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Abstract

Sorted L-One Penalized Estimation (SLOPE, [10]) is a relatively new convex optimization
procedure which allows for adaptive selection of regressors under sparse high dimensional de-
signs. Here we extend the idea of SLOPE to deal with the situation when one aims at selecting
whole groups of explanatory variables instead of single regressors. Such groups can be formed
by clustering strongly correlated predictors or groups of dummy variables corresponding to dif-
ferent levels of the same qualitative predictor. We formulate the respective convex optimization
problem, gSLOPE (group SLOPE), and propose an efficient algorithm for its solution. We also
define a notion of the group false discovery rate (gFDR) and provide a choice of the sequence
of tuning parameters for gSLOPE so that gFDR is provably controlled at a prespecified level
if the groups of variables are orthogonal to each other. Moreover, we prove that the resulting
procedure adapts to unknown sparsity and is asymptotically minimax with respect to the es-
timation of the proportions of variance of the response variable explained by regressors from
different groups. We also provide a method for the choice of the regularizing sequence when
variables in different groups are not orthogonal but statistically independent and illustrate its
good properties with computer simulations. Finally, we illustrate the advantages of gSLOPE
in the context of Genome Wide Association Studies. R package grpSLOPE with implementation
of our method is available on CRAN.

1 Introduction

Consider the classical multiple regression model of the form

y = Xβ + z, (1.1)

where y is the n dimensional vector of values of the response variable, X is the n by p experiment
(design) matrix and z ∼ N (0, σ2In). We assume that y and X are known, while β is unknown.
In many applications the purpose of the statistical analysis is to recover the support of β, which
identifies the set of important regressors. Here, the true support corresponds to truly relevant
variables (i.e. variables which have impact on observations). Common procedures to solve this
model selection problem rely on minimization of some objective function consisting of the weighted
sum of two components: first term responsible for the goodness of fit and second term penalizing
the model complexity. Among such procedures one can mention classical model selection criteria
like the Akaike Information Criterion (AIC) [3] and the Bayesian Information Criterion (BIC) [22],
where the penalty depends on the number of variables included in the model, or LASSO [27], where
the penalty depends on the `1 norm of regression coefficients. The main advantage of LASSO over
classical model selection criteria is that it is a convex optimization problem and, as such, it can be
easily solved even for very large design matrices.

1An earlier version of the paper appeared on arXiv.org in November 2015: arXiv:1511.09078
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LASSO solution is obtained by solving the optimization problem

arg min
b

{
1

2

∥∥y −Xb∥∥2
+ λL‖b‖1

}
, (1.2)

where λL is a tuning parameter defining the trade-off between the model fit and the sparsity of
solution. In practical applications the selection of good λL might be very challenging. For example
it has been reported that in high dimensional settings the popular cross-validation typically leads
to detection of a large number of false regressors (see e.g. [10]). The general rule is that when
one reduces λL, then LASSO can identify more elements from the true support (true discoveries)
but at the same time it generates more false discoveries. In general the numbers of true and false
discoveries for a given λL depend on unknown properties on the data generating mechanism, like the
number of true regressors and the magnitude of their effects. A very similar problem occurs when
selecting thresholds for individual tests in the context of multiple testing. Here it was found that the
popular Benjamini-Hochberg rule (BH, [7]), aimed at control of the False Discovery Rate (FDR),
adapts to the unknown data generating mechanism and has some desirable optimality properties
under a variety of statistical settings (see e.g. [1, 8, 20, 15]). The main property of this rule is
that it relaxes the thresholds along the sequence of test statistics, sorted in the decreased order of
magnitude. Recently the same idea was used in a new generalization of LASSO, named SLOPE
(Sorted L-One Penalized Estimation, [9, 10]). Instead of the `1 norm (as in LASSO case), the
method uses FDR control properties of Jλ norm, defined as follows; for sequence {λ}pi=1 satisfying
λ1 ≥ . . . ≥ λp ≥ 0 and b ∈ Rp, Jλ(b) :=

∑p
i=1 λi|b|(i), where |b|(1) ≥ . . . ≥ |b|(p) is the vector of

sorted absolute values of coordinates of b. SLOPE is the solution to a convex optimization problem

arg min
b

{
1

2

∥∥y −Xb∥∥2
+ Jλ(b)

}
, (1.3)

which clearly reduces to LASSO for λ1 = . . . = λp =: λL. Similarly as in classical model selection,
the support of solution defines the subset of variables estimated as relevant. In [10] it is shown
that when the sequence λ corresponds to the decreasing sequence of threshold for BH then SLOPE
controls FDR under orthogonal designs, i.e. when XTX = In. Moreover, in [26] it is proved that
SLOPE with this sequence of tuning parameters adapts to unknown sparsity and is asymptotically
minimax under orthogonal and random Gaussian designs.

In the sequence of examples presented in [9], [10] and [11] it was shown that SLOPE has very
desirable properties in terms of FDR control in case when regressor variables are weakly correlated.
While there exist other interesting approaches which allow to control FDR under correlated designs
(e.g., [5]), the efforts to prevent detection of false regressors which are strongly correlated with true
ones inevitably lead to a loss of power. An alternative approach to deal with strongly correlated
predictors is to simply give up the idea of distinguishing between them and include all of them into
the selected model as a group. This leads to the problem of group selection in linear regression,
extensively investigated and applied in many fields of science. In many of these applications the
groups are selected not only due to the strong correlations but also by taking into account the
problem specific scientific knowledge. It is also common to cluster dummy variables corresponding
to different levels of qualitative predictors.

Probably the most known convex optimization method for selection of groups of explanatory
variables is the group LASSO (gLASSO) [4]. For a fixed tuning parameter, λgL > 0, the gLASSO
estimate is most frequently (e.g. [29], [23]) defined as a solution to optimization problem

arg min
b

{
1

2

∥∥∥y − m∑
i=1

XIibIi

∥∥∥2

2
+ σλgL

m∑
i=1

√
|Ii|‖bIi‖2

}
, (1.4)

where the sets I1, . . . , Im form a partition of the set {1, . . . , p}, |Ii| denotes the number of elements
in set Ii, XIi is the submatrix of X composed of columns indexed by Ii and bIi is the restriction
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of b to indices from Ii. The method introduced in this article is, however, closer to the alternative
version of gLASSO, in which penalties are imposed on ‖XIibIi‖2 rather than ‖bIi‖2. This method
was formulated in [24], where authors defined estimate of β as

βgL := arg min
b

{
1

2

∥∥∥y − m∑
i=1

XIibIi

∥∥∥2

2
+ σλgL

m∑
i=1

√
|Ii|‖XIibIi‖2

}
, (1.5)

with the condition ‖XIiβ
gL

Ii
‖2 > 0 serving as a group relevance indicator.

Similarly as in the context of regular model selection, the properties of gLASSO strongly depend
on the shrinkage parameter λgL, whose optimal value is the function of unknown parameters of
true data generating mechanism. Thus, a natural question arises if the idea of SLOPE can be
used for construction of the similar adaptive procedure for the group selection. To answer this
query in this paper we define and investigate the properties of the group SLOPE (gSLOPE). We
formulate the respective optimization problem and provide the algorithm for its solution. We also
define the notion of the group FDR (gFDR), and provide the theoretical choice of the sequence
of regularization parameters, which guarantees that gSLOPE controls gFDR in the situation when
variables in different groups are orthogonal to each other. Moreover, we prove that the resulting
procedure adapts to unknown sparsity and is asymptotically minimax with respect to the estimation
of the proportions of variance of the response variable explained by regressors from different groups.
Additionally, we provide a way of constructing the sequence of regularization parameters under the
assumption that the regressors from distinct groups are independent and use computer simulations
to show that it allows to control gFDR. Good properties of group SLOPE are illustrated using the
practical example of Genome Wide Association Study. R package grpSLOPE with implementation
of our method is available on CRAN.

2 Group SLOPE

2.1 Formulation of the optimization problem

Let the design matrix X belong to the space M(n, p) of matrices with n rows and p columns.
Furthermore, suppose that I = {I1, . . . , Im} is some partition of the set {1, . . . , p}, i.e. Ii’s are
nonempty sets, Ii ∩ Ij = ∅ for i 6= j and

⋃
Ii = {1, . . . , p}. We will consider the linear regression

model with m groups of the form

y =

m∑
i=1

XIiβIi + z, (2.1)

where XIi is the submatrix of X composed of columns indexed by Ii and βIi is the restriction of
β to indices from the set Ii. We will use notations l1, . . . , lm to refer to the ranks of submatrices
XI1 , . . . , XIm . To simplify notations in further part, we will assume that li > 0 (i.e. there is at
least one nonzero entry of XIi for all i). Besides this, X may be absolutely arbitrary matrix, in
particular any linear dependencies inside submatrices XIi are allowed.

In this article we will treat the value ‖XIiβIi‖2 as a measure of an impact of ith group on the
response and we will say that the group i is truly relevant if and only if ‖XIiβIi‖2 > 0. Thus our
task of the identification of the relevant groups is equivalent with finding the support of the vector

JβKX,I :=
(
‖XI1βI1‖2, . . . , ‖XImβIm‖2

)T
.

To estimate the nonzero coefficients of JβKX,I , we will use a new penalized method, namely
group SLOPE (gSLOPE). For a given nonincreasing sequence of nonnegative tuning parameters,
λ1, . . . , λm, a given sequence of positive weights, w1, . . . , wm, and a design matrix, X, the gSLOPE,
βgS, is defined as solutions to

βgS := arg min
b

{1

2

∥∥y −Xb∥∥2

2
+ σJλ

(
W JbKX,I

)}
, (2.2)
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where W is a diagonal matrix with Wi,i := wi, for i = 1, . . . ,m. The estimate of JβKX,I support is
simply defined by the indices corresponding to nonzeros of JβgSKX,I .

