)Σ−1(µx − µx1)

T − 1
·
√
1′Σ1

T

31 / 59

Some remarks

• In generalized linear models, µx often takes the form µx(θ) = η−1(T (x)′θ)
for an increasing η. Construct confidence interval for η(µx) and then invert

• For general nonlinear but smooth µx(θ) , use delta method

• Need less than Ruppert–Polyak: remains to hold if
√
N(θN − θ∗) converges

to some centered normal distribution

32 / 59

Formal statement of theoretical results

32 / 59

Assumptions

1 Local strong convexity. f(θ) ≡ Ef(θ, Z) convex, differentiable, with
Lipschitz gradients. Hessian∇2f(θ) locally Lipschitz and positive-definite at
θ∗

2 Noise regularity. V (θ) = E [g(θ, Z)g(θ, Z)′] Lipschitz and does not grow too
fast. Noisy gradient g(θ, Z) has 2 + o(1) moment locally at θ∗

33 / 59

Examples satisfying assumptions

• Linear regression: f(θ, z) = 1
2 (y − x>θ)2.

• Logistic regression: f(θ, z) = −yx>θ + log
(

1 + ex
>θ
)

.

• Penalized regression: Add a ridge penalty λ‖θ‖2.

• Huber regression: f(θ, z) = ρλ(y − x>θ), where ρλ(a) = a2/2 for |a| ≤ λ
and ρλ(a) = λ|a| − λ2/2 otherwise.

Sufficient conditions

X in generic position, and E‖X‖4+o(1) <∞ and E|Y |2+o(1)‖X‖2+o(1) <∞

34 / 59

Main theoretical results

Theorem (S. and Zhu)

Assume K and B1, . . . , BK are fixed, nk ∝ N as N →∞, and µx has a nonzero
derivative at θ∗. Taking γj � j−α for α ∈ (0.5, 1) gives

µx − µ∗x
SEx

=⇒ tT−1

Confidence intervals

lim
N→∞

P
(
µ∗x ∈

[
µx − tT−1,1−α2 SEx, µx + tT−1,1−α2 SEx

])
= 1− α

Fulfilled

• Online in nature with same computational cost as vanilla SGD

• A confidence interval for µ∗x in addition to an estimator

35 / 59

Main theoretical results

Theorem (S. and Zhu)

Assume K and B1, . . . , BK are fixed, nk ∝ N as N →∞, and µx has a nonzero
derivative at θ∗. Taking γj � j−α for α ∈ (0.5, 1) gives

µx − µ∗x
SEx

=⇒ tT−1

Confidence intervals

lim
N→∞

P
(
µ∗x ∈

[
µx − tT−1,1−α2 SEx, µx + tT−1,1−α2 SEx

])
= 1− α

Fulfilled

• Online in nature with same computational cost as vanilla SGD

• A confidence interval for µ∗x in addition to an estimator

35 / 59

Main theoretical results

Theorem (S. and Zhu)

Assume K and B1, . . . , BK are fixed, nk ∝ N as N →∞, and µx has a nonzero
derivative at θ∗. Taking γj � j−α for α ∈ (0.5, 1) gives

µx − µ∗x
SEx

=⇒ tT−1

Confidence intervals

lim
N→∞

P
(
µ∗x ∈

[
µx − tT−1,1−α2 SEx, µx + tT−1,1−α2 SEx

])
= 1− α

Fulfilled

• Online in nature with same computational cost as vanilla SGD

• A confidence interval for µ∗x in addition to an estimator

35 / 59

How accurate is the HiGrad estimator?

