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APPENDIX A: ROAD MAP TO THE PROOFS

In this section, we provide an overview of the proof of Theorem 2.1, pre-
senting all the key steps and ingredients. Detailed proofs are distributed in
Appendices B–D. At a high level, the proof structure has the following three
elements:

1. Characterize the Lasso solution at a fixed λ asymptotically, predict-
ing the (non-random) asymptotic values of the FDP and of the TPP
denoted by fdp∞(λ) and tpp∞(λ), respectively. These limits depend
depend on Π, δ, ε and σ.

2. Exhibit uniform convergence over λ in the sense that

sup
λmin≤λ≤λmax

|FDP(λ)− fdp∞(λ)| P−−→ 0,

and similarly for TPP(λ). A consequence is that in the limit, the
asymptotic trade-off between true and false positive rates is given by
the λ-parameterized curve (tpp∞(λ), fdp∞(λ)).

3. The trade-off curve from the last step depends on the prior Π. The
last step optimizes it by varying λ and Π.

Whereas the last two steps are new and present some technical challenges,
the first step is accomplished largely by resorting to off-the-shelf AMP the-
ory. We now present each step in turn. Throughout this section we work
under our working hypothesis and take the noise level σ to be positive.
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Step 1. First, Lemma A.1 below accurately predicts the asymptotic limits
of FDP and TPP at a fixed λ . This lemma is borrowed from [2], which
follows from Theorem 1.5 in [1] in a natural way, albeit with some effort
spent in resolving a continuity issue near the origin. Recall that ηt(·) is the
soft-thresholding operator defined as ηt(x) = sgn(x)(|x|− t)+, and Π? is the
distribution of Π conditionally on being nonzero;

Π =

{
Π?, w.p. ε,

0, w.p. 1− ε.

Denote by α0 the unique root of (1 + t2)Φ(−t)− tφ(t) = δ/2.

Lemma A.1 (Theorem 1 in [2]; see also Theorem 1.5 in [1]). The Lasso
solution with a fixed λ > 0 obeys

V (λ)

p

P−−→ 2(1− ε)Φ(−α),
T (λ)

p

P−−→ ε · P(|Π? + τW | > ατ),

where W is N (0, 1) independent of Π, and τ > 0, α > max{α0, 0} is the
unique solution to

(A.1)

τ2 = σ2 +
1

δ
E (ηατ (Π + τW )−Π)2

λ =

(
1− 1

δ
P(|Π + τW | > ατ)

)
ατ.

Note that both τ and α depend on λ.

We pause to briefly discuss how Lemma A.1 follows from Theorem 1.5
in [1]. There, it is rigorously proven that the joint distribution of (β, β̂) is,
in some sense, asymptotically the same as that of (β, ηατ (β+ τW )), where
W is a p-dimensional vector of i.i.d. standard normals independent of β,
and where the soft-thresholding operation acts in a componentwise fashion.
Roughly speaking, the Lasso estimate β̂j looks like ηατ (βj + τWj), so that
we are applying soft thresholding at level ατ rather than λ and the noise
level is τ rather than σ. With these results in place, we informally obtain

V (λ)/p = #{j : β̂j 6= 0, βj = 0}/p ≈ P(ηατ (Π + τW ) 6= 0,Π = 0)

= (1− ε) P(|τW | > ατ)

= 2(1− ε) Φ(−α).

Similarly, T (λ)/p ≈ ε P(|Π? + τW | > ατ). For details, we refer the reader
to Theorem 1 in [2].
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Step 2. Our interest is to extend this convergence result uniformly over a
range of λ’s. The proof of this step is the subject of Section B.

Lemma A.2. For any fixed 0 < λmin < λmax, the convergence of V (λ)/p
and T (λ)/p in Lemma A.1 is uniform over λ ∈ [λmin, λmax].

Hence, setting

(A.2) fd∞(λ) := 2(1− ε)Φ(−α), td∞(λ) := εP(|Π? + τW | > ατ)

we have

sup
λmin≤λ≤λmax

∣∣∣∣V (λ)

p
− fd∞(λ)

∣∣∣∣ P−−→ 0,

and

sup
λmin≤λ≤λmax

∣∣∣∣T (λ)

p
− td∞(λ)

∣∣∣∣ P−−→ 0.

To exhibit the trade-off between FDP and TPP, we can therefore focus on the
far more amenable quantities fd∞(λ) and td∞(λ) instead of V (λ) and T (λ).
Since FDP(λ) = V (λ)/(V (λ) + T (λ)) and TPP(λ) = T (λ)/|{j : βj 6= 0}|,
this gives

sup
λmin≤λ≤λmax

|FDP(λ)− fdp∞(λ)| P−−→ 0, fdp∞(λ) =
fd∞(λ)

fd∞(λ) + td∞(λ)
,

and

sup
λmin≤λ≤λmax

|TPP(λ)− tpp∞(λ)| P−−→ 0, tpp∞(λ) =
td∞(λ)

ε
,

so that fdp∞(λ) and tpp∞(λ) are the predicted FDP and TPP. (We shall
often hide the dependence on λ.)

Step 3. As remarked earlier, both tpp∞(λ) and fdp∞(λ) depend on Π, δ, ε
and σ. In Appendix C, we will see that we can parameterize the trade-
off curve (tpp∞(λ), fdp∞(λ)) by the true positive rate so that there is a
function qΠ obeying qΠ(tpp∞) = fdp∞; furthermore, this function depends
on Π and σ only through Π/σ. Therefore, realizations of the FDP-TPP pair
fall asymptotically arbitrarily close to qΠ. It remains to optimize the curve
qΠ over Π/σ. Specifically, the last step in Appendix C characterizes the
envelope q? formally given as

q?(u; δ, ε) = inf qΠ(u; δ, ε),
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where the infimum is taken over all feasible priors Π. The key ingredient in
optimizing the trade-off is given by Lemma C.1.

Taken together, these three steps sketch the basic strategy for proving
Theorem 2.1, and the remainder of the proof is finally carried out in Ap-
pendix D. In particular, we also establish the noiseless result (σ = 0) by
using a sequence of approximating problems with noise levels approaching
zero.

APPENDIX B: FOR ALL VALUES OF λ SIMULTANEOUSY

In this section we aim to prove Lemma A.2 and, for the moment, take σ >
0. Also, we shall frequently use results in [1], notably, Theorem 1.5, Lemma
3.1, Lemma 3.2, and Proposition 3.6 therein. Having said this, most of our
proofs are rather self-contained, and the strategies accessible to readers who
have not yet read [1]. We start by stating two auxiliary lemmas below, whose
proofs are deferred to Section B.1.

Lemma B.1. For any c > 0, there exists a constant rc > 0 such that for
any arbitrary r > rc,

sup
‖u‖=1

#

{
1 ≤ j ≤ p : |X>j u| >

r√
n

}
≤ cp

holds with probability tending to one.

A key ingredient in the proof of Lemma A.2 is, in a certain sense, the uni-
form continuity of the support of β̂(λ). This step is justified by the auxiliary
lemma below which demonstrates that the Lasso estimates are uniformly
continuous in `2 norm.

Lemma B.2. Fixe 0 < λmin < λmax. Then there is a constant c such for
any λ− < λ+ in [λmin, λmax],

sup
λ−≤λ≤λ+

∥∥∥β̂(λ)− β̂(λ−)
∥∥∥ ≤ c√(λ+ − λ−)p

holds with probability tending to one.

Proof of Lemma A.2. We prove the uniform convergence of V (λ)/p
and similar arguments apply to T (λ)/p. To begin with, let λmin = λ0 <
λ1 < · · · < λm = λmax be equally spaced points and set ∆ := λi+1 − λi =
(λmax − λmin)/m; the number of knots m shall be specified later. It follows
from Lemma A.1 that

(B.1) max
0≤i≤m

|V (λi)/p− fd∞(λi)|
P−−→ 0
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by a union bound. Now, according to Corollary 1.7 from [1], the solution α
to equation (A.1) is continuous in λ and, therefore, fd∞(λ) is also continuous
on [λmin, λmax] . Thus, for any constant ω > 0, the equation

(B.2) |fd∞(λ)− fd∞(λ′)| ≤ ω

holds for all λmin ≤ λ, λ′ ≤ λmax satisfying |λ − λ′| ≤ 1/m provided m is
sufficiently large. We now aim to show that if m is sufficiently large (but
fixed), then

(B.3) max
0≤i<m

sup
λi≤λ≤λi+1

|V (λ)/p− V (λi)/p| ≤ ω

holds with probability approaching one as p→∞. Since ω is arbitrary small,
combining (B.1), (B.2), and (B.3) gives uniform convergence by applying the
triangle inequality.