It is easy to see that when one considers p groups containing only one variable (i.e. singleton
groups situation), then taking all weights equal to one reduces (2.2) to SLOPE (1.3). On the other
hand, taking wi =

√
|Ii| and putting λ1 = . . . = λm =: λgL, immediately gives gLASSO problem

(1.5) with the smoothing parameter λgL. The gSLOPE could be therefore treated both: as the
extension to SLOPE, and the extension to group LASSO.

Now, let us define p̃ = l1 + . . .+ lm and consider the following partition, I = {I1, . . . , Im}, of the
set {1, . . . , p̃}

I1 :=
{

1, . . . , l1
}
, I2 :=

{
l1 + 1, . . . , l1 + l2

}
, . . . , Im :=

{m−1∑
j=1

li + 1, . . . ,

m∑
j=1

li

}
. (2.3)

Observe that each XIi can be represented as XIi = UiRi, where Ui is a matrix with li orthogonal
columns of a unit l2 norm, whose span coincides with the space spanned by the columns of XIi ,

and Ri is the corresponding matrix of a full row rank. Define n by l matrix X̃ by putting X̃Ii := Ui
for i = 1, . . . ,m. Now observe that denoting cIi := RibIi for i ∈ {1, . . . ,m} we immediately obtain

Xb =
∑m
i=1XIibIi =

∑m
i=1 UiRibIi =

∑m
i=1 X̃IicIi = X̃c,(

JbKX,I
)
i

= ‖XIibIi‖2 = ‖RibIi‖2 = ‖cIi‖2
(2.4)

and the problem (2.2) can be equivalently presented in the form cgS := arg min
c

{
1
2

∥∥y − X̃c∥∥2

2
+ σJλ

(
W JcKI

)}
cgSIi := Riβ

gS

Ii
, i = 1, . . . ,m

, (2.5)

for JcKI :=
(
‖cI1‖2, . . . , ‖cIm‖2

)T
. Therefore to identify the relevant groups and estimate their group

effects it is enough to solve the optimization problem (2.5). We will say that (2.5) is the standardized
version of the problem (2.2).

Remark 2.1. Similar formulation of the group SLOPE was proposed in [16]. However [16] con-
siders only the case when the weights wi are equal to the square root of the group size and penalties
are imposed directly on ‖βIi‖2 rather than on group effects ‖XIiβIi‖2. This makes the method of
[16] dependent on scaling or rotations of variables in a given group. In comparison to [16], where
a Monte Carlo approach for estimating the regularizing sequence was proposed, our article provides
choice of the smoothing parameters which provably allow for FDR control in case where the regres-
sors in different groups are orthogonal to each other and its modification, which according to our
simulation study allows for FDR control where regressors in different groups are independent.

2.2 Numerical algorithm

As shown in Appendix B the function Jλ,W,I(b) := Jλ

(
W JbKI

)
is a norm and the optimization

problem (2.5) can be solved by using proximal gradient methods. In our R package grpSLOPE

available on CRAN (The Comprehensive R Archive Network) the accelerated proximal gradient
method known as FISTA [6] is applied, which uses the specific procedure for choosing steps sizes,
to achieve fast convergence rate. The proximal operator for gSLOPE is obtained by appropriate
transformation and reduction of the problem, so the fast proximal operator for SLOPE [9] can be
used. To derive proper stopping criteria, we have considered dual problem to gSLOPE and employed
the strong duality property. The detailed description of the proximal operator for gSLOPE as well
as of the dual norm and conjugate of grouped sorted l1 norm is provided in the Appendix B.
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2.3 Group FDR

Group SLOPE is designed to select groups of variables, which might be very strongly correlated
within a group or even linearly dependent. In this context we do not intend to identify single impor-
tant predictors but rather want to point at the groups which contain at least one true regressor. To
theoretically investigate the properties of gSLOPE in this context we now introduce the respective
notion of group FDR (gFDR).

Definition 2.2. Consider model (2.1) and let βgS be an estimate given by (2.2). We define two
random variables: the number of all groups selected by gSLOPE (Rg) and the number of groups
falsely discovered by gSLOPE (Vg), as

Rg :=
∣∣{i : ‖XIiβ

gS

Ii
‖2 6= 0

}∣∣, V g :=
∣∣{i : ‖XIiβIi‖2 = 0, ‖XIiβ

gS

Ii
‖2 6= 0

}∣∣.
Definition 2.3. We define the false discovery rate for groups (gFDR) as

gFDR := E
[

V g

max{Rg, 1}

]
. (2.6)

2.4 Control of gFDR when variables from different groups are orthogonal

Our goal is the identification of the regularizing sequence for gSLOPE such that gFDR can be
controlled at any given level q ∈ (0, 1). In this section we will provide such a sequence, which
provably controls gFDR in case when variables in different groups are orthogonal to each other.
In subsequent sections we will replace this condition with the weaker assumption of the stochastic
independence of regressors in different groups. Before the statement of the main theorem on gFDR
control, we will recall the definition of χ distribution and define a scaled χ distribution.

Definition 2.4. We will say that a random variable X1 has a χ distribution with l degrees of
freedom, and write X1 ∼ χ

l, when X1 could be expressed as X1 =
√
X2, for X2 having a χ2

distribution with l degrees of freedom. We will say that a random variable X1 has a scaled χ

distribution with l degrees of freedom and scale S, when X1 could be expressed as X1 = S ·X2, for
X2 having a χ distribution with l degrees of freedom. We will use the notation X1 ∼ Sχl.

Theorem 2.5 (gFDR control under orthogonal case). Consider model (2.1) with the design matrix
X satisfying XT

Ii
XIj = 0, for any i 6= j. Denote the number of zero coefficients in JβKX,I by m0

and let w1, . . . , wm be positive numbers. Moreover, define the sequence of regularizing parameters
λmax = (λmax1 , . . . , λmaxm )T, with

λmaxi := max
j=1,...,m

{
1

wj
F−1
χ
lj

(
1− q · i

m

)}
, (2.7)

where Fχ
lj

is a cumulative distribution function of χ distribution with lj degrees of freedom. Then

any solution, βgS, to problem gSLOPE (2.2) generates the same vector JβgSKX,I and it holds

gFDR = E
[

V g

max{Rg, 1}

]
≤ q · m0

m
.

Proof. We will start with the standardized version of the gSLOPE problem, given by (2.5). Based
on results discussed in Appendix C, we can consider an equivalent formulation of (2.5) c∗ = arg min

c

{
1
2

∑m
i=1

(
‖ỹIi‖2 − w−1

i ci
)2

+ Jσλ(c)
}

‖XIiβ
gS

Ii
‖2 = c∗i

(
wi‖ỹIi‖2

)−1
ỹIi , i = 1, . . . ,m ,

(2.8)
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where ỹ = X̃T y has a multivariate normal distribution N
(
β̃, σ2Ip̃

)
with β̃Ii = RiβIi . The

uniqueness of JβgSKX,I follows simply from the uniqueness of c∗ in (2.8). Define random variables

R :=
∣∣{i : c∗i 6= 0

}∣∣ and V :=
∣∣{i : ‖β̃Ii‖2 = 0, c∗i 6= 0

}∣∣. Clearly, then Rg = R and V g = V .
Consequently, it is enough to show that

E
[

V

max{R, 1}

]
≤ q · m0

m
.

Without loss of generality we can assume that groups I1, . . . , Im0 are truly irrelevant, which gives

‖β̃I1‖2 = . . . = ‖β̃Im0
‖2 = 0 and ‖β̃Ij‖2 > 0 for j > m0. Suppose now that r, i are some fixed indices

from {1, . . . ,m}. From definition of λmaxr

λmaxr ≥ 1

wi
F−1
χli

(
1− qr

m

)
=⇒ 1− Fχli (λmaxr wi) ≤

qr

m
. (2.9)

Now, let us fix i ≤ m0. Since σ−1‖ỹIi‖2 ∼ χli we have

P
(
w−1
i ‖ỹIi‖2 ≥ σλ

max
r

)
= P

(
σ−1‖ỹIi‖2 ≥ λmaxr wi

)
= 1− Fχli (λmaxr wi) ≤

qr

m
. (2.10)

Now, denote by R̃i the number of nonzero coefficients in SLOPE estimate (2.8) after eliminating
ith group of explanatory variables. Thanks to lemmas D.6 and D.7, we immediately get{

JỹKI : c∗i 6= 0 and R = r
}
⊂
{
JỹKI : w−1

i ‖ỹIi‖2 > σλmaxr and R̃i = r − 1
}
, (2.11)

which together with (2.10) raises

P(c∗i 6= 0 and R = r) ≤ P
(
w−1
i ‖ỹIi‖2 > σλmaxr and R̃i = r − 1

)
= P

(
w−1
i ‖ỹIi‖2 > σλmaxr

)
P
(
R̃i = r − 1

)
≤ qr

m
P
(
R̃i = r − 1

)
.