35 / 59

Optimal variance with optimal weights

By Cauchy–Schwarz

N Var(µx) = (1 + o(1))σ2

[
K∑
k=0

nk

k∏
i=1

Bi

][
K∑
k=0

w2
k

nk
∏k
i=1Bi

]

≥ (1 + o(1))σ2

[
K∑
k=0

√
w2
k

]2
= (1 + o(1))σ2,

with equality if

w∗k =
nk
∏k
i=1Bi
N

• Segments at an early level weighted less

• HiGrad estimator has the same asymptotic variance as vanilla SGD

• Achieves Cramér–Rao lower bound when model specified

36 / 59

Optimal variance with optimal weights

By Cauchy–Schwarz

N Var(µx) = (1 + o(1))σ2

[
K∑
k=0

nk

k∏
i=1

Bi

][
K∑
k=0

w2
k

nk
∏k
i=1Bi

]

≥ (1 + o(1))σ2

[
K∑
k=0

√
w2
k

]2
= (1 + o(1))σ2,

with equality if

w∗k =
nk
∏k
i=1Bi
N

• Segments at an early level weighted less

• HiGrad estimator has the same asymptotic variance as vanilla SGD

• Achieves Cramér–Rao lower bound when model specified

36 / 59

Optimal variance with optimal weights

By Cauchy–Schwarz

N Var(µx) = (1 + o(1))σ2

[
K∑
k=0

nk

k∏
i=1

Bi

][
K∑
k=0

w2
k

nk
∏k
i=1Bi

]

≥ (1 + o(1))σ2

[
K∑
k=0

√
w2
k

]2
= (1 + o(1))σ2,

with equality if

w∗k =
nk
∏k
i=1Bi
N

• Segments at an early level weighted less

• HiGrad estimator has the same asymptotic variance as vanilla SGD

• Achieves Cramér–Rao lower bound when model specified

36 / 59

Optimal variance with optimal weights

By Cauchy–Schwarz

N Var(µx) = (1 + o(1))σ2

[
K∑
k=0

nk

k∏
i=1

Bi

][
K∑
k=0

w2
k

nk
∏k
i=1Bi

]

≥ (1 + o(1))σ2

[
K∑
k=0

√
w2
k

]2
= (1 + o(1))σ2,

with equality if

w∗k =
nk
∏k
i=1Bi
N

• Segments at an early level weighted less

• HiGrad estimator has the same asymptotic variance as vanilla SGD

• Achieves Cramér–Rao lower bound when model specified

36 / 59

Prediction intervals for vanilla SGD

Theorem (S. and Zhu)
Run vanilla SGD on a fresh dataset of the same size, producing µSGD

x . Then,
with optimal weights,

lim
N→∞

P
(
µSGD
x ∈

[
µx −

√
2tT−1,1−α2 SEx, µx +

√
2tT−1,1−α2 SEx

])
= 1− α.

• µSGD
x can be replaced by the HiGrad estimator with the same structure

• Interpretable even under model misspecification

37 / 59

HiGrad enjoys three appreciable properties

Under certain assumptions, for example, f being locally strongly convex

Fulfilled

• Online in nature with same computational cost as vanilla SGD

• A confidence interval for µ∗x in addition to an estimator

• Estimator (almost) as accurate as vanilla SGD

38 / 59

Outline

1. Deriving HiGrad

2. Constructing Confidence Intervals

3. Configuring HiGrad

4. Empirical Performance

39 / 59

Which one?

40 / 59

Length of confidence intervals

Denote by LCI = 2tT−1,1−α2 SEx the length of HiGrad confidence interval

Proposition (S. and Zhu)

√
NELCI →

2σ
√

2tT−1,1−α2 Γ
(
T
2

)
√
T − 1 Γ

(
T−1
2

)

• The function
tT−1,1−α2 Γ

(
T
2

)
√
T − 1 Γ

(
T−1
2

) is decreasing in T ≥ 2

• The more threads, the shorter the HiGrad confidence interval on average

• More contrasting leads to shorter confidence interval

41 / 59

Length of confidence intervals

Denote by LCI = 2tT−1,1−α2 SEx the length of HiGrad confidence interval

Proposition (S. and Zhu)