Let S(λ) be a short-hand for supp(β̂(λ)). Fix 0 ≤ i < m and put λ− = λi
and λ+ = λi+1. For any λ ∈ [λ−, λ+],

(B.4) |V (λ)− V (λ−)| ≤ |S(λ) \ S(λ−)|+ |S(λ−) \ S(λ)|.

Hence, it suffices to give upper bound about the sizes of S(λ) \ S(λ−) and
S(λ−) \ S(λ). We start with |S(λ) \ S(λ−)|.

The KKT optimality conditions for the Lasso solution state that there
exists a subgradient g(λ) ∈ ∂‖β̂(λ)‖1 obeying

X>(y −Xβ̂(λ)) = λg(λ)

for each λ. Note that gj(λ) = ±1 if j ∈ S(λ). As mentioned earlier, our
strategy is to establish some sort of continuity of the KKT conditions with
respect to λ. To this end, let

u =
X
(
β̂(λ)− β̂(λ−)

)
∥∥∥X (

β̂(λ)− β̂(λ−)
)∥∥∥

be a point in Rn with unit `2 norm. Then for each j ∈ S(λ)\S(λ−), we have

|X>j u| =

∣∣∣X>j X(β̂(λ)− β̂(λ−))
∣∣∣

‖X(β̂(λ)− β̂(λ−))‖
=
|λgj(λ)− λ−gj(λ−)|
‖X(β̂(λ)− β̂(λ−))‖

≥ λ− λ−|gj(λ−)|
‖X(β̂(λ)− β̂(λ−))‖

.

Now, given an arbitrary constant a > 0 to be determined later, either
|gj(λ−)| ∈ [1−a, 1) or |gj(λ−)| ∈ [0, 1−a). In the first case ((a) below) note
that we exclude |gj(λ−)| = 1 because for random designs, when j /∈ S(λ)

the equality |X>j (y −Xβ̂(λ−))| = λ− can only hold with zero probability
(see e.g. [3]). Hence, at least one of the following statements hold:
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(a) |X>j (y −Xβ̂(λ−))| = λ−|gj(λ−)| ∈ [(1− a)λ−, λ−);

(b) |X>j u| ≥
λ−(1−a)λ−

‖X(β̂(λ)−β̂(λ−))‖
> aλ−

‖X(β̂(λ)−β̂(λ−))‖
.

In the second case, since the spectral norm σmax(X) is bounded in proba-
bility (see e.g. [4]), we make use of Lemma B.2 to conclude that

aλ−

‖X(β̂(λ)− β̂(λ−))‖
≥ aλ−

σmax(X)‖β̂(λ)− β̂(λ−)‖
≥ aλ−

cσmax(X)
√

(λ+ − λ−)p
≥ c′a

√
m

n

holds for all λ− ≤ λ ≤ λ+ with probability tending to one. Above, the
constant c′ only depends on λmin, λmax, δ and Π. Consequently, we see that

sup
λ−≤λ≤λ+

∣∣S(λ) \ S(λ−)
∣∣ ≤ #

{
j : (1− a)λ− ≤ |X>j (y −Xβ̂(λ−))| < λ−

}
+ #

{
j : |X>j u| > c′a

√
m/n

}
.

Equality (3.21) of [1] guarantees the existence of a constant a such that the
event1

(B.5) #
{
j : (1− a)λ− ≤ |X>j (y −Xβ̂(λ−))| < λ−

}
≤ ωp

4

happens with probability approaching one. Since λ− = λi is always in the
interval [λmin, λmax], the constant a can be made to be independent of the
index i. For the second term, it follows from Lemma B.1 that for sufficiently
large m, the event

(B.6) #
{
j : |X>j u| > c′a

√
m/n

}
≤ ωp

4

also holds with probability approaching one. Combining (B.5) and (B.6), we
get

(B.7) sup
λ−≤λ≤λ+

∣∣S(λ) \ S(λ−)
∣∣ ≤ ωp

2

holds with probability tending to one.
Next, we bound |S(λ−) \ S(λ)|. Applying Theorem 1.5 in [1], we can find

a constant ν > 0 independent of λ− ∈ [λmin, λmax] such that

(B.8) #
{
j : 0 < |β̂j(λ−)| < ν

}
≤ ωp

4

1Apply Theorem 1.8 to carry over the results for AMP iterates to Lasso solution.
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happens with probability approaching one. Furthermore, the simple inequal-
ity

‖β̂(λ)− β̂(λ−)‖2 ≥ ν2#
{
j : j ∈ S(λ−) \ S(λ), |β̂j(λ−)| ≥ ν

}
,

together with Lemma B.2, give
(B.9)

#
{
j : j ∈ S(λ−) \ S(λ), |β̂j(λ−)| ≥ ν

}
≤ ‖β̂(λ)− β̂(λ−)‖2

ν2
≤ c2(λ+ − λ−)p

ν2

for all λ ∈ [λmin, λmax] with probability converging to one. Taking m suffi-
ciently large such that λ+ − λ− = (λmax − λmin)/m ≤ ων2/4c2 in (B.9) and
combining this with (B.8) gives that

(B.10) sup
λ−≤λ≤λ+

∣∣S(λ−) \ S(λ)
∣∣ ≤ ωp

2

holds with probability tending to one.
To conclude the proof, note that both (B.7) and (B.10) hold for a large

but fixed m. Substituting these two inequalities into (B.4) confirms (B.3) by
taking a union bound.

As far as the true discovery number T (λ) is concerned, all the arguments
seamlessly apply and we do not repeat them. This terminates the proof.

B.1. Proofs of auxiliary lemmas. In this section, we prove Lem-
mas B.1 and B.2. While the proof of the first is straightforward, the second
crucially relies on Lemma B.5, whose proof makes use of Lemmas B.3 and
B.4. Hereafter, we denote by oP(1) any random variable which tends to zero
in probability.

Proof of Lemma B.1. Since

‖u>X‖2 ≥ r2

n
#

{
1 ≤ j ≤ p : |X>j u| >

r√
n

}
,

we have

#

{
1 ≤ j ≤ p : |X>j u| >

r√
n

}
≤ n

r2
‖u>X‖2 ≤ nσmax(X)2‖u‖2

r2

= (1 + oP(1))
(1 +

√
δ)2p

r2
,

where we make use of limn/p = δ and σmax(X) = 1 + δ−1/2 + oP(1). To
complete the proof, take any rc > 0 such that (1 +

√
δ)/rc <

√
c.
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Lemma B.3. Take a sequence a1 ≥ a2 ≥ · · · ≥ ap ≥ 0 with at least one
strict inequality, and suppose that

p
∑p

i=1 a
2
i

(
∑p

i=1 ai)
2 ≥M

for some M > 1. Then for any 1 ≤ s ≤ p,∑s
i=1 a

2
i∑p

i=1 a
2
i

≥ 1− p3

Ms3
.

Proof of Lemma B.3. By the monotonicity of a,∑s
i=1 a

2
i

s
≥
∑p

i=1 a
2
i

p
,

which implies

(B.11)
p
∑s

i=1 a
2
i

(
∑s

i=1 ai)
2 ≥

s
∑p

i=1 a
2
i

(
∑p

i=1 ai)
2 ≥

sM

p
.

Similarly,

(B.12)

p∑
i=s+1

a2
i ≤ (p− s)

(∑s
i=1 ai
s

)2

and it follows from (B.11) and (B.12) that∑s
i=1 a

2
i∑p

i=1 a
2
i

≥
∑s

i=1 a
2
i∑s

i=1 a
2
i + (p− s)

(∑s
i=1 ai
s

)2 ≥
sM
p2

sM
p2

+ p−s
s2

≥ 1− p3

Ms3
.

Lemma B.4. Assume n/p→ 1, i.e. δ = 1. Suppose s obeys s/p→ 0.01.
Then with probability tending to one, the smallest singular value obeys

min
|S|=s

σmin(XS) ≥ 1

2
,

where the minimization is over all subsets of {1, . . . , p} of cardinality s.