(2.12)

Therefore

E
[

V

max{R, 1}

]
=

m∑
r=1

E
[
V

r
1{R=r}

]
=

m∑
r=1

1

r
E

[
m0∑
i=1

1{c∗i 6=0}1{R=r}

]
=

m∑
r=1

1

r

m0∑
i=1

P (c∗i 6= 0 and R = r) ≤
m0∑
i=1

q

m

m∑
r=1

P
(
R̃i = r − 1

)
=
qm0

m
,

(2.13)

which finishes the proof. �

Figure 1 illustrates the performance of gSLOPE under the design matrix X = Ip (hence the
rank of i group, li, coincides with its size), with p = 5000. In Figure 1 (a) all groups are of
the same size l = 5, while in Figures 1 (b) - (d) the explanatory variables are clustered into
m = 1000 groups of sizes from the set {3, 4, 5, 6, 7}; 200 groups of each size. Each coefficient of
βIi , in truly relevant group i, was generated independently from U [0.1, 1.1] distribution and then
βIi was scaled such that

(
JβKX,I

)
i

= a
√
li. Parameter a was selected to satisfy the condition

1
m

∑m
i=1 a

√
li = 1

m

∑m
i=1B(m, li), where B(mi, l) is defined in (F.4). Such signals are comparable

to the maximal noise and can be detected with moderate power, which allows for a meaningful
comparison between different methods.

Figure 1 (a) illustrates that the sequence λmax allows to keep gFDR very close to the ”nominal”
level when groups are of the same size. However, Figure 1 (b) shows that for groups of different
size λmax is rather conservative, i.e. the achieved gFDR is significantly lower than assumed. This

6
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Figure 1: Orthogonal situation with n = p = 5000 and m = 1000. In (a) all groups are of the same size
l = 5, while in (b)-(d) there are 200 groups of each of sizes li ∈ {3, 4, 5, 6, 7}. In (a) and (b) gSLOPE works
with the regularizing sequence λmax, while in (c) and (d) λmean is used. For each target gFDR level and
true support size, 300 iterations were performed. Bars correspond to ±2SE. Black straight lines represent
the ”nominal” gFDR level q ·

(
(m− k)/m

)
, for k being true support size. Weights are defined as wi :=

√
li.

suggests that the shrinkage (dictated by λ) could be slightly decreased, such that the method gets
more power and still achieves the gFDR below the assumed level. Returning to the proof of Theorem
2.5, we can see that for each i ∈ {1, . . . ,m} we have

1− Fχ
li

(λmaxr wi) ≤
qr

m
, (2.14)

with equality holding only for i being the index of the maximum in (2.7). In the result the inequality
in (2.13) is usually strict and the true gFDR might be substantially smaller than the nominal level.
The natural relaxation of (2.14) is to require only that

m∑
i=1

(
1− Fw−1

i
χ
li

(λr)
)
≤ qr. (2.15)
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Replacing the inequality in (2.15) by equality yields the strategy of choosing the relaxed λ sequence

λmeanr := F
−1
(

1− qr

m

)
for F (x) :=

1

m

m∑
i=1

Fw−1
i
χ
li

(x), r ∈ {1, . . . ,m}, (2.16)

where Fw−1
i
χ
li

is the cumulative distribution function of scaled chi distribution with li degrees of

freedom and scale S = w−1
i . In Figure 1c we present estimated gFDR, for tuning parameters given

by (2.16). The results suggest that with relaxed version of tuning parameters, we can still achieve
the ”average” gFDR control, where the ”average” is with respect to the uniform distribution over
all possible signal placements. As shown in Figure 1d, application of λmean allows to achieve a
substantially larger power than the one provided by λmax. Such a strategy could be especially
important in situation, when differences between the smallest and the largest quantiles (among
distributions w−1

i
χ
li) are relatively large and all groups have the same prior probability of being

relevant.

2.5 The accuracy of estimation

Up until this point, we have only considered the testing properties of gSLOPE. Though originally
proposed to control the FDR, surprisingly, SLOPE enjoys appealing estimation properties as well
[26]. It thus would be desirable to extend this link between testing and estimation for gSLOPE.
In measuring the deviation of an estimator from the ground truth β, as earlier, we focus on the
group level instead of an individual. Accordingly, here we aim to estimate parts of variance of Y

explained by every group, which are contained in the vector JβKX,I :=
(
‖XI1βI1‖2, . . . , ‖XImβIm‖2

)T
or Jβ̃KI :=

(
‖β̃I1‖2, . . . , ‖β̃Im‖2

)T
, equivalently. For illustration purpose, we employ the setting

described as follows. Imagine that we have a sequence of problems with the number of groups
m growing to infinity: the design X is orthonormal at groups level; ranks of submatrices XIi , li,
are bounded, that is, max li ≤ l for some constant integer l; denoting by k ≥ 1 the sparsity level
(that is, the number of relevant groups), we assume the asymptotics k/m → 0. Now we state our
minimax theorem, where we write a ∼ b if a/b→ 1 in the asymptotic limit, and ‖JβKX,I‖0 denotes
the number of nonzero entries of JβKX,I . The proof makes use of the same techniques for proving
Theorem 1.1 in [26] and is deferred to the Appendix.

Theorem 2.6. Fix any constant q ∈ (0, 1), let wi = 1 and λi = F−1
χl

(1 − qi/m) for i = 1, . . . ,m.
Under the preceding conditions, gSLOPE is asymptotically minimax over the nearly black object{
β :
∥∥JβKX,I

∥∥
0
≤ k

}
, i.e.,

sup
‖JβKX,I‖0≤k

E
(∥∥∥JβgSKX,I − JβKX,I

∥∥∥2

2

)
∼ inf

β̂
sup

‖JβKX,I‖0≤k
E
(∥∥∥Jβ̂KX,I − JβKX,I

∥∥∥2

2

)
,

where the infimum is taken over all measurable estimators β̂(y,X).

Notably, in this theorem the choice of λi does not assume the knowledge of sparsity level. Or
putting it differently, in stark contrast to gLASSO, gSLOPE is adaptive to a range of sparsity
in achieving the exact minimaxity. Combining Theorems 2.5 and 2.6, we see the remarkable link
between FDR control and minimax estimation also applies to gSLOPE [1, 26]. While it is out of the
scope of this paper, it is of great interest to extend this minimax result to general design matrices.

2.6 The impact of chosen weights

In this subsection we will discuss the influence of chosen weights, {wi}mi=1, on results. Let I =
{I1, . . . , Im} be a given partition into groups and l1, . . . , lm be ranks of submatrices XIi . Assume
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the orthogonality at group level, i.e., that it holds XT
Ii
XIj = 0, for i 6= j, and suppose that σ = 1.

The support of JβKX,I coincides with the support of vector c∗ defined in (2.8), namely

c∗ = arg min
c

1

2

∥∥∥JỹKI −W−1c
∥∥∥2

2
+ Jλ(c), (2.17)

where W−1 is a diagonal matrix with positive numbers w−1
1 , . . . , w−1

m on the diagonal. Suppose
now, that c∗ has exactly r nonzero coefficients. From Corollary D.4, these indices are given by
{π(1), . . . , π(r)}, where π is permutation which orders W−1JỹKI. Hence, the order of realizations{
w−1
i ‖ỹIi‖2

}m
i=1

decides about the subset of groups labeled by gSLOPE as relevant. Suppose that

groups Ii and Ij are truly relevant, i.e., ‖β̃Ii‖2 > 0 and ‖β̃Ij‖2 > 0. The distributions of ‖ỹIi‖2
and ‖ỹIj‖2 are noncentral χ distributions, with li and lj degrees of freedom, and the noncentrality

parameters equal to ‖β̃Ii‖2 and ‖β̃Ij‖2, respectively. Now, the expected value of the noncentral χ

distribution could be well approximated by the square root of the expected value of the noncentral
χ2 distribution, which gives

E
(
w−1
i ‖ỹIi‖2

)
≈ w−1

i

√
E
(
‖ỹIi‖22

)
= w−1

i

√
li + ‖β̃Ii‖22.

Therefore, roughly speaking, truly relevant groups Ii and Ij are treated as comparable, when it

occurs li/w
2
i + ‖β̃Ii‖22/w2

i ≈ lj/w2
j + ‖β̃Ij‖22/w2

j . This gives us the intuition about the behavior of

gSLOPE with the choice wi =
√
li for each i. Firstly, gSLOPE treats all irrelevant groups as

comparable, i.e. the size of the group has a relatively small influence on it being selected as a false
discovery. Secondly, gSLOPE treats two truly relevant groups as comparable, if groups effect sizes
satisfy the condition

(
JβKX,I

)
i
/
(
JβKX,I

)
j
≈
√
li/
√
lj . The derived condition could be recast as

‖XIiβIi‖22/li ≈ ‖XIjβIj‖22/lj . This gives a nice interpretation: with the choice wi :=
√
li, gSLOPE

treats two groups as comparable, when these groups have similar squared effect group sizes per
coefficient. One possible idealistic situation, when such a property occurs, is when all βi’s in truly
relevant groups are comparable.

In Figure 2 we see that when the condition
(
JβKX,I

)
i
/
(
JβKX,I

)
j

=
√
li/
√
lj is met, the frac-

tions of groups with different sizes in the selected truly relevant groups (STRG) are approximately
equal. To investigate the impact of selected weights on the set of discovered groups, we performed
simulations with different settings, namely we used wi = 1 and wi = li (without changing other
parameters). With the first choice, larger groups are penalized less than before, while the second
choice yields the opposite situation. This is reflected in the proportion of each groups in STRG
(Figure 2). The values of gFDR are very similar under all choices of weights.