√
NELCI →

2σ
√

2tT−1,1−α2 Γ
(
T
2

)
√
T − 1 Γ

(
T−1
2

)
• The function

tT−1,1−α2 Γ
(
T
2

)
√
T − 1 Γ

(
T−1
2

) is decreasing in T ≥ 2

• The more threads, the shorter the HiGrad confidence interval on average

• More contrasting leads to shorter confidence interval

41 / 59

Length of confidence intervals

Denote by LCI = 2tT−1,1−α2 SEx the length of HiGrad confidence interval

Proposition (S. and Zhu)

√
NELCI →

2σ
√

2tT−1,1−α2 Γ
(
T
2

)
√
T − 1 Γ

(
T−1
2

)
• The function

tT−1,1−α2 Γ
(
T
2

)
√
T − 1 Γ

(
T−1
2

) is decreasing in T ≥ 2

• The more threads, the shorter the HiGrad confidence interval on average

• More contrasting leads to shorter confidence interval

41 / 59

Length of confidence intervals

Denote by LCI = 2tT−1,1−α2 SEx the length of HiGrad confidence interval

Proposition (S. and Zhu)

√
NELCI →

2σ
√

2tT−1,1−α2 Γ
(
T
2

)
√
T − 1 Γ

(
T−1
2

)
• The function

tT−1,1−α2 Γ
(
T
2

)
√
T − 1 Γ

(
T−1
2

) is decreasing in T ≥ 2

• The more threads, the shorter the HiGrad confidence interval on average

• More contrasting leads to shorter confidence interval

41 / 59

Really want to set T = 1000?

42 / 59

T = 4 is sufficient

●

●

●
● ● ● ● ● ●

0

3

6

9

2 4 6 8 10
T

Le
ng

th

Plot of
tT−1,0.975Γ (T/2)√
T − 1 Γ (T/2− 0.5)

• Too many threads result in inaccurate normality (unless N is huge)

• Large T leads to much contrasting and little sharing

43 / 59

How to choose (n0, . . . , nK)?

n0 +B1n1 +B1B2n2 +B1B2B3n3 + · · ·+B1B2 · · ·BKnK = N

Length of each thread

LK := n0 + n1 + · · ·+ nK

• Sharing: want a larger LK by setting n0 > n1 > · · · > nK

• Contrasting: want n0 < n1 < · · · < nK

44 / 59

How to choose (n0, . . . , nK)?

n0 +B1n1 +B1B2n2 +B1B2B3n3 + · · ·+B1B2 · · ·BKnK = N

Length of each thread

LK := n0 + n1 + · · ·+ nK

• Sharing: want a larger LK by setting n0 > n1 > · · · > nK

• Contrasting: want n0 < n1 < · · · < nK

44 / 59

How to choose (n0, . . . , nK)?

n0 +B1n1 +B1B2n2 +B1B2B3n3 + · · ·+B1B2 · · ·BKnK = N

Length of each thread

LK := n0 + n1 + · · ·+ nK

• Sharing: want a larger LK by setting n0 > n1 > · · · > nK

• Contrasting: want n0 < n1 < · · · < nK

44 / 59

Outline

1. Deriving HiGrad

2. Constructing Confidence Intervals

3. Configuring HiGrad

4. Empirical Performance

45 / 59

General simulation setup

X generated as i.i.d.N (0, 1) and Z = (X,Y) ∈ Rd × R. Set N = 106 and use
γj = 0.5j−0.55

• Linear regression Y ∼ N (µX(θ∗), 1), where µx(θ) = x′θ

• Logistic regression Y ∼ Bernoulli(µX(θ∗)), where

µx(θ) =
ex
′θ

1 + ex′θ

Criteria

• Accuracy: ‖θ − θ∗‖2, where θ averaged over T threads

• Coverage probability and length of confidence interval

46 / 59

Accuracy

Dimension d = 50. MSE ‖θ − θ∗‖2 normalized by that of vanilla SGD

• null case where θ1 = · · · = θ50 = 0

• dense case where θ1 = · · · = θ50 = 1√
50

• sparse case where θ1 = · · · = θ5 = 1√
5
, θ6 = · · · = θ50 = 0

47 / 59

Accuracy

: : : :