Proof of Lemma B.4. For a fixed S, we have

P
(
σmin(XS) < 1−

√
s/n− t

)
≤ e−nt

2/2

for all t ≥ 0, please see [4]. The claim follows from plugging t = 0.399 and
a union bound over

(
p
s

)
≤ exp(pH(s/p)) subsets, where H(q) = −q log q −

(1− q) log(1− q). We omit the details.
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The next lemma bounds the Lasso solution in `2 norm uniformly over λ.
We use some ideas from the proof of Lemma 3.2 in [1].

Lemma B.5. Given any positive constants λmin < λmax, there exists a
constant C such that

P

(
sup

λmin≤λ≤λmax

‖β̂(λ)‖ ≤ C√p

)
→ 1.

Proof of Lemma B.5. For simplicity, we omit the dependency of β̂ on
λ when clear from context. We first consider the case where δ < 1. Write
β̂ = P1(β̂) + P2(β̂), where P1(β̂) is the projection of β̂ onto the null space
of X and P2(β̂) is the projection of β̂ onto the row space of X. By the
rotational invariance of i.i.d. Gaussian vectors, the null space of X is a ran-
dom subspace of dimension p−n = (1−δ+o(1))p with uniform orientation.
Since P1(β̂) belongs to the null space, Kashin’s Theorem (see Theorem F.1
in [1]) gives that with probability at least 1− 2−p,

(B.13)

‖β̂‖2 = ‖P1(β̂)‖2 + ‖P2(β̂)‖2

≤ c1
‖P1(β̂)‖21

p
+ ‖P2(β̂)‖2

≤ 2c1
‖β̂‖21 + ‖P2(β̂)‖21

p
+ ‖P2(β̂)‖2

≤ 2c1‖β̂‖21
p

+ (1 + 2c1)‖P2(β̂)‖2

for some constant c1 depending only on δ; the first step uses Kashin’s the-
orem, the second the triangle inequality, and the third Cauchy-Schwarz in-
equality. The smallest nonzero singular value of the Wishart matrix X>X
is concentrated at (1/

√
δ− 1)2 with probability tending to one (see e.g. [4]).

In addition, since P2(β̂) belongs to the row space of X, we have

‖P2(β̂)‖2 ≤ c2‖XP2(β̂)‖2

with probability approaching one. Above, c2 can be chosen to be (1/
√
δ −
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1)−2 + o(1). Set c3 = c2(1 + 2c1). Continuing (B.13) yields

‖β̂‖2 ≤ 2c1‖β̂‖21
p

+ c2(1 + 2c1)‖XP2(β̂)‖2

=
2c1‖β̂‖21

p
+ c3‖Xβ̂‖2

≤ 2c1‖β̂‖21
p

+ 2c3‖y −Xβ̂‖2 + 2c3‖y‖2

≤
2c1

(
1
2‖y −Xβ̂‖

2 + λ‖β̂‖1
)2

λ2p
+ 4c3

(
1

2
‖y −Xβ̂‖2 + λ‖β̂‖1

)
+ 2c3‖y‖2

≤ c1‖y‖4

2λ2p
+ 4c3‖y‖2,

where in the last inequality we use the fact 1
2‖y −Xβ̂‖

2 + λ‖β̂‖1 ≤ 1
2‖y‖

2.
Thus, it suffices to bound ‖y‖2. The largest singular value of X>X is
bounded above by (1/

√
δ + 1)2 + oP(1). Therefore,

‖y‖2 = ‖Xβ + z‖2 ≤ 2‖Xβ‖2 + 2‖z‖2 ≤ c4‖β‖2 + 2‖z‖2.

Since both βi and zi have bounded second moments, the law of large numbers
claims that there exists a constant c5 such that c4‖β‖2 + 2‖z‖2 ≤ c5p with
probability approaching one. Combining all the inequalities above gives

sup
λmin≤λ≤λmax

‖β̂(λ)‖2 ≤ c1c
2
5p

2λ2
+ 2c3c5p ≤

(
c1c

2
5

2λ2
min

+ 2c3c5

)
p

with probability converging to one.
In the case where δ > 1, the null space ofX reduces to 0, hence P1(β̂) = 0.

Therefore, this reduces to a special case of the above argument.
Now, we turn to work on the case where δ = 1. We start with

‖Xβ̂‖2 ≤ 2‖y‖2 + 2‖y −Xβ̂‖2

and
1

2
‖y −Xβ̂‖2 + λ‖β̂‖1 ≤

1

2
‖y‖2.

These two inequalities give that simultaneously over all λ,

‖Xβ̂(λ)‖2 ≤ 4‖y‖2 ≤ 4c5p(B.14a)

‖β̂(λ)‖1 ≤
1

2λmin
‖y‖2 ≤ c5p

2λmin
(B.14b)
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with probability converging to one. Let M be any constant larger than 1.7×
107. If p‖β̂‖2/‖β̂‖21 < M , by (B.14b), we get

(B.15) ‖β̂‖ ≤
√
Mc5

2λmin

√
p.

Otherwise, denoting by T the set of indices 1 ≤ i ≤ p that correspond to
the s := dp/100e largest |β̂|i, from Lemma B.3 we have

(B.16)
‖β̂T ‖2

‖β̂‖2
≥ 1− p3

Ms3
≥ 1− 106

M
.

To proceed, note that

‖Xβ̂‖ = ‖XT β̂T +XT β̂T ‖

≥ ‖XT β̂T ‖ − ‖XT β̂T ‖

≥ ‖XT β̂T ‖ − σmax(X)‖β̂T ‖.

By Lemma B.4, we get ‖XT β̂T ‖ ≥ 1
2‖βT ‖, and it is also clear that σmax(X) =

2 + oP(1). Thus, by (B.16) we obtain

‖Xβ̂‖ ≥ ‖XT β̂T ‖ − σmax(X)‖β̂T ‖ ≥
1

2
‖β̂T ‖ − (2 + oP(1))‖β̂T ‖

≥ 1

2

√
1− 106

M
‖β̂‖ − (2 + oP(1))

√
106

M
‖β̂‖

= (c+ oP(1))‖β̂‖,

where c = 1
2

√
1− 106/M − 2

√
106/M > 0. Hence, owing to (B.14a),

(B.17) ‖β̂‖ ≤
(2 + oP(1))

√
c5

c

√
p

In summary, with probability tending to one, in either case, namely, (B.15)
or (B.17),

‖β̂‖ ≤ C√p

for come constant C. This holds uniformly for all λ ∈ [λmin, λmax], and thus
completes the proof.

Now, we conclude this section by proving our main lemma.
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Proof of Lemma B.2. The proof extensively applies Lemma 3.12 in [1]
and Lemma B.5. Let x+ r = β̂(λ) and x = β̂(λ−) be the notations in the
statement of Lemma 3.1 in [1]. Among the fives assumptions needed in that
lemma, it suffices to verify the first, third and fourth. Lemma B.5 asserts
that

sup
λ−≤λ≤λ+

‖r(λ)‖ = sup
λ−≤λ≤λ+

‖β̂(λ)− β̂(λ−)‖ ≤ 2A
√
p

with probability approaching one. This fulfills the first assumption by taking
c1 = 2A. Next, let g(λ−) ∈ ∂‖β̂(λ−)‖1 obey

X>(y −Xβ̂(λ−)) = λ−g(λ−).

Hence,∥∥∥−X>(y −Xβ̂(λ−)) + λg(λ−)
∥∥∥ = (λ− λ−)‖g(λ−)‖ ≤ (λ+ − λ−)

√
p

which certifies the third assumption. To verify the fourth assumption, taking
t → ∞ in Proposition 3.6 of [1] ensures the existence of constants c2, c3

and c4 such that, with probability tending to one, σmin(XT∪T ′) ≥ c4 for
T = {j : |gj(λ−)| ≥ 1 − c2} and arbitrary T ′ ⊂ {1, . . . , p} with |T ′| ≤ c3p.
Further, these constants can be independent of λ− since λ− ∈ [λmin, λmax]
belongs to a compact interval. Therefore, this lemma concludes that, with
probability approaching one,

sup
λ−≤λ≤λ+

‖β̂(λ)− β̂(λ−)‖ ≤ sup
λ−≤λ≤λ+

(√
λ− λ− +

λ− λ−

λ

)
ξ
√
p

≤
(√

λ+ − λ− +
λ+ − λ−

λmin

)
ξ
√
p

= O
(√

(λ+ − λ−)p
)
.