2.7 Independent groups and unknown σ

The assumption that variables in different groups are orthogonal to each other can be satisfied only
in rare situations of specifically designed experiments. However, in a variety of applications one can
assume that variables in different groups are independent. Such a situation occurs for example in
the context of identifying influential genes using distant genetic markers, whose genotypes can be
considered as stochastically independent. In this case a group can be formed by clustering dummy
variables corresponding to different genotypes of a given marker. Though the difference between
stochastic independence and algebraic orthogonality seems rather small, it turns out that small
sample correlations between independent regressors together with the shrinkage of regression coef-
ficients lead to magnifying the effective noise and require the adjustment of the tuning sequence λ
(see [25] for discussion of this phenomenon in the context of LASSO). Concerning regular SLOPE,
this problem was addressed by heuristic modification of λ, proposed in [10] and [9]. This modi-
fied sequence was calculated based upon the assumption that explanatory variables are randomly
sampled from the Gaussian distribution. However, simulation results from [9] illustrate that it
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Figure 2: Fraction of each group sizes in selected truly relevant groups (STRG). Beyond the weights, this
simulation was conducted with the same setting as in experiments summarized in Figure 1 for λmean. In
particular, for truly relevant groups i and j, it occurs

(
JβKX,I

)
i
/
(
JβKX,I

)
j

=
√
li/
√
lj . Target gFDR level

was fixed as 0.05.

controls FDR also in case when the columns of the design matrix correspond to additive effects of
independent SNPs and the number of causal genes is moderately small.

Following ideas for regular SLOPE presented in [9], we propose the Procedure 1 for calculating
the sequence of tuning parameters in case when variables in different groups are independent.
The heuristics justifying this choice are substantially more technically involved than the heuristics
for regular SLOPE and their details are presented in the Appendix G. Procedure 1 is based on
the sequence of λmean but the version for the conservative choice λmax follows analogously. The
proposed sequence of tuning parameters flattens out for a certain value k? dependent on q, n and
l1, . . . , lm. It is supposed to control gFDR when the number of identified groups is not much larger
than k?.

Procedure 1 Sequence of tuning parameters for independent groups

input: q ∈ (0, 1), w1, . . . , wm > 0, p, n, m, l1, . . . , lm ∈ N
λi := F

−1 (
1− q

m

)
, for F (x) := 1

m

∑m
i=1 Fw−1

i χli
(x);

for i ∈ {2, . . . ,m}:
λS := (λ1, . . . , λi−1)T;

Sj :=

√
n−lj(i−1)

n
+

w2
j‖λ

S‖22
n−lj(i−1)−1

, for j ∈ {1, . . . ,m};

λ∗i := F
−1
S
(
1− qi

m

)
, for FS(x) := 1

m

∑m
j=1 FSjw−1

j χlj
(x);

if λ∗i ≤ λi−1, then put λi := λ∗i . Otherwise, stop the procedure and put λj := λi−1 for j ≥ i;
end for

Up until this moment, we have used σ in gSLOPE optimization problem, assuming that this
parameter is known . However, in many applications σ is unknown and its estimation is an important
issue. When n > p, the standard procedure is to use the unbiased estimator of σ2, σ̂2

OLS, given by

σ̂2
OLS :=

(
y −XβOLS

)T(
y −XβOLS

)
/(n− p), for βOLS := (XTX)−1XTy. (2.18)

For the target situation, with p much larger than n, such an estimator can not be used. To estimate
σ we will therefore apply the procedure which was dedicated for this purpose in [9] in the context of
SLOPE. Below we present algorithm adjusted to gSLOPE (Procedure 2). The idea standing behind
the procedure is simple. The gSLOPE property of producing sparse estimators is used, and in each
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Procedure 2 gSLOPE with estimation of σ

input: y, X and λ (defined for some fixed q)
initialize: S+ = ∅;
repeat

S = S+;
compute RSS obtained by regressing y onto variables in S;
set σ̂2 = RSS/(n− |S| − 1);
compute the solution βgS to gSLOPE with parameters σ̂ and sequence λ;
set S+ = supp(βgS);

until S+ = S

iteration columns in design matrix are first restricted to support of βgS, so that the number of rows
exceeds the number of columns and (2.18) can be used. Algorithm terminates when gSLOPE finds
the same subset of relevant variables as in the preceding iteration.

To investigate the performance of gSLOPE under the Gaussian design and various group sizes,
we performed simulations with 1000 groups. Their sizes were drawn from the binomial distribution,
Bin(1000; 0.008), so as the expected value of the group size was equal to 8 (Figure 3c). As a result,
we obtained 7917 variables, divided into 1000 groups (the same division was used in all iterations
and scenarios). For each sparsity level and the gFDR level 0.1, and each iteration we generated
entries of the design matrix using N

(
0, 1

n

)
distribution, then X was standardized and the values

of response variable were generated according to model (2.1) with σ = 1 and signals generated as
in simulations for Figure 1. To identify relevant groups based on the simulated data we have used
the iterative version of gSLOPE, with σ estimation (Procedure 2) and lambdas given by Procedure
1. We performed 200 repetitions for each scenario, n was fixed as 5000. Results are represented in
Figure 3 and show that our procedure allows to control gFDR at the assumed level.

Additionally, Figure 3 compares gSLOPE to gLASSO with two choices of the smoothing param-
eter λ. Firstly, we used λ = λmean1 , which allows to control FDR under the total null hypothesis.
Secondly, for each of the iterations we chose λ based on leave-one-out cross-validation. It turns out
that the first of these choices becomes rather conservative when the number of truly relevant groups
increases. Then gLASSO has a smaller FDR but also a much smaller power than SLOPE (by a
factor of three for k = 60). Cross-validation works in the opposite way - it yields a large power
but also results in a huge proportion of false discoveries, which in our simulations systematically
exceeds 60%.
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Figure 3: Independent regressors and various group sizes: m = 1000, p = 7917 and n = 5000. Bars
correspond to ±2SE. Entries of design matrix were drawn from N (0, 1/n) distribution and truly relevant
signal, i, was generated such as ‖XIiβIi‖2 = 1

m

∑m
i=1B(m, li), where B(m, l) is defined in (F.4).
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Table 1: Coding for explanatory variables

genotype additive dummy variable X̃ dominance dummy variable Z̃

aa 2 0

aA 1 1

AA 0 0

2.8 Simulations in the context of Genome-Wide Association Studies

To test the performance of gSLOPE in the context of Genome-Wide Association Studies (GWAS)
we have used the North Finland Birth Cohort (NFBC) dataset, available in dbGaP with acces-
sion number phs000276.v2.p1 (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.
cgi?study_id=phs000276.v2.p1) and described in detail in [21]. The raw data contains 364 590
markers for 5 402 subjects. To obtain roughly independent SNPs this data set was initially screened
such that in the final data set the maximal correlation between any pair of SNPs does not exceed√

0.1 = 0.316. The reduced data set contains p = 26 233 SNPs.
The explanatory variables for our genetic model were defined in Table 1, where a denotes the

less frequent (variant) allele. In case when population frequencies of both alleles are the same,

variables X̃ and Z̃ are uncorrelated. In other cases correlations between these variables is different
from zero and can be very strong for rare genetic variants. Since each SNP is described by two
dummy variables, the full design matrix [X̃ Z̃] contains 52 466 potential regressors. This matrix
was then centered and standardized, so the columns of the final design matrix [X Z] have zero
mean and unit norm.

The trait values are simulated according to two scenarios. In Scenario 1 we simulate from an
additive model, where each of the causal SNPs influences the trait only through the additive dummy
variable in matrix X,

y = XβX + ε . (2.19)

Here ε ∼ N (0, I), the number of ‘causal’ SNPs k varies between 1 and 80 and each causal SNP
has an additive effect (non-zero components of βX) equal to 5 or −5, with P (βXi = 5) = P (βXi =
−5) = 0.5. In each of 100 iterations of our experiment causal SNPs were randomly selected from
the full set of 26 233 SNPs.

The additive model (2.19) assumes that for each of the SNPs the expected value of the trait for
the heterozygote aA is the average of expected trait values for both homozygotes aa and AA. This
idealistic assumption is usually not satisfied and many of the SNPs exhibit some dominance effects.
To illustrate the performance of gSLOPE in the presence of dominance effects we simulated data
according to Scenario 2;

y = [X Z]
[
βX
βZ

]
+ ε (2.20)

which differs from Scenario 1 by adding dominance effects (non-zero components of βZ), which for
each of k selected SNPs are sampled from the uniform distribution on[−5,−3]∪[3, 5]. The simulated
data sets were analyzed using three different approaches:

• gSLOPE with p = 26 233 groups, where each of the groups contains two explanatory variables,
describing the additive and the dominance effect of the same SNP,

• SLOPEX , where the regular SLOPE is used to search through the reduced design matrix X
(as in [9] or [11]),

• SLOPEXZ , where the regular SLOPE is used to search through the full design matrix [X Z].

In all versions of SLOPE we used the iterative procedure for estimation of σ and the sequence
λ heuristically adjusted to the case of the Gaussian design matrix, as implemented in the CRAN
packages SLOPE and grpSLOPE.
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Figure 4 provides the summary of this simulation study. Here FDR and power are calculated
at the SNP level. Specifically, in case of SLOPEXZ the SNP is counted as a one discovery if the
corresponding additive or the dominance dummy variable is selected.
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Figure 4: Simulations using real SNP genotypes: n = 5 402, p = 26 233. Power and gFDR are estimated
based on 100 iterations of each simulation scenario. Upper panel illustrates the situation where all causal
SNPs have only additive effects, while in lower panel each causal SNP has also some dominance effect.