1e+04 5e+04 2e+05 5e+05

1.0
0

1.1
0

1.2
0

1.3
0

Total number of steps

N
o

rm
al

iz
ed

ri
sk

Linear regression, null

1e+04 5e+04 2e+05 5e+05

1.0
0

1.1
0

1.2
0

1.3
0

Total number of steps

N
o

rm
al

iz
ed

ri
sk

Linear regression, sparse

1e+04 5e+04 2e+05 5e+05

1.0
0

1.1
0

1.2
0

1.3
0

Total number of steps

N
o

rm
al

iz
ed

ri
sk

Linear regression, dense

1e+04 5e+04 2e+05 5e+05

1.0
0

1.1
0

1.2
0

1.3
0

Total number of steps

N
o

rm
al

iz
ed

ri
sk

Logistic regression, null

1e+04 5e+04 2e+05 5e+05

1.0
0

1.1
0

1.2
0

1.3
0

Total number of steps

N
o

rm
al

iz
ed

ri
sk

Logistic regression, sparse

1e+04 5e+04 2e+05 5e+05

1.0
0

1.1
0

1.2
0

1.3
0

Total number of steps

N
o

rm
al

iz
ed

ri
sk

Logistic regression, dense

48 / 59

Coverage and CI length

HiGrad configurations

• K = 1, then n1 = n0 = r = 1;

• K = 2, then n1/n0 = n2/n1 = r ∈ {0.75, 1, 1.25, 1.5}

Set θ∗i = (i− 1)/d for i = 1, . . . , d and α = 5%. Use measure

1

20

20∑
i=1

1(µxi(θ
∗) ∈ CIxi)

49 / 59

Linear regression: d = 20

0.9348

0.9245

0.9185

0.925

0.9378

0.935

0.9318

0.924

0.9448

0.9452

0.9472

0.9425

0.8488

0.887

0.9185

0.938

0.956 1, 4, 1

1, 8, 1

1, 12, 1

1, 16, 1

1, 20, 1

2, 2, 1

2, 2, 1.25

2, 2, 1.5

2, 2, 2

3, 2, 1

3, 2, 1.25

3, 2, 1.5

3, 2, 2

2, 3, 1

2, 3, 1.25

2, 3, 1.5

2, 3, 2 0.0621

0.0618

0.0606

0.0605

0.0633

0.062

0.0614

0.061

0.0815

0.0828

0.0811

0.0801

0.0637

0.0637

0.0653

0.0683

0.0851

50 / 59

Linear regression: d = 100

0.9115

0.897

0.8992

0.894

0.917

0.9148

0.9065

0.9

0.9302

0.9358

0.9338

0.9312

0.9125

0.92

0.9308

0.9478

0.9472 1, 4, 1

1, 8, 1

1, 12, 1

1, 16, 1

1, 20, 1

2, 2, 1

2, 2, 1.25

2, 2, 1.5

2, 2, 2

3, 2, 1

3, 2, 1.25

3, 2, 1.5

3, 2, 2

2, 3, 1

2, 3, 1.25

2, 3, 1.5

2, 3, 2 0.15

0.1491

0.1466

0.1457

0.1489

0.1453

0.1428

0.1412

0.1972

0.1946

0.1927

0.1917

0.2649

0.2495

0.2312

0.2197

0.2403

51 / 59

A real data example: setup

From the 1994 census data based on UCI repository. Y indicates if an individual’s
annual income exceeds $50,000

• 123 features

• 32,561 instances

• Randomly pick 1,000 as a test set

Use N = 106, α = 10%, and γj = 0.5j−0.55. Run HiGrad for L = 500 times. Use
measure

coveragei =
1

L(L− 1)

L∑
`1

∑
`2 6=`1

1 (p̂i`1 ∈ PIi`2)