This finishes the proof.

APPENDIX C: OPTIMIZING THE TRADE-OFF

In this section, we still work under our working hypothesis and σ > 0.
Fixing δ and ε, we aim to show that no pairs below the boundary curve can
be realized. Owing to the uniform convergence established in Appendix B, it
is sufficient to study the range of (tpp∞(λ), fdp∞(λ)) introduced in Appendix
A by varying Π? and λ. To this end, we introduce a useful trick based on
the following lemma.

2The conclusion of this lemma, ‖r‖ ≤ √pξ(ε, c1, . . . , c5) in our notation, can be effort-
lessly strengthened to ‖r‖ ≤ (

√
ε+ ε/λ)ξ(c1, . . . , c5)

√
p.
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Lemma C.1. For any fixed α > 0, define a function y = f(x) in the
parametric form:

x(t) = P(|t+W | > α)

y(t) = E (ηα(t+W )− t)2

for t ≥ 0, where W is a standard normal. Then f is strictly concave.

We use this to simplify the problem of detecting feasible pairs (tpp∞, fdp∞).
Denote by π? := Π?/τ . Then (A.1) implies

(C.1)
(1− ε)E ηα(W )2 + εE(ηα(π? +W )− π?)2 < δ,

(1− ε)P(|W | > α) + εP(|π? +W | > α) < min{δ, 1}.

We emphasize that (C.1) is not only necessary, but also sufficient in the
following sense: given 0 < δ1 < δ, 0 < δ2 < min{δ, 1} and π?, we can solve
for τ by setting

(1− ε)E ηα(W )2 + εE(ηα(π? +W )− π?)2 = δ1

and making use of the first line of (A.1), which can be alternatively written
as

τ2 = σ2 +
τ2

δ

[
(1− ε)E ηα(W )2 + εE(ηα(π? +W )− π?)2

]
.

(Π? = τπ? is also determined, so does Π),3 and along with

(1− ε)P(|W | > α) + εP(|π? +W | > α) = δ2,

λ is also uniquely determined.
Since (C.1) is invariant if π? is replaced by |π?|, we assume π? ≥ 0 without

loss of generality. As a function of t, P(|t + W | > α) attains the minimum
P(|W | > α) = 2Φ(−α) at t = 0, and the supremum equal to one at t = ∞.
Hence, there must exist ε′ ∈ (0, 1) obeying

(C.2) P(|π? +W | > α) = (1− ε′)P(|W | > α) + ε′.

As a consequence, the predicted TPP and FDP can be alternatively ex-
pressed as

(C.3) tpp∞ = 2(1− ε′)Φ(−α) + ε′, fdp∞ =
2(1− ε)Φ(−α)

2(1− εε′)Φ(−α) + εε′
.

3Not every pair (δ1, δ2) ∈ (0, δ) × (0,min{δ, 1}) is feasible below the Donoho-Tanner
phase transition. Nevertheless, this does not affect our discussion.
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Compared to the original formulation, this expression is preferred since it
only involves scalars.

Now, we seek equations that govern ε′ and α, given δ and ε. Since both
E(ηα(t + W ) − t)2 and P(|t + W | > α) are monotonically increasing with
respect to t ≥ 0, there exists a function f obeying

E(ηα(t+W )− t)2 = f (P(|t+W | > α)) .

Lemma C.1 states that f is concave. Then

E(ηα(π? +W )− π?)2 = f (P(|π? +W | > α)

and (C.2) allows us to view the argument of f in the right-hand side as an
average of a random variable taking value P(|W | > α) with probability 1−ε′
and value one with probability ε′. Therefore, Jensen’s inequality states that

E(ηα(π?+W )−π?)2 ≥ (1−ε′)f (P(|W | > α))+ε′f(1) = (1−ε′)E ηα(W )2+ε′(α2+1).

Combining this with (C.1) gives

(1− εε′)E ηα(W )2 + εε′(α2 + 1) < δ,(C.4a)

(1− εε′)P(|W | > α) + εε′ < min{δ, 1}.(C.4b)

Similar to (C.1), (C.4) is also sufficient in the same sense, and (C.4b) is
automatically satisfied if δ > 1.

The remaining part of this section studies the range of (tpp∞, fdp∞) given
by (C.3) under the constraints (C.4). Before delving into the details, we
remark that this reduction of π? to a two-point prior is realized by setting
π? =∞ (equivalently Π? =∞) with probability ε′ and otherwise +0, where
+0 is considered to be nonzero. Though this prior is not valid since the
working hypothesis requires a finite second moment, it can nevertheless be
approximated by a sequence of instances, please see the example given in
Section 2.

The lemma below recognizes that for certain (δ, ε) pairs, the TPP is
asymptotically bounded above away from 1.

Lemma C.2. Put

u?(δ, ε) :=

{
1− (1−δ)(ε−ε?)

ε(1−ε?) , δ < 1 and ε > ε?(δ),

1, otherwise.

Then
tpp∞ < u?(δ, ε).

Moreover, tpp∞ can be arbitrarily close to u?.
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This lemma directly implies that above the Donoho-Tanner phase transi-
tion (i.e. δ < 1 and ε > ε?(δ)), there is a fundamental limit on the TPP for
arbitrarily strong signals. Consider

(C.5) 2(1− ε)
[
(1 + t2)Φ(−t)− tφ(t)

]
+ ε(1 + t2) = δ.

For δ < 1, ε? is the only positive constant in (0, 1) such that (C.5) with
ε = ε? has a unique positive root. Alternatively, the function ε? = ε?(δ) is
implicitly given in the following parametric form:

δ =
2φ(t)

2φ(t) + t(2Φ(t)− 1)

ε? =
2φ(t)− 2tΦ(−t)

2φ(t) + t(2Φ(t)− 1)

for t > 0, from which we see that ε? < δ < 1. Take the sparsity level k such
as ε?p < k < δp = n, from which we have u? < 1. As a result, the Lasso
is unable to select all the k true signals even when the signal strength is
arbitrarily high. This is happening even though the Lasso has the chance to
select up to n > k variables.

Any u between 0 and u? (non-inclusive) can be realized as tpp∞. Recall
that we denote by t?(u) the unique root in (α0,∞) (α0 is the root of (1 +
t2)Φ(−t)− tφ(t) = δ/2) to the equation

(C.6)
2(1− ε)

[
(1 + t2)Φ(−t)− tφ(t)

]
+ ε(1 + t2)− δ

ε [(1 + t2)(1− 2Φ(−t)) + 2tφ(t)]
=

1− u
1− 2Φ(−t)

.

For a proof of this fact, we refer to Lemma C.4. Last, recall that

q?(u; δ, ε) =
2(1− ε)Φ(−t?(u))

2(1− ε)Φ(−t?(u)) + εu
.

We can now state the fundamental trade-off between fdp∞ and tpp∞.

Lemma C.3. If tpp∞ ≥ u for u ∈ (0, u?), then

fdp∞ > q?(u).

In addition, fdp∞ can be arbitrarily close to q?(u).

C.1. Proofs of Lemmas C.1, C.2 and C.3.
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Proof of Lemma C.1. First of all, f is well-defined since both x(t) and
y(t) are strictly increasing functions of t. Note that

dx

dt
= φ(α− t)− φ(−α− t), dy

dt
= 2t [Φ(α− t)− Φ(−α− t)] .

Applying the chain rule gives

f ′(t) =
dy

dt

/dx

dt
=

2t [Φ(α− t)− Φ(−α− t)]
φ(α− t)− φ(−α− t)

=
2t
∫ α−t
−α−t e−

u2

2 du

e−
(α−t)2

2 − e−
(−α−t)2

2

=
2t
∫ α
−α e−

(u−t)2
2 du

e−
α2+t2−2αt

2 − e−
α2+t2+2αt

2

=
2te

α2

2

∫ α
−α e−

u2

2 etudu

eαt − e−αt
=

2e
α2

2

∫ α
0 e−

u2

2 (etu + e−tu)du∫ α
0 etu + e−tudu

.