As shown in Figure 4, for both of the simulated scenarios all versions of SLOPE control gFDR
for all considered values of k. When the data are simulated according to the additive model the
highest power is offered by SLOPEX , with the power of gSLOPE being smaller by approximately
13% over the whole range of k. However, in the presence of large dominance effects the situation is
reversed and gSLOPE offers the highest power, which systematically exceeds the power of SLOPEX
by the symmetric amount of 13%. In our simulations SLOPEXZ has intermediate performance and
does not substantially improve the power of SLOPEX in the presence of dominance effects. Thus
our simulations suggest that gSLOPE provides an information complementary to SLOPEX and
might be a useful tool in the context of Genome-Wise Association Studies.
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2.9 gSLOPE under GWAS application: real phenotype data

Finally, we have applied group SLOPE to identify SNPs associated with four lipid phenotypes avail-
able in NFBC dataset: high-density lipoproteins (HDL), low-density lipoproteins (LDL), triglyc-
erides (TG), and total cholesterol (CHOL). The data set contains genotypes of 364 590 SNPs for
5 402 individuals and was previously analyzed in [11] using regular SLOPE to search for additive
SNP effects. Before this analysis the data were reduced by applying the p-value threshold for single
marker t-tests and selecting representatives of strongly correlated SNPs, also based on p-values.
Since this pre-processing selects most promising SNPs by performing multiple testing on the full
set of p = 364590 SNPs, the sequence of the tuning parameters for SLOPE needs to be adjusted
to this value of p rather than to the number of selected representatives. The algorithm for this
analysis is implemented in R package geneSLOPE and its details are explained in [11]. According
to extensive simulation study and real data analysis reported in [11], geneSLOPE allows to control
FDR for the analysis with full size GWAS data.

In our data analysis we used three versions of SLOPE: geneSLOPE for additive effects (as in
[11]), geneSLOPEXZ , with the design matrix extended by inclusion of dominance dummy variables,
and gene group SLOPE (geneGSLOPE). In geneSLOPEXZ and geneGSLOPE representative SNPs
were selected based on the one way ANOVA tests. For all these procedures the pre-processing was
based on p-value threshold p < 0.05 and the correlation cutoff ρ < 0.3, which allowed to reduce the
data set to roughly 8500 of interesting representative SNPs. For the convenience of the reader, the
Procedure 3 for the full geneGSLOPE analysis is provided below.

Procedure 3 geneGSLOPE procedure

Input: r ∈ (0, 1), π ∈ (0, 1]

Screen SNPs:
(1) For each SNP calculate independently the p-value for the ANOVA test with the null hypoth-
esis, H0 : µaa = µaA = µAA.
(2) Define the set B of indices corresponding to SNPs whose p-values are smaller than π.

Cluster SNPs:
(3) Select the SNP j in B with the smallest p-value and find all SNPs whose Pearson correlation
with this selected SNP is larger than or equal to r.
(4) Define this group as a cluster and SNP j as the representative of the cluster. Include SNP j
in S, and remove the entire cluster from B.
(5) Repeat steps (3)-(4) until B is empty. Denote by m number of all clumps (this is also the
number of elements in S).

Selection:
(6) Apply the iterative gSLOPE method (i.e. gSLOPE with σ estimation and correction for
independent regressors) on XS , being matrix X restricted to columns corresponding to the set
S of selected SNPs. Here, the tuning parameters, vector λ, is defined as in Procedure 1, with p
being the number of all initial SNPs, and then this vector is restricted only to first m coefficients.
(7) Representatives which were selected indicate the selection of entire clumps.

Results in the context of number of discoveries given by geneSLOPE, geneSLOPEXZ and
geneGSLOPE are summarized in Table 2, where we can observe that both geneSLOPE and geneSLOPEXZ ,
gave identical results for LDL, CHOL and TG. Compared to these methods geneGSLOPE did not
reveal any new response-related SNPs for LDL and CHOL. Actually, for these two traits geneGS-
LOPE missed some SNPs detected by the other two methods.

A different situation takes place for TG, where geneGSLOPE identifies 6 additional SNPs as
compared to the other two methods. All these detections have a similar structure, showing a
significant recessive effect of the minor allele. In all these cases the minor allele frequency was
smaller than 0.1. The detection of such ”rare” recessive effects by the simple linear regression
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HDL LDL TG CHOL

geneSLOPE 7 6 2 5

geneSLOPEXZ 8 6 2 5

geneGSLOPE 8 4 8 4

New discoveries: geneSLOPEXZ 1 0 0 0

New discoveries: geneGSLOPE 2 0 6 0

Table 2: Number of discoveries in real data analysis

model is rather difficult, since the regression line adjusts mainly to the two prevalent genotype
groups and is almost flat [19].

In case of HDL all three versions of SLOPE gave different results. geneSLOPEXZ identifies one
new SNP as compared to geneSLOPE, while geneGSLOPE identifies one more SNP and misses
one of the discoveries obtained by other two methods. In Figure 5 we compare two exemplary
discoveries: one detected at the same time by geneSLOPE and geneGSLOPE (known discovery)
and one detected only by geneGSLOPE (new discovery). This example clearly shows the additive
effect of the previously detected SNP and the recessive character of the second SNP. In case of new
discovery there are only 5 individuals in the last genotype group, which makes the change in the
mean not detectable by simple linear regression.
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Figure 5: Comparison of discovery detected by both geneSLOPE and geneGSLOPE (known discovery),
and discovery detected only by geneGSLOPE (new discovery).

The results of real data analysis agree with results of simulations. They show that geneGSLOPE
has a lower power than geneSLOPE for detection of additive effects but can be very helpful in
detecting rare recessive variants. Thus these two methods are complementary to each other and
can be used together to enhance the power of detection of influential genes.

3 Discussion

Group SLOPE is a new convex optimization procedure for selection of important groups of explana-
tory variables, which can be considered as a generalization of group LASSO and of SLOPE. In this
article we provide an algorithm for solving group SLOPE and discuss the choice of the sequence
of regularizing parameters. Our major focus is the control of group FDR, which can be obtained
when variables in different groups are orthogonal to each other or they are stochastically inde-
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pendent and the signal is sufficiently sparse. After some preprocessing of the data such situations
occur frequently in the context of genetic studies, which in this paper serve as a major example
of applications. While we concentrated mainly on using gSLOPE to group dummy variables cor-
responding to different effects of the same SNP, gSLOPE can be used to group SNPs based on
biological function, physical location etc. We also expect this method to be advantageous in the
context of identification of groups of rare genetic variants, where considering their joint effect on
phenotype should substantially increase the power of detection.

The major purpose of controlling FDR rather than absolutely eliminating false discoveries is the
wish to increase the power of detection of signals which are comparable to the noise level. As shown
by a variety of theoretical and empirical results, this allows SLOPE to obtain an optimal balance
between the number of false and true discoveries and leads to very good estimation and predictive
properties (see e.g. [10], [9] or [26]). Our Theorem 2.6 illustrates that these good estimation
properties are inherited by group SLOPE.

We provide the regularizing sequence λmax, which provably controls gFDR in case when variables
in different groups are orthogonal. Additionally, we propose its relaxation λmean, which according
to our extensive simulations controls ”average” gFDR, where the average is with respect to all
possible signal placements. This sequence can be easily modified taking into account the prior
distribution on the signal placement. Such ”Bayesian” version of gSLOPE and the proof of control
of the respective average gFDR remains an interesting topic for a further research.

Another important topic for a further research is the formal proof of gFDR control when variables
in different groups are independent and setting precise limits on the sparsity levels under which it can
be done. Asymptotic formulas, which allow for very accurate prediction of FDR for LASSO under
Gaussian design are provided in [25]. We expect that similar results can be obtained for SLOPE
and gSLOPE and generalized to the case of random matrices, where variables are independent and
come from sub-Gaussian distributions. However, the technical complexity of results reported in
[25] illustrates that this task is rather challenging. An alternative approach for the perfect gFDR
control under random designs is to couple gSLOPE with the new knock-off procedure proposed in
[12]. We expect that such a combination should allow to increase the power of detection of relevant
features, as compared to other methods currently used with knock-offs.

While we concentrated on control of FDR in case when groups of variables are roughly orthogonal
to each other, it is worth mentioning that original SLOPE has very interesting properties also in
case when regressors are strongly correlated. As shown e.g. in [14], the Sorted L-One norm has a
tendency to average estimated regression coefficients over groups of strongly correlated predictors,
which enhances the predictive properties. This also allows not to lose important predictors due to
their correlation with other features. We expect similar properties to hold for gSLOPE but the
investigation of the properties of gSLOPE when variables in different groups are strongly correlated
remains an interesting topic for a further research.
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A Jλ norm properties

For nonnegative, nonincreasing sequence λ1 ≥ . . . ≥ λp ≥ 0 consider function Rp 3 b 7−→ Jλ(b) ∈ R
given by Jλ(b) =

∑p
i=1 λi · |b|(i), where |b|(1) ≥ . . . ≥ |b|(p) is the vector of sorted absolute values.

Proposition A.1. If a, b ∈ Rp are such that |a| � |b|, then |a|(·) � |b|(·).
Proof. Without loss of generality we can assume that a and b are nonnegative and that it occurs
a1 ≥ . . . ≥ ap. We will show that ak ≤ b(k) for k ∈ {1, . . . , p}. Fix such k and consider the set
Sk := {bi : bi ≥ ak}. It is enough to show that |Sk| ≥ k. For each j ∈ {1, . . . , k} we have

bj ≥ aj ≥ ak =⇒ bj ∈ Sk,

what proves the last statement. �

Corollary A.2. Let a ∈ Rp, b ∈ Rp and |a| � |b| then Proposition (A.1) instantly gives that
Jλ(a) ≤ Jλ(b), since Jλ(a) = λT|a|(·) ≤ λT|b|(·) = Jλ(b).