52 / 59

A real data example: histogram

0

100

200

300

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Coverage probability

C
ou

nt

53 / 59

Comparisons of HiGrad configurations

Configurations Accuracy Coverage CI length

54 / 59

Default HiGrad parameters

HiGrad R package default values

K = 2, B1 = 2, B2 = 2, n0 = n1 = n2 =
N

7

55 / 59

Concluding Remarks

55 / 59

Straightforward extensions

• Flexible tree structures
HiGrad tree can be asymmetric

• N unknown
Grow the tree assuming a lower bound on N

• Burn-in
Get a better initial point

• A criterion for stopping
Need to incorporate selective inference

• Mini-batch sizes
Evaluate (less) noisy gradient

g(θ, Z1:m) =
1

m

m∑
i=1

g(θ, Zi)

56 / 59

Future extensions

Improving statistical properties
I Finite-sample guarantee

Better coverage probability

I Extend Ruppert-Polyak to high dimensions
Number of unknown variables growing

A new template for online learning
I Adaptive step sizes and pre-conditioned SGD

AdaGrad (Duchi et al, 2011) and Adam (Diederik & Ba, 2014)

I General convex optimization and non-convex problems
SVM, regularized GLM, and deep learning

57 / 59

Future extensions

Improving statistical properties
I Finite-sample guarantee

Better coverage probability

I Extend Ruppert-Polyak to high dimensions
Number of unknown variables growing

A new template for online learning
I Adaptive step sizes and pre-conditioned SGD

AdaGrad (Duchi et al, 2011) and Adam (Diederik & Ba, 2014)

I General convex optimization and non-convex problems
SVM, regularized GLM, and deep learning

57 / 59

Future extensions

Improving statistical properties
I Finite-sample guarantee

Better coverage probability

I Extend Ruppert-Polyak to high dimensions
Number of unknown variables growing

A new template for online learning
I Adaptive step sizes and pre-conditioned SGD

AdaGrad (Duchi et al, 2011) and Adam (Diederik & Ba, 2014)

I General convex optimization and non-convex problems
SVM, regularized GLM, and deep learning

57 / 59

Future extensions

Improving statistical properties
I Finite-sample guarantee

Better coverage probability

I Extend Ruppert-Polyak to high dimensions
Number of unknown variables growing

A new template for online learning
I Adaptive step sizes and pre-conditioned SGD

AdaGrad (Duchi et al, 2011) and Adam (Diederik & Ba, 2014)

I General convex optimization and non-convex problems
SVM, regularized GLM, and deep learning

57 / 59

Take-home messages

Idea
Contrasting and sharing through hierarchical splitting

Properties (local strong convexity)
I Online in nature with same computational cost as vanilla SGD
I A confidence interval for µ∗x in addition to an estimator
I Estimator (almost) as accurate as vanilla SGD

Bonus
Easier to parallelize than vanilla SGD!

58 / 59

Take-home messages

Idea
Contrasting and sharing through hierarchical splitting

Properties (local strong convexity)
I Online in nature with same computational cost as vanilla SGD
I A confidence interval for µ∗x in addition to an estimator
I Estimator (almost) as accurate as vanilla SGD

Bonus
Easier to parallelize than vanilla SGD!

58 / 59

Take-home messages

Idea
Contrasting and sharing through hierarchical splitting

Properties (local strong convexity)
I Online in nature with same computational cost as vanilla SGD
I A confidence interval for µ∗x in addition to an estimator
I Estimator (almost) as accurate as vanilla SGD

Bonus
Easier to parallelize than vanilla SGD!

58 / 59

Thanks!

• Reference. Statistical Inference for Stochastic Approximation and Online
Learning via Hierarchical Incremental Gradient Descent,
Weijie Su and Yuancheng Zhu, coming soon

• Software. R package HiGrad, coming soon

59 / 59

	Deriving HiGrad
	Constructing Confidence Intervals
	Configuring HiGrad
	Empirical Performance