Since x(t) is strictly increasing in t, we see that f ′′(t) ≤ 0 is equivalent to
saying that the function

g(t) :=

∫ α
0 e−

u2

2 (etu + e−tu)du∫ α
0 etu + e−tudu

≡
∫ α

0 e−
u2

2 cosh(tu)du∫ α
0 cosh(tu)du

is decreasing in t. Hence, it suffices to show that

g′(t) =

∫ α
0 e−

u2

2 u sinh(tu)du
∫ α

0 cosh(tv)dv −
∫ α

0 e−
u2

2 cosh(tu)du
∫ α

0 v sinh(tv)dv(∫ α
0 cosh(tv)dv

)2 ≤ 0.

Observe that the numerator is equal to∫ α

0

∫ α

0
e−

u2

2 u sinh(tu) cosh(tv)dudv −
∫ α

0

∫ α

0
e−

u2

2 v cosh(tu) sinh(tv)dudv

=

∫ α

0

∫ α

0
e−

u2

2 (u sinh(tu) cosh(tv)− v cosh(tu) sinh(tv)) dudv

u↔v
=

∫ α

0

∫ α

0
e−

v2

2 (v sinh(tv) cosh(tu)− u cosh(tv) sinh(tu)) dvdu

=
1

2

∫ α

0

∫ α

0
(e−

u2

2 − e−
v2

2 ) (u sinh(tu) cosh(tv)− v cosh(tu) sinh(tv)) dudv.

Then it is sufficient to show that

(e−
u2

2 − e−
v2

2 ) (u sinh(tu) cosh(tv)− v cosh(tu) sinh(tv)) ≤ 0
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for all u, v, t ≥ 0. To see this, suppose u ≥ v without loss of generality so

that e−
u2

2 − e−
v2

2 ≤ 0 and

u sinh(tu) cosh(tv)− v cosh(tu) sinh(tv) ≥ v(sinh(tu) cosh(tv)− cosh(tu) sinh(tv))

= v sinh(tu− tv) ≥ 0.

This analysis further reveals that f ′′(t) < 0 for t > 0. Hence, f is strictly
concave.

To prove the other two lemmas, we collect some useful facts about (C.5).
This equation has (a) one positive root for δ ≥ 1 or δ < 1, ε = ε?, (b)
two positive roots for δ < 1 and ε < ε?, and (c) no positive root if δ <
1 and ε > ε?. In the case of (a) and (b), call t(ε, δ) the positive root
of (C.5) (choose the larger one if there are two). Then t(ε, δ) is a de-
creasing function of ε. In particular, t(ε, δ) → ∞ as ε → 0. In addition,
2(1− ε)

[
(1 + t2)Φ(−t)− tφ(t)

]
+ ε(1 + t2) > δ if t > t(ε, δ).

Lemma C.4. For any 0 < u < u?, (C.6) has a unique root, denoted by
t?(u), in (α0,∞). In addition, t?(u) strictly decreases as u increases, and it
further obeys 0 < (1− u)/(1− 2Φ(−t?(u))) < 1.

Lemma C.5. As a function of u,

q?(u) =
2(1− ε)Φ(−t?(u))

2(1− ε)Φ(−t?(u)) + εu

is strictly increasing on (0, u?).

Proof of Lemma C.2. We first consider the regime: δ < 1, ε > ε?. By
(C.3), it is sufficient to show that tpp∞ = 2(1 − ε′)Φ(−α) + ε′ < u? under
the constraints (C.4). From (C.4b) it follows that

Φ(−α) =
1

2
P(|W | > α) <

δ − εε′

2(1− εε′)
,

which can be rearranged as

2(1− ε′)Φ(−α) + ε′ <
(1− ε′)(δ − εε′)

1− εε′
+ ε′.

The right-hand side is an increasing function of ε′ because its derivative is
equal to (1 − ε)(1 − δ)/(1 − εε′)2 and is positive. Since the range of ε′ is
(0, ε?/ε), we get

2(1− ε′)Φ(−α) + ε′ <
(1− ε?/ε)(δ − ε · ε?/ε)

1− ε · ε?/ε
+ ε?/ε = u?.
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This bound u? can be arbitrarily approached: let ε′ = ε?/ε in the example
given in Section 2.5; then set λ =

√
M and take M →∞.

We turn our attention to the easier case where δ ≥ 1, or δ < 1 and ε ≤ ε?.
By definition, the upper limit u? = 1 trivially holds. It remains to argue that
tpp∞ can be arbitrarily close to 1. To see this, set Π? = M almost surely,
and take the same limits as before: then tpp∞ → 1.

Proof of Lemma C.3. We begin by first considering the boundary case:

(C.7) tpp∞ = u.

In view of (C.3), we can write

fdp∞ =
2(1− ε)Φ(−α)

2(1− ε)Φ(−α) + εtpp∞
=

2(1− ε)Φ(−α)

2(1− ε)Φ(−α) + εu
.

Therefore, a lower bound on fdp∞ is equivalent to maximizing α under the
constraints (C.4) and (C.7).

Recall E ηα(W )2 = 2(1+α2)Φ(−α)−2αφ(α). Then from (C.7) and (C.4a)
we obtain a sandwiching expression for 1− ε′:

(1− ε)
[
2(1 + α2)Φ(−α)− 2αφ(α)

]
+ ε(1 + α2)− δ

ε [(1 + α2)(1− 2Φ(−α)) + 2αφ(α)]
< 1−ε′ = 1− u

1− 2Φ(−α)
,

which implies

(1− ε)
[
2(1 + α2)Φ(−α)− 2αφ(α)

]
+ ε(1 + α2)− δ

ε [(1 + α2)(1− 2Φ(−α)) + 2αφ(α)]
− 1− u

1− 2Φ(−α)
< 0.

The left-hand side of this display tends to 1 − (1 − u) = u > 0 as α → ∞,
and takes on the value 0 if α = t?(u). Hence, by the uniqueness of t?(u)
provided by Lemma C.4, we get α < t?(u). In conclusion,

(C.8) fdp∞ =
2(1− ε)Φ(−α)

2(1− ε)Φ(−α) + εu
>

2(1− ε)Φ(−t?(u))

2(1− ε)Φ(−t?(u)) + εu
= q?(u).

It is easy to see that fdp∞ can be arbitrarily close to q?(u).
To finish the proof, we proceed to consider the general case tpp∞ = u′ > u.

The previous discussion clearly remains valid, and hence (C.8) holds if u is
replaced by u′; that is, we have

fdp∞ > q?(u′).

By Lemma C.5, it follows from the monotonicity of q?(·) that q?(u′) > q?(u).
Hence, fdp∞ > q?(u), as desired.
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C.2. Proofs of auxiliary lemmas.

Proof of Lemma C.4. Set

ζ := 1−
2(1− ε)

[
(1 + t2)Φ(−t)− tφ(t)

]
+ ε(1 + t2)− δ

ε [(1 + t2)(1− 2Φ(−t)) + 2tφ(t)]

or, equivalently,

(C.9) 2(1− εζ)
[
(1 + t2)Φ(−t)− tφ(t)

]
+ εζ(1 + t2) = δ.

As in Section C.1, we abuse notation a little and let t(ζ) = t(εζ, δ) denote
the (larger) positive root of (C.9). Then the discussion about (C.5) in Sec-
tion C.1 shows that t(ζ) decreases as ζ increases. Note that in the case where
δ < 1 and ε > ε?(δ), the range of ζ in (C.9) is assumed to be (0, ε?/ε), since
otherwise (C.9) does not have a positive root (by convention, set ε?(δ) = 1
if δ > 1).

Note that (C.6) is equivalent to

(C.10) u = 1−
2(1− ε)

[
(1 + t2)Φ(−t)− tφ(t)

]
+ ε(1 + t2)− δ

ε [(1 + t2)(1− 2Φ(−t)) + 2tφ(t)] /(1− 2Φ(−t))
.

Define

h(ζ) = 1−
2(1− ε)

[
(1 + t(ζ)2)Φ(−t(ζ))− t(ζ)φ(t(ζ))

]
+ ε(1 + t(ζ)2)− δ

ε [(1 + t(ζ)2)(1− 2Φ(−t(ζ))) + 2t(ζ)φ(t(ζ))] /(1− 2Φ(−t(ζ)))
.

In view of (C.9) and (C.10), the proof of this lemma would be completed
once we show the existence of ζ such that h(ζ) = u. Now we prove this fact.