Proposition A.3. For fixed sequence λ1 ≥ . . . ≥ λp ≥ 0, let b ∈ Rp be such that b � 0 and bj > bl
for some j, l ∈ {1, . . . , p}. For 0 < ε ≤ (bj − bl)/2, define bε ∈ Rp by conditions (bε)l := bl + ε,
(bε)j := bj − ε and (bε)i := bi for i /∈ {j, l}. Then Jλ(bε) ≤ Jλ(b).

Proof. Let π : {1, . . . , p} −→ {1, . . . , p} be permutation such as
∑p
i=1 λi(bε)(i) =

∑p
i=1 λπ(i)(bε)i for

each i in {1, . . . , p} and λπ(j) ≥ λπ(l). From the rearrangement inequality (Theorem 368 in [17]),

Jλ(b)− Jλ(bε) =

p∑
i=1

λib(i) −
p∑
i=1

λi(bε)(i) =

p∑
i=1

λib(i) −
p∑
i=1

λπ(i)(bε)i

≥
p∑
i=1

λπ(i)bi −
p∑
i=1

λπ(i)(bε)i = ε
(
λπ(j) − λπ(l)

)
≥ 0.

(A.1)

�

B Numerical algorithm

In this section we will discuss the convexity of the objective function and the algorithm for comput-
ing the solution to gSLOPE problem (2.2). Our optimization method is based on the fast algorithm
for evaluation of the proximity operator (prox) for sorted `1 norm, which was derived in [10].

B.1 Convexity of the objective function

To show that the objectives in problems (2.2) and (2.5) are convex functions, we will prove the
following propositions

Proposition B.1. Function Jλ,W,I(b) := Jλ

(
W JbKI

)
is a norm for any nonnegative, nonincreasing

sequence {λi}mi=1 containing at least one nonzero element, partition I of the set {1, . . . , p̃} and
diagonal matrix W with positive elements on diagonal.

Proof. It is easy to see that Jλ,W,I(c) = 0 if and only if c = 0 and that for any scalar α ∈ R it occurs
Jλ,W,I(αc) = |α|Jλ,W,I(c). We will show that Jλ,W,I satisfies the triangle inequality. Let b, c be
any vectors from Rp̃. From the positivity of wi’s we have W Ja+ bKI � W JaKI +W JbKI. Therefore,
Corollary A.2 yields

Jλ,W,I
(
a+ b

)
= Jλ

(
W Ja+ bKI

)
≤ Jλ

(
W JaKI +W JbKI

)
≤ Jλ

(
W JaKI

)
+ Jλ

(
W JbKI

)
= Jλ,W,I(a) + Jλ,W,I(b) ,

(B.1)

since Jλ is a norm. �
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Proposition B.2. Function Jλ

(
W JbKX,I

)
is a seminorm for any nonnegative, nonincreasing se-

quence {λi}mi=1, partition I of the set {1, . . . , p}, design matrix X ∈ M(n, p) and diagonal matrix
W with positive elements on diagonal.

Proof. Clearly, Jλ

(
W JαbKX,I

)
= |α|Jλ

(
W JbKX,I

)
, for any scalar α ∈ R. Moreover, for any a, b ∈

Rp, it holdsW Ja+ bKX,I �W JaKX,I+W JbKX,I , and the triangle inequality could be proved similarly
as in the previous proposition. �

B.2 Proximal gradient method

Consider unconstrained optimization problem of form

minimize
b

f(b) = g(b) + h(b), (B.2)

where g and h are convex functions and g is differentiable (for example LASSO and SLOPE are
of such form). There exist efficient methods, namely proximal gradient algorithms, which could
be applied to find numerical solution for such objective functions. To design efficient algorithms,
however, h must be prox-capable, meaning that there is known fast algorithm for computing the
proximal operator for h,

proxth(y) := arg min
b

{
1

2t
‖y − b‖22 + h(b)

}
, (B.3)

for each y ∈ Rp and t > 0. The iterative algorithm works as follows. Suppose that in k step b(k) is
the current guess. Then, guess b(k+1) is given by

b(k+1) := arg min
b

{
g
(
b(k)
)

+
〈
∇g
(
b(k)
)
, b− b(k)

〉
+

1

2t
‖b− b(k)‖22 + h(b)

}
. (B.4)

The two first terms in objective function in (B.4) are Taylor approximation of g, third addend is a
proximity term which is responsible for searching an update reasonably close and t can be treated
as a step size.

Problem (B.4) could be reformulated to

b(k+1) := arg min
b

{
1

2

∥∥∥b(k) − t∇g
(
b(k)
)
− b
∥∥∥2

2
+ th(b)

}
, (B.5)

hence b(k+1) = proxth

(
b(k) − t∇g

(
b(k)
))

, which justifies the need for existence of a fast algorithm

computing values of the proximal operator. In each step the value of t could be changed raising the
sequence {ti}∞i=1. In situation when g(b) = 1

2‖y −Xb‖
2
2, we get the following algorithm.

Procedure 4 Proximal gradient algorithm

input: b[0] ∈ Rp, k=0
while ( Stopping criteria are not satisfied) do

1. b[k+1] = proxtkhλ

(
b[k] − tkXT

(
Xb[k] − y

))
;

2. k ← k + 1.
end while

It is known that ti’s could be selected in different ways to ensure that f(b(k)) converges to the
optimal value [6], [28].

20



B.3 Proximal operator for gSLOPE

Let I = {I1, . . . , Im}, li be rank of submatrix XIi for i = 1, . . . ,m and λ = (λ1, . . . , λm)T be a
vector satisfying λ1 ≥ . . . ≥ λm ≥ 0. We will now employ the proximal gradient method to find the
numerical solution to (2.2). As stated in subsection 2.1, we can focus on the equivalent optimization
problem (2.5), namely we aim to solve problem

b∗ := arg min
b

{
1

2

∥∥y − X̃b∥∥2

2
+ σJλ

(
W JbKI

)}
, (B.6)

with I = {I1, . . . , Im} being a partition of the set {1, . . . , p̃} where p̃ = l1 + . . .+ lm.
Without loss of generality we assume that σ = 1. Since considered objective is of form (B.2),

we can apply proximal gradient algorithm, provided that norm Jλ,I,W is prox-capable. To compute
the proximal operator for Jλ,I,W we we must be able to minimize 1

2t‖y − b‖
2
2 + Jλ,I,W (b), for any

y ∈ Rp̃ and t > 0. Multiplying objective by positive number, t, does not change the solution. Such
operation leads to new objective function, 1

2‖y − b‖
2
2 + Jtλ,I,W (b). This shows that it is enough to

derive a fast algorithm for finding the numerical solution to the problem

proxJ(y) := arg min
b

{
1

2
‖y − b‖22 + Jλ,I,W (b)

}
, (B.7)

which could be applicable to arbitrary sequence λ1 ≥ . . . ≥ λm ≥ 0.
We will start with situation when W is identity matrix. Simply, then proxJ(y) is proximal

operator for function Jλ,I(b) := Jλ(JbKI). In such a case computing (B.7) could be immediately
reduced to finding prox for Jλ norm, since thanks to (2.8) we have c∗ = arg min

c

{
1
2

∥∥JyKI − c∥∥2

2
+ Jλ(c)

}
(
proxJ(y)

)
Ii

= c∗i
(
‖yIi‖2

)−1
yIi , i = 1, . . . ,m

. (B.8)

Consequently, proxJ(y) could be obtained by applying two steps procedure: find c∗ by using fast
prox algorithm for Jλ for vector JyKI, and compute proxJ(y) by applying simple calculus to c∗.

Consider now general situation with fixed positive numbers w1, . . . , wm and define diagonal
matrix M by conditions MIi,Ii := w−1

i Ili , for i = 1, . . . ,m. Then

Jλ,I,W (b) = Jλ
(
W JbKI

)
= Jλ

(
JM−1bKI

)
= Jλ,I

(
M−1b

)
. (B.9)

Since M is nonsingular, we can substitute η := M−1b and consider equivalent formulation of (B.6) η∗ := arg min
η

{
1
2‖y − X̃Mη‖22 + Jσλ,I

(
η
)}
,

b∗ = Mη∗
. (B.10)

Therefore, after modifying the design matrix, gSLOPE can be always recast as problem with unit
weights. Since Jλ,I is prox-capable, applying proximal gradient method to (B.10) is straightforward.
To implement the method introduced in this article, we have used a modified version of Procedure
4, the accelerated proximal gradient method known as FISTA [6]. In particular FISTA gives a
precise procedure for choosing steps sizes, to achieve a fast convergence rate. To derive proper
stopping criteria, we have considered dual problem to gSLOPE, described in the following section,
and employed the strong duality property.

B.4 Dual norm and conjugate of grouped sorted `1 norm

Let f : Rp → R be a norm. We will use notation fD to refer to the dual norm to f , i.e function
defined as fD(x) := max

b

{
xTb : f(b) ≤ 1

}
. It could be shown (see [9]), that the set Cλ, defined
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as Cλ :=
{
x ∈ Rp :

∑k
i=1 |x|(i) ≤

∑k
i=1 λi, k = 1, . . . , p

}
, is unit ball of the dual norm to Jλ for

any nonnegative, nonincreasing sequence {λi}pi=1 with at least one nonzero element. We will now
consider the dual norm to Jλ,I,W (b) = Jλ

(
W JbKI

)
. It holds

JDλ,I,W (x) = max
b

{
xTb : Jλ,I,W (b) ≤ 1

}
= max

b

{
xTb : Jλ(W JbKI) ≤ 1

}
=

max
b,c

{
xTb : Jλ(c) ≤ 1, c = W JbKI

}
= max

c

{
xTbc : Jλ(c) ≤ 1, c � 0

}
,

(B.11)

where bc is defined as bc := arg max
b

{
xTb : c = W JbKI

}
. This problem is separable and for each i

we have bcIi = arg max
{
xTIibIi : c2i = w2

i ‖bIi‖22
}

. Applying the Lagrange multiplier method quickly

yields xTIib
c
Ii

= ciw
−1
i ‖xIi‖2. Consequently,

JDλ,I,W (x) = max
c

{
(W−1JxKI)Tc : Jλ(c) ≤ 1, c � 0

}
=

max
c

{
(W−1JxKI)Tc : Jλ(c) ≤ 1

}
= JDλ

(
W−1JxKI

)
.