On the one hand, as ζ ↘ 0, we see t(ζ)↗∞. This leads to

h(ζ)→ 0.

On the other hand, if ζ ↗ min{1, ε?/ε} , then t(ζ) converges to t?(u?) > α0,
which satisfies

2(1−min{ε, ε?})
[
(1 + t?2)Φ(−t?)− t?φ(t?)

]
+ min{ε, ε?}(1 + t?2) = δ.

Consequently, we get
h(ζ)→ u?.

Therefore, by the continuity of h(ζ), for any u ∈ (0, u?) we can find 0 < ε′ <
min{1, ε?/ε} such that h(ε′) = u. Put t?(u) = t(ε′). We have

1− u
1− 2Φ(−t?(u))

= 1− ε′ < 1.
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Last, to prove the uniqueness of t?(u) and its monotonically decreasing
dependence on u, it suffices to ensure that (a) t(ζ) is a decreasing function of
ζ, and (b) h(ζ) is an increasing function of ζ. As seen above, (a) is true, and
(b) is also true as can be seen from writing h as h(ζ) = 2(1−ζ)Φ(−t(ζ))+ζ,
which is an increasing function of ζ.

Proof of Lemma C.5. Write

q?(u) =
2(1− ε)

2(1− ε) + εu/Φ(−t?(u))
.

This suggests that the lemma amounts to saying that u/Φ(−t?(u)) is a
decreasing function of u. From (C.10), we see that this function is equal to

1

Φ(−t?(u))
−

(1− 2Φ(−t?(u)))
{

2(1− ε)
[
(1 + (t?(u))2)Φ(−t?(u))− t?(u)φ(t?(u))

]
+ ε(1 + (t?(u))2)− δ

}
εΦ(−t?(u)) [(1 + (t?(u))2)(1− 2Φ(−t?(u))) + 2t?(u)φ(t?(u))]

.

With the proviso that t?(u) is decreasing in u, it suffices to show that

1

Φ(−t)
−

(1− 2Φ(−t))
{

2(1− ε)
[
(1 + t2)Φ(−t)− tφ(t)

]
+ ε(1 + t2)− δ

}
εΦ(−t) [(1 + t2)(1− 2Φ(−t)) + 2tφ(t)]

=
δ

ε
· 1− 2Φ(−t)
Φ(−t) [(1 + t2)(1− 2Φ(−t)) + 2tφ(t)]︸ ︷︷ ︸

f1(t)

−2

ε
·
(1− 2Φ(−t))

[
(1 + t2)Φ(−t)− tφ(t)

]
Φ(−t) [(1 + t2)(1− 2Φ(−t)) + 2tφ(t)]︸ ︷︷ ︸

f2(t)

+2

is an increasing function of t > 0. Simple calculations show that f1 is in-
creasing while f2 is decreasing over (0,∞). This finishes the proof.

APPENDIX D: PROOF OF THEOREM 2.1

With the results given in Appendices B and C in place, we are ready
to characterize the optimal false/true positive rate trade-off. Up until now,
the results hold for bounded λ, and we thus need to extend the results to
arbitrarily large λ. It is intuitively easy to conceive that the support size of
β̂ will be small with a very large λ, resulting in low power. The following
lemma, whose proof constitutes the subject of Section D.1, formalizes this
point. In this section, σ ≥ 0 may take on the value zero. Also, we work with
λ0 = 0.01 and η = 0.001 to carry fewer mathematical symbols; any other
numerical values would clearly work.
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Lemma D.1. For any c > 0, there exists λ′ such that

sup
λ>λ′

#{j : β̂j(λ) 6= 0}
p

≤ c

holds with probability converging to one.

Assuming the conclusion of Lemma D.1, we prove claim (b) in Theorem
1 (noisy case), and then (a) (noiseless case). (c) is a simple consequence of
(a) and (b), and (d) follows from Appendix C.

Case σ > 0. Let c be sufficiently small such that q?(c/ε) < 0.001. Pick a
large enough λ′ such that Lemma D.1 holds. Then with probability tending
to one, for all λ > λ′, we have

TPP(λ) =
T (λ)

k ∨ 1
≤ (1 + oP(1))

#{j : β̂j(λ) 6= 0}
εp

≤ (1 + oP(1))
c

ε
.

On this event, we get

q?(TPP(λ))− 0.001 ≤ q?(c/ε+ oP(1))− 0.001 ≤ 0,

which implies that

(D.1)
⋂
λ>λ′

{
FDP(λ) ≥ q? (TPP(λ))− 0.001

}
holds with probability approaching one.

Now we turn to work on the range [0.01, λ′]. By Lemma A.2, we get that
V (λ)/p (resp. T (λ)/p) converges in probability to fd∞(λ) (resp. td∞(λ))
uniformly over [0.01, λ′]. As a consequence,

(D.2) FDP(λ) =
V (λ)

max {V (λ) + T (λ), 1}
P−−→ fd∞(λ)

fd∞(λ) + td∞(λ)
= fdp∞(λ)

uniformly over λ ∈ [0.01, λ′]. The same reasoning also justifies that

(D.3) TPP(λ)
P−−→ tpp∞(λ)

uniformly over λ ∈ [0.01, λ′]. From Lemma C.3 it follows that

fdp∞(λ) > q?(tpp∞(λ)).

Hence, by the continuity of q?(·), combining (D.2) with (D.3) gives that

FDP(λ) ≥ q?(TPP(λ))− 0.001

holds simultaneously for all λ ∈ [0.01, λ′] with probability tending to one.
This concludes the proof.
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Case σ = 0. Fix λ and let σ > 0 be sufficiently small. We first prove that
Lemma A.1 still holds for σ = 0 if α and τ are taken to be the limiting
solution to (A.1) with σ → 0, denoted by α′ and τ ′. Introduce β̂σ to be the
Lasso solution with data yσ := Xβ + z = y + z, where z ∼ N (0, σ2In) is
independent of X and β. Our proof strategy is based on the approximate
equivalence between β̂ and β̂σ.

It is well known that the Lasso residuals y−Xβ̂ are obtained by projecting
the response y onto the polytope {r : ‖X>r‖∞ ≤ λ}. The non-expansive
property of projections onto convex sets gives∥∥∥(yσ −Xβ̂σ)− (y −Xβ̂)

∥∥∥ ≤ ‖yσ − y‖ = ‖z‖.

If P (·) is the projection onto the polytope, then I−P is also non-expansive
and, therefore,

(D.4)
∥∥∥Xβ̂σ −Xβ̂∥∥∥ ≤ ‖z‖.

Hence, from Lemma B.1 and ‖z‖ = (1 + oP(1))σ
√
n it follows that, for

any c > 0 and rc depending on c,

(D.5) #{1 ≤ j ≤ p : |X>j (yσ −Xβ̂σ − y +Xβ̂)| > 2rcσ} ≤ cp

holds with probability converging to one. Let g and gσ be subgradients
certifying the KKT conditions for β̂ and β̂σ. From

X>j (y −Xβ̂) = λgj ,

X>j (yσ −Xβ̂σ) = λgσj ,

we get a simple relationship:

{j : |gj | ≥ 1−a/2}\{j : |gσj | ≥ 1−a/2−2rcσ/λ} ⊆ {j : |X>j (yσ−Xβ̂σ−y+Xβ̂)| > 2rcσ}.

Choose σ sufficiently small such that 2rcσ/λ < a/2, that is, σ < aλ/(4rc).
Then
(D.6)
{j : |gj | ≥ 1−a/2}\{j : |gσj | ≥ 1−a} ⊆ {j : |X>j (yσ−Xβ̂σ−y+Xβ̂)| > 2rcσ}.