(B.12)

Therefore,
{
x : JDλ,I,W (x) ≤ 1

}
=
{
x : JDλ (W−1JxKI) ≤ 1

}
=
{
x : W−1JxKI ∈ Cλ

}
. Since the

conjugate of norm is equal to zero for arguments from unit ball of dual norm, and equal to infinity
otherwise, we immediately get

Corollary B.3. The conjugate function for Jλ,I,W is the function J∗λ,I,W defined as

J∗λ,I,W (x) =

{
0, W−1JxKI ∈ Cλ
∞, otherwise

. (B.13)

B.5 Stopping criteria for numerical algorithm

Without loss of generality assume that σ = 1. We will start with optimization problem in (B.10),
namely

minimize
η

f(η) =
1

2
‖y − X̃Mη‖22 + Jλ

(
JηKI

)
(B.14)

for JηKI =
(
‖ηI1‖2, . . . , ‖ηIm‖2

)T
and MIi,Ii = 1

wi
Ili , i = 1, . . . ,m. This problem could be written

in equivalent form

minimize
η,r,c

1
2‖r‖

2
2 + c

s.t.

{
Jλ,I(η)− c ≤ 0

y − r − X̃Mη = 0

(B.15)

(
notice that for (η∗, r∗, c∗) being solution, it must occurs c∗ = Jλ,I(η

∗)
)
. Since (B.15) is convex and

(η0, r0, c0), for η0 = 0, r0 = y and c0 = 1, is strictly feasible, the strong duality holds. Lagrange
dual function for this problem is given by

g(µ, ν) = inf
η,r,c

{
1

2
‖r‖22 + c+ µT

(
y − r − X̃Mη

)
+ ν
(
Jλ,I(η)− c

)}
=

µTy + inf
r

{
1

2
‖r‖22 − µTr

}
+ inf

c

{
c− νc

}
+ inf

η

{
− µTX̃Mη + νJλ,I(η)

}
.

(B.16)

Now, since the minimum of 1
2‖r‖

2
2 − µTr is taken for r = µ, we have

g(µ, ν) = µTy − 1

2
‖µ‖22 + inf

c

{
c− νc

}
− J∗νλ,I

(
(X̃M)Tµ

)
. (B.17)
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Then ν∗ = 1 and from Corollary B.3, the dual problem to (B.15) is equivalent to

maximize
µ

µTy − 1
2‖µ‖

2
2

s.t. JMX̃TµKI ∈ Cλ
. (B.18)

Let (η∗, r∗, c∗) be primal and (µ∗, 1) be dual solution to (B.15). Obviously, µ∗ = r∗ = y − X̃Mη∗

and c∗ = Jλ,I(η
∗). Furthermore, from strong duality we have

1

2
‖y − X̃Mη∗‖22 + Jλ,I(η

∗) = (y − X̃Mη∗)Ty − 1

2
‖y − X̃Mη∗‖22, (B.19)

which gives (X̃Mη∗)T(y − X̃Mη∗) = Jλ,I
(
η∗
)
. Now, for current approximate η[k] of solution to

(B.14), achieved after applying proximal gradient method, we define the current duality gap for k
step as

ρ(η[k]) = (X̃Mη[k])T(y − X̃Mη[k])− Jλ,I
(
η[k]
)

(B.20)

and we will determine the infeasibility of µ[k] := y − X̃Mη[k] by using the measure

infeas
(
µ[k]
)

:= max
{
JDλ,I

(
MX̃Tµ[k]

)
− 1, 0

}
(B.21)

To define the stopping criteria we have applied the widely used procedure: treat ρ(η[k]) as indicator
telling how far η[k] is from true solution and terminate the algorithm when this difference and
infeasibility measure are sufficiently small. Summarizing, we have derived algorithm according to
scheme

Procedure 5 group SLOPE

input: infeas.tol: positive number determining the tolerance for infeasibility;
dual.tol: positive number determining the tolerance for duality gap;
k := 0, η[0], µ[0] := µ(η[0]), infeas[0] := infeas

(
µ[0]
)
, ρ[0] := ρ(η[0]);

while ( infeas[k] > infeas.tol or ρ[k] > dual.tol) do
1. k ← k + 1;
2. get η[k] from Procedure 4;
3. µ[k] := µ(η[k]);

4. infeas[k] := infeas
(
µ[k]
)
, ρ[k] := ρ(η[k]);

end while
βgS := Mη[k].

C Alternative representation in the orthogonal case

Suppose that the experiment matrix is orthogonal at group level, i.e. it holds XT
Ii
XIj = 0, for

every i, j ∈ {1, . . . ,m}, i 6= j. In such a case, X̃ in problem (2.5) is orthogonal matrix, i.e.

X̃TX̃ = Ip̃. If n = p̃, i.e. X̃ is a square and orthogonal matrix, we also have X̃X̃T = Ip̃ and it

obeys ‖X̃Tb‖22 = bTX̃X̃Tb = ‖b‖22 for b ∈ Rp̃. For the general case with n ≥ p̃, we can extend X̃

to a square matrix by adding new orthonormal columns and defining X̃C :=
[
X̃ C

]
, where C is

composed of vectors (columns) being some complement to orthogonal basis of Rp̃. For y ∈ Rn and
b ∈ Rp̃ we get:

∥∥∥y − X̃b∥∥∥2

2
=
∥∥∥X̃T

C

(
y − X̃b

)∥∥∥2

2
=

∥∥∥∥∥
[
X̃T

CT

]
y −

[
b

0

]∥∥∥∥∥
2

2

=
∥∥∥X̃Ty − b

∥∥∥2

2
+ const, (C.1)
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which implies that under orthogonal situation the optimization problem in (2.5) could be recast as

arg min
b

{
1

2

∥∥ỹ − b∥∥2

2
+ σJλ

(
W JbKI

)}
, (C.2)

for ỹ := X̃Ty. After introducing new variable to problem (C.2), namely c ∈ Rm, we get the
equivalent formulation

arg min
b,c

{
1

2

∥∥ỹ − b∥∥2

2
+ σJλ(c) : c = W JbKI

}
. (C.3)

Proposition C.1. Let f(b, c) : Rp × Rm −→ R be any function and consider optimization prob-
lem arg min

b,c

{
f(b, c) : (b, c) ∈ D

}
with unique solution (b∗, c∗) and feasible set D ⊂ Rp × Rm.

Define Dc :=
{
c ∈ Rm| ∃b ∈ Rp : (b, c) ∈ D

}
. Suppose that for any c ∈ Dc, there exists

unique solution, bc, to problem arg min
b

{
f(b, c) : (b, c) ∈ D

}
. Moreover, assume that the solution

to arg min
c

{
f(bc, c) : c ∈ Dc

}
is unique. Then, it occurs c∗ = arg min

c

{
f(bc, c) : c ∈ Dc

}
b∗ = bc

∗ . (C.4)

Proof. Suppose that there exists (b0, c0) ∈ D, such that f(b0, c0) < f(b∗, c∗), where b∗ and c∗ are
defined as in (C.4). We have

f(bc
0

, c0) ≤ f(b0, c0) < f(b∗, c∗) = f(bc
∗
, c∗), (C.5)

which leads to the contradiction with definition of c∗. �

We will apply the above proposition to (C.3). Let (b∗, c∗) be solution to (C.3). Then b∗ is also
solution to convex problem (C.2) with strictly convex objective function and therefore is unique.
Since c∗ = W Jb∗KI, c∗ is unique as well. In considered situation Dc =

{
c : c � 0

}
. We will start

with solving the problem bc = arg min
b

{
1
2

∥∥ỹ − b∥∥2

2
+ σJλ(c) : c = W JbKI

}
. The additive constant

in the objective could be omitted. Moreover, for each i ∈ {1, . . . ,m} we have

bcIi = arg min
bIi

{∥∥ỹIi − bIi∥∥2

2
: w2

i ‖bIi‖22 − c2i = 0
}
. (C.6)

The Lagrange Multipliers method quickly yields bcIi = (wi‖ỹIi‖2)−1ciỹIi and, consequently, it holds∥∥ỹIi − bcIi∥∥2

2
=
(
‖ỹIi‖2 − w−1

i ci
)2
. From Proposition C.1, we get the following procedure for solution,

b∗, to problem (C.2)  c∗ = arg min
c

{
1
2

∑m
i=1

(
‖ỹIi‖2 − w−1

i ci
)2

+ Jσλ(c)
}

b∗Ii = c∗i
(
wi‖ỹIi‖2

)−1
ỹIi , i = 1, . . . ,m

(C.7)

(notice that we applied Proposition D.2 to omit the constraints c � 0 and that the objective
function in definition of c∗ is strictly feasible, which guarantees the unique solution. The above
procedure yields conclusion, that indices of groups estimated by gSLOPE as relevant coincide
with the support of solution to SLOPE problem with diagonal matrix having inverses of weights
w1, . . . , wm on diagonal. Moreover, after defining β̃ ∈ Rp̃ by conditions β̃Ii := RiβIi , i = 1, . . . ,m,

we simply have Jβ̃KI = JβKX,I and

ỹ = X̃T y = X̃T

( m∑
i=1

UiRiβIi + z

)
= X̃T

(
X̃β̃ + z

)
= β̃ + X̃T z, hence ỹ ∼ N

(
β̃, σ2Ip̃

)
. (C.8)
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Summarizing, if the assumption about the orthogonality at groups level is in use, one can
consider the statistically equivalent model ỹ ∼ N

(
β̃, σ2Ip̃

)
, define truly relevant groups via the

support of Jβ̃KI and treat the vector Jb∗KI =
( c∗1
w1
, . . . ,

c∗m
wm

)
as an gSLOPE estimate of group effect

sizes, where b∗ and c∗ are defined in (2.8), i.e. it holds Jb∗KI = JβgSKX,I for any solution βgS to
problem (2.2).