As earlier, denote by S = supp(β̂) and Sσ = supp(β̂σ). In addition, let
Sv = {j : |gj | ≥ 1 − v} and similarly Sσv = {j : |gσj | ≥ 1 − v}. Notice that
we have dropped the dependence on λ since λ is fixed. Continuing, since
S ⊆ Sa

2
, from (D.6) we obtain

(D.7) S \ Sσa ⊆ {j : |X>j (yσ −Xβ̂σ − y +Xβ̂)| > 2rcσ}.
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This suggests that we apply Proposition 3.6 of [1] that claims4 the exis-
tence of positive constants a1 ∈ (0, 1), a2, and a3 such that with probability
tending to one,

(D.8) σmin(XSσa1∪S
′) ≥ a3

for all |S ′| ≤ a2p. These constants also have positive limits a′1, a
′
2, a
′
3, respec-

tively, as σ → 0. We take a < a′1, c < a′2 (we will specify a, c later) and suffi-

ciently small σ in (D.7), and S ′ = {j : |X>j (yσ −Xβ̂σ −y+Xβ̂)| > 2rcσ}.
Hence, on this event, (D.5), (D.7), and (D.8) together give

‖Xβ̂ −Xβ̂σ‖ =
∥∥∥XSσa∪S′(β̂Sσa∪S′ − β̂σSσa∪S′)∥∥∥ ≥ a3‖β̂ − β̂σ‖

for sufficiently small σ, which together with (D.4) yields

(D.9) ‖β̂ − β̂σ‖ ≤ (1 + oP(1))σ
√
n

a3
.

Recall that the ‖β̂‖0 is the number of nonzero entries in the vector β̂. From
(D.9), using the same argument outlined in (B.8), (B.9), and (B.10), we have

(D.10) ‖β̂‖0 ≥ ‖β̂σ‖0 − c′p+ oP(p)

for some constant c′ > 0 that decreases to 0 as σ/a3 → 0.
We now develop a tight upper bound on ‖β̂‖0. Making use of (D.7) gives

‖β̂‖0 ≤ ‖β̂σ‖0 + #{j : 1− a ≤ |gσj | < 1}+ cp.

As in (B.5), (3.21) of [1] implies that

#
{
j : (1− a) ≤ |gσj | < 1

}
/p

P−−→ P ((1− a)ατ ≤ |Π + τW | < ατ) .

Note that both α and τ depend on σ, and as σ → 0, α and τ converge to,
respectively, α′ > 0 and τ ′ > 0. Hence, we get

(D.11) ‖β̂‖0 ≤ ‖β̂σ‖0 + c′′p+ oP(p)

for some constant c′′ > 0 that can be made arbitrarily small if σ → 0 by
first taking a and c sufficiently small.

With some obvious notation, a combination of (D.10) and (D.11) gives

(D.12) |V − V σ| ≤ c′′′p, |T − T σ| ≤ c′′′p,
4Use a continuity argument to carry over the result of this proposition for finite t to

∞.
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for some constant c′′′ = c′′′σ → 0 as σ → 0. As σ → 0, observe the conver-
gence,

fd∞,σ = 2(1− ε)Φ(−α)→ 2(1− ε)Φ(−α′) = fd∞,0,

and

td∞,σ = εP(|Π? + τW | > ατ)→ εP(|Π? + τ ′W | > α′τ ′) = td∞,0.

By applying Lemma A.1 to V σ and T σ and making use of (D.12), the
conclusions

V

p

P−−→ fd∞,0 and
T

p

P−−→ td∞,0

follow.
Finally, the results for some fixed λ can be carried over to a bounded

interval [0.01, λ′] in exactly the same way as in the case where σ > 0. Indeed,
the key ingredients, namely, Lemmas A.2 and B.2 still hold. To extend the
results to λ > λ′, we resort to Lemma D.1.

For a fixed a prior Π, our arguments immediately give an instance-specific
trade-off. Let qΠ(·; δ, σ) be the function defined as

qΠ (tpp∞,σ(λ); δ, σ) = fdp∞,σ(λ)

for all λ > 0. It is worth pointing out that the sparsity parameter ε is implied
by Π and that qΠ depends on Π and σ only through Π/σ (if σ = 0, qΠ is
invariant by rescaling). By definition, we always have

qΠ(u; δ, σ) > q?(u)

for any u in the domain of qΠ. As is implied by the proof, it is impossible
to have a series of instances Π such that qΠ(u) converges to q?(u) at two
different points. Now, we state the instance-specific version of Theorem 2.1.

Theorem D.2. Fix δ ∈ (0,∞) and assume the working hypothesis. In
either the noiseless or noisy case and for any arbitrary small constants λ0 >
0 and η > 0, the event⋂

λ≥λ0

{
FDP(λ) ≥ qΠ (TPP(λ))− η

}
holds with probability tending to one.
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D.1. Proof of Lemma D.1. Consider the KKT conditions restricted
to S(λ):

X>S(λ)

(
y −XS(λ)β̂(λ)

)
= λg(λ).

Here we abuse the notation a bit by identifying both β̂(λ) and g(λ) as
|S(λ)|-dimensional vectors. As a consequence, we get

(D.13) β̂(λ) = (X>S(λ)XS(λ))
−1(X>S(λ)y − λg(λ)).

Notice that X>S(λ)XS(λ) is invertible almost surely since the Lasso solution

has at most n nonzero components for generic problems (see e.g. [3]). By
definition, β̂(λ) obeys
(D.14)

1

2
‖y −XS(λ)β̂(λ)‖2 + λ‖β̂(λ)‖1 ≤

1

2
‖y −XS(λ) · 0‖2 + λ‖0‖1 =

1

2
‖y‖2.

Substituting (D.13) into (D.14) and applying the triangle inequality give

1

2

(
‖λXS(λ)(X

>
S(λ)XS(λ))

−1g(λ)‖ − ‖y −XS(λ)(X
>
S(λ)XS(λ))

−1X>S(λ)y‖
)2

+λ‖β̂(λ)‖1 ≤
1

2
‖y‖2.

Since I|S(λ)| −XS(λ)(X
>
S(λ)XS(λ))

−1X>S(λ) is simply a projection, we get

‖y −XS(λ)(X
>
S(λ)XS(λ))

−1X>S(λ)y‖ ≤ ‖y‖.

Combining the last displays gives

(D.15) λ‖XS(λ)(X
>
S(λ)XS(λ))

−1g(λ)‖ ≤ 2‖y‖,

which is our key estimate.
Since σmax(X) = (1 + oP(1))(1 + 1/

√
δ),

(D.16)

λ‖XS(λ)(X
>
S(λ)XS(λ))

−1g(λ)‖ ≥ (1+oP(1))
λ‖g(λ)‖
1 + 1/

√
δ

= (1+oP(1))
λ
√
|S(λ)|

1 + 1/
√
δ
.

As for the right-hand side of (D.15), the law of large numbers reveals that

2‖y‖ = 2‖Xβ+z‖ = (2+oP(1))
√
n(‖β‖2/n+ σ2) = (2+oP(1))

√
pEΠ2 + nσ2.

Combining the last two displays, it follows from (D.15) and (D.16) that

‖β̂(λ)‖0 ≡ |S(λ)λ| ≤ (4+oP(1))
(pEΠ2 + nσ2)(1 + 1/

√
δ)2

λ2
= (1+oP(1))

Cp

λ2

for some constant C. It is worth emphasizing that the term oP(1) is indepen-
dent of any λ > 0. Hence, we finish the proof by choosing any λ′ >

√
C/c.
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APPENDIX E: PROOF OF THEOREM 3.1

We propose two preparatory lemmas regarding the χ2-distribution, which
will be used in the proof of the theorem.

Lemma E.1. For any positive integer d and t ≥ 0, we have

P(χd ≥
√
d+ t) ≤ e−t

2/2.

Lemma E.2. For any positive integer d and t ≥ 0, we have

P(χ2
d ≤ td) ≤ (et)

d
2 .

The first lemma can be derived by the Gaussian concentration inequality,
also known as the Borell’s inequality. The second lemma has a simple proof:

P(χ2
d ≤ td) =

∫ td

0

1

2
d
2 Γ(d2)

x
d
2
−1e−

x
2 dx

≤
∫ td

0

1

2
d
2 Γ(d2)

x
d
2
−1dx =

2(td)
d
2

d2
d
2 Γ(d2)

.

Next, Stirling’s formula gives

P(χ2
d ≤ td) ≤ 2(td)

d
2

d2
d
2 Γ(d2)

≤ 2(td)
d
2

d2
d
2

√
πd(d2)

d
2 e−

d
2

≤ (et)
d
2 .

Now, we turn to present the proof of Theorem 3.1. Denote by S a subset
of {1, 2, . . . , p}, and let m0 = |S ∩ {j : βj = 0}| and m1 = |S ∩ {j : βj 6= 0}|.
Certainly, bothm0 andm1 depend on S, but the dependency is often omitted
for the sake of simplicity. As earlier, denote by k = #{j : βj 6= 0}, which

obeys k = (ε + oP(1))p. Write β̂LS
S for the least-squares estimate obtained

by regressing y onto XS . Observe that (3.1) is equivalent to solving

(E.1) argmin
S⊂{1,...,p}

‖y −XS β̂LS
S ‖2 + λ|S|.

As is clear from (3.1), we only need to focus on S with cardinality no more
than min{n, p}. Denote by Ŝ the solution to (E.1), and define m̂0 and m̂1 as
before. To prove Theorem 3.1 it suffices to show the following: for arbitrary
small c > 0, we can find λ and M sufficiently large such that (3.1) gives

(E.2) P(m̂0 > 2ck or m̂1 ≤ (1− c)k)→ 0.
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Assume this is true. Then from (E.2) we see that m̂0 ≤ 2ck and m̂1 > (1−c)k
hold with probability tending to one. On this event, the TPP is

m̂1

k
> 1− c,

and the FDP is

m̂0

m̂0 + m̂1
≤ 2ck

2ck + (1− c)k
=

2c

1 + c
.

Hence, we can have arbitrarily small FDP and almost full power by setting
c arbitrarily small.

It remains to prove (E.2) with proper choices of λ and M . Since

{m̂0 > 2ck or m̂1 ≤ (1− c)k} ⊂ {m̂0 + m̂1 > (1 + c)k} ∪ {m̂1 ≤ (1− c)k},

we only need to prove

(E.3) P(m̂1 ≤ (1− c)k)→ 0

and

(E.4) P(m̂0 + m̂1 > (1 + c)k)→ 0.

We first work on (E.3). Write

y =
∑

j∈S,βj=M
MXj +

∑
j∈S,βj=M

MXj + z.

In this decomposition, the summand
∑

j∈S,βj=M MXj is already in the span

of XS . This fact implies that the residual vector y−XS β̂LS
S is the same as

the projection of
∑

j∈S,βj=M MXj + z onto the orthogonal complement of
XS . Thanks to the independence among β,X and z, our discussion proceeds
by conditioning on the random support set of β. A crucial but simple obser-
vation is that the orthogonal complement of XS of dimension n−m0 −m1

has uniform orientation, independent of
∑

j∈S,βj=M MXj + z. From this
fact it follows that
(E.5)

L(S) := ‖y−XS β̂LS
S ‖2+λ|S| d=

(
σ2 +M2(k −m1)/n

)
χ2
n−m0−m1

+λ(m0+m1).

Call ES,u the event on which

L(S) ≤ σ2(n− k + 2u
√
n− k + u2) + λk
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holds; here, u > 0 is a constant to be specified later. In the special case
where S = T and T ≡ {j : βj 6= 0} is the true support, Lemma E.1 says
that this event has probability bounded as

(E.6)

P(ET ,u) = P
(
σ2χ2

n−k + λk ≤ σ2(n− k + 2u
√
n− k + u2) + λk

)
= P

(
χ2
n−k ≤ n− k + 2u

√
n− k + u2

)
≥ 1− e−

u2

2 .

By definition, EŜ,u is implied by ET ,u. Using this fact, we will show that m̂1

is very close to k, thus validating (E.3). By making use of

{m̂1 ≤ (1−c)k} ⊂ {m̂0+m̂1 ≥ (k+n)/2}∪{m̂1 ≤ (1−c)k, m̂0+m̂1 < (k+n)/2},

we see that it suffices to establish that

(E.7) P(m̂0 + m̂1 ≥ (k + n)/2)→ 0

and

(E.8) P(m̂1 ≤ (1− c)k, m̂0 + m̂1 < (k + n)/2)→ 0

for some λ and sufficient large M . For (E.7), we have
(E.9)
P(m̂0 + m̂1 ≥ (k + n)/2) ≤ P(ET ,u) + P(ET ,u ∩ {m̂0 + m̂1 ≥ (k + n)/2})

≤ P(ET ,u) + P(EŜ,u ∩ {m̂0 + m̂1 ≥ (k + n)/2})

≤ P(ET ,u) +
∑

m0+m1≥(k+n)/2

P(ES,u)

≤ e−
u2

2 +
∑

m0+m1≥(k+n)/2

P(ES,u),

where the last step makes use of (E.6), and the summation is over all S such
that m0(S) +m1(S) ≥ (k+n)/2. Due to (E.5), the event ES,u has the same
probability as
(E.10)(
σ2 +M2(k −m1)/n

)
χ2
n−m0−m1

+ λ(m0 +m1) ≤ σ2(n− k + 2u
√
n− k + u2) + λk

⇐⇒ χ2
n−m0−m1

≤ σ2(n− k + 2u
√
n− k + u2) + λk − λ(m0 +m1)

σ2 +M2(k −m1)/n
.

Since m0 +m1 ≥ (k + n)/2, we get

σ2(n−k+2u
√
n− k+u2)+λk−λ(m0+m1) ≤ σ2(n−k+2u

√
n− k+u2)−λ(n−k)/2.
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Requiring

(E.11) λ > 2σ2,

would yield σ2(n − k + 2u
√
n− k + u2) − λ(n − k)/2 < 0 for sufficiently

large n (depending on u) as n− k → ∞. In this case, we have P(ES,u) = 0
whenever m0 + m1 ≥ (k + n)/2. Thus, taking u → ∞ in (E.9) establishes
(E.7).

Now we turn to (E.8). Observe that
(E.12)
P (m̂1 ≤ (1− c)k and m̂0 + m̂1 < (k + n)/2)

≤ P(ET ,u) + P(ET ,u ∩ {m̂1 ≤ (1− c)k and m̂0 + m̂1 < (k + n)/2})

≤ e−
u2

2 + P(EŜ,u ∩ {m̂1 ≤ (1− c)k and m̂0 + m̂1 < (k + n)/2})

≤ e−
u2

2 +
∑

m0+m1<
k+n
2
,m1≤(1−c)k

P(ES,u).

For m0 +m1 < (k+n)/2 and m1 ≤ (1−c)k, notice that n−m0−m1 > (n−
k)/2 = (δ−ε+oP(1))p/2, and M2(k−m1)/n ≥ cM2k/n ∼ (cε/δ+oP(1))M2.
Let t0 > 0 be a constant obeying

δ − ε
5

(1 + log t0) + log 2 < −1,

then choose M sufficiently large such that

(E.13)
2σ2(δ − ε) + 2λε

(σ2 + cεM2/δ)(δ − ε)
< t0.

This gives

σ2(n− k + 2u
√
n− k + u2) + λk − λ(m0 +m1)

(σ2 +M2(k −m1)/n)(n−m0 −m1)
< t0
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for sufficiently large n. Continuing (E.12) and applying Lemma E.2, we get
(E.14)
P (m̂1 ≤ (1− c)k and m̂0 + m̂1 < (k + n)/2)

≤ e−
u2

2 +
∑

m0+m1<
k+n
2
,m1≤(1−c)k

P(χ2
n−m0−m1

≤ t0(n−m0 −m1))

≤ e−
u2

2 +
∑

m0+m1<
k+n
2
,m1≤(1−c)k

(et0)
n−m0−m1

2

≤
∑

m0+m1<(k+n)/2,m1≤(1−c)k

(et0)
(δ−ε)p

5

≤ e−
u2

2 + 2p(et0)
(δ−ε)p

5

≤ e−
u2

2 + e−p.

Taking u→∞ proves (E.8).
Having established (E.3), we proceed to prove (E.4). By definition,

‖y −Xβ̂‖2 + λ‖β̂‖0 = ‖y −XŜ β̂
LS
Ŝ ‖

2 + λ‖βLS
Ŝ ‖0

≤ ‖y −Xβ‖2 + λ‖β‖0
= ‖z‖2 + λk.

If

(E.15) λ >
σ2δ

cε
,

then

m̂0 + m̂1 ≤
‖z‖2

λ
+ k = (1 + oP(1))

σ2n

λ
+ k ≤ (1 + c)k

holds with probability tending to one, whence (E.4).
To recapitulate, selecting λ obeying (E.11) and (E.15), and M sufficiently

large such that (E.13) holds, imply that (E.2) holds. The proof of the theo-
rem is complete.
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