D SLOPE with diagonal experiment matrix

Let y ∈ Rp be fixed vector and d1, . . . , dp be positive numbers. We will use notation diag(d1, . . . , dp)
to define the diagonal matrix D such as Di,i = di for i = 1, . . . , p. Denote d := (d1, . . . , dp)

T and
let b∗ be the solution to SLOPE optimization problem with diagonal experiment matrix, i.e. the
solution to

minimize
b

f(b) :=
1

2

∥∥y −Db∥∥2

2
+ Jλ

(
b
)
. (D.1)

Since f is strictly convex function, the solution to (D.1) is unique. It is easy to observe, that
changing sign of yi corresponds to changing sign at ith coefficient of solution as well as permuting
coefficients of y together with d′is permutes coefficients of b∗. We will summarize this observations
below without proofs.

Proposition D.1. Let π : {1, . . . , p} −→ {1, . . . , p} be given permutation with Pπ as corresponding
matrix. Then:
i) PπDP

T
π = diag(dπ(1), . . . , dπ(p));

ii) bπ := Pπb
∗ is solution to minimize

b
fπ(b) := 1

2

∥∥∥Pπy − PπDPT
π b
∥∥∥2

2
+ Jλ(b);

iii) bS := Sb∗ is solution to minimize
b

fS(b) := 1
2

∥∥∥Sy −Db∥∥∥2

2
+ Jλ(b),

where S is diagonal matrix with entries on diagonal coming from set {−1, 1}.

Proposition D.2. If y � 0, then b∗ � 0.

Proof. Suppose that for some r it occurs br < 0 for any b ∈ Rp. If yr = 0, then taking b̂ defined as

b̂i :=

{
0, i = r

bi, otherwise
, we get |̂b| � |b| and Corollary A.2 gives Jλ(̂b) ≤ Jλ(b). Consequently,

f(b)− f (̂b) ≥ 1

2

∥∥y −Db∥∥2

2
− 1

2

∥∥y −Db̂∥∥2

2
=

1

2
(yr − drbr)2 − 1

2
(yr + dr b̂r)

2 =
1

2
d2
rb

2
r > 0.

Hence b could not be the solution. Now consider case when yr > 0 and define b̂ by putting

b̂i :=

{
−br, i = r

bi, otherwise
. Then we have Jλ(b) = Jλ(̂b) and

f(b)− f (̂b) =
1

2
(yr − drbr)2 − 1

2
(yr + drbr)

2 = −2yrdrbr > 0.

and, as before, b could not be optimal. �

Proposition D.3. Let b∗ be the solution to problem (D.1), {yi}pi=1 be nonnegative sequence, {di}pi=1

be the sequence of positive numbers and assume that

d1y1 ≥ . . . ≥ dpyp. (D.2)

If b∗ has exactly r nonzero entries for r > 0, then the set {1, . . . , r} corresponds to the support of
b∗.
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Proof. It is enough to show that(
j ∈ {2, . . . ,m}, b∗j 6= 0

)
=⇒ b∗j−1 6= 0.

Suppose that this is not true. From Proposition D.2 we know that b∗ is nonnegative, hence we can
find i from {2, . . . ,m} such as b∗j > 0 and b∗j−1 = 0. For ε ∈

(
0, b∗j/2] define vector bε by putting

(bε)j−1 := ε, (bε)j := b∗j − ε and (bε)i := b∗i for i /∈ {j, l}. From Proposition A.3 we have that
Jλ(bε) ≤ Jλ(b∗), which gives

f(b∗)− f(bε) ≥
1

2

(
yj−1 − dj−1b

∗
j−1

)2
+

1

2

(
yj − djb∗j

)2
− 1

2

(
yj−1 − dj−1bε(j − 1)

)2 − 1

2

(
yj − djbε(j)

)2
=

ε

(
A−

d2
j−1 + d2

j

2
· ε

)
,

for A := (yj−1dj−1 − yjdj) + d2
jb
∗
j > 0.

(D.3)

Therefore, we can find ε > 0 such as f(b∗) > f(bε), which contradicts the optimality of b∗. �

Consider now problem (D.1) with arbitrary sequence {yi}pi=1. Suppose that b∗ has exactly r > 0
nonzero coefficients and that π : {1, . . . , p} −→ {1, . . . , p} is permutation which gives the order of
magnitudes for Dy, i.e. dπ(1)|y|π(1) ≥ . . . ≥ dπ(p)|y|π(p). Basing on our previous observations, we
get important

Corollary D.4. If b∗ is the solution to (D.1) having exactly r > 0 nonzero coefficients and π is
permutation which places components of D|y| in a nonincreasing order, i.e. dπ(i)|y|π(i) = |Dy|(i)
for i = 1, . . . , p, then the support of b∗ is composed of the set {π(1), . . . , π(r)}.

The next three lemmas were proven in [10] in situation when d1 = . . . = dp = 1. We will follow
the reasoning from this paper to prove the generalized claims. The main difference is that in general
case the solution to considered problem (D.1) does not have to be nonincreasingly ordered, under
assumption that d1y1 ≥ . . . ≥ dpyp ≥ 0 (which is the case for d1 = . . . = dp = 1). This makes that
generalizations of proofs presented in [10] are not straightforward.

Lemma D.5. Consider nonnegative sequence {yi}pi=1 and sequence of positive numbers {di}pi=1

such as d1y1 ≥ . . . ≥ dpyp. If b∗ is solution to problem (D.1) having exactly r nonzero entries, then
for every j ≤ r it holds that

r∑
i=j

(diyi − λi) > 0 (D.4)

and for every j ≥ r + 1
j∑

i=r+1

(diyi − λi) ≤ 0. (D.5)

Proof. From Proposition D.3 we know that b∗i > 0 for i ∈ {1, . . . , r}. Let us define

b̃i :=

{
b∗i − h, i ∈ {j, . . . , r}

b∗i , otherwise.
,

where we restrict only to sufficiently small values of h, so as to the condition b̃i > 0 is met for all
i from {j, . . . , r}. For such h we have b∗(r+1) = . . . = b∗(p) = b̃(r+1) = . . . = b̃(p) = 0. Therefore
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there exists permutation π : {1, . . . , r} −→ {1, . . . , r} such as
∑r
i=1 λib̃(i) =

∑r
i=1 λπ(i)b̃i. For such

permutation we have

Jλ(b∗)− Jλ(̃b) =

r∑
i=1

λib
∗
(i) −

r∑
i=1

λib̃(i) =

r∑
i=1

λib
∗
(i) −

r∑
i=1

λπ(i)b̃i

≥
r∑
i=1

λπ(i)b
∗
i −

r∑
i=1

λπ(i)b̃i = h

r∑
i=j

λπ(i) ≥ h
r∑
i=j

λi,

(D.6)

where the first inequality follows from the rearrangement inequality and second is the consequence
of monotonicity of {λi}pi=1. We also have

‖y −Db∗‖22 − ‖y −Db̃‖22 =

r∑
i=j

(yi − dib∗i )2 −
r∑
i=j

(yi − dib∗i + dih)2

= 2h

r∑
i=j

(d2
i b
∗
i − diyi)− h2

r∑
i=j

d2
i .

(D.7)

Optimality of b∗, (D.6) and (D.7) yield

0 ≥ f(b∗)− f (̃b) ≥ h
r∑
i=j

(d2
i b
∗
i − diyi + λi)−

1

2
h2

r∑
i=j

d2
i , (D.8)

for each h from the interval [0, ε], where ε > 0 is some (sufficiently small) value. This gives∑r
i=j(d

2
i b
∗
i − diyi + λi) ≤ 0 and consequently

r∑
i=j

(diyi − λi) ≥
r∑
i=j

d2
i b
∗
i > 0. (D.9)

To prove claim (D.5), consider a new sequence defined as b̃i :=

{
h, i ∈ {r + 1, . . . , j}
b∗i , otherwise.

. We will

restrict our attention only to 0 < h < min{b∗i : i ≤ r}, so as to b∗(·) and b̃(·) are given by applying

the same permutation to b∗ and b̃, respectively. Moreover, for each i from {r + 1, . . . , j} it holds

b̃(i) = b̃i = h. From optimality of b∗

0 ≥ f(b∗)− f (̃b) =
1

2

j∑
i=r+1

(
y2
i − (yi − dih)2

)
−

j∑
i=r+1

λih = h

j∑
i=r+1

(diyi − λi)−
1

2
h2

j∑
i=r+1

d2
i ,

for all considered h, which leads to (D.5). �

Lemma D.6. Let b∗ be solution to problem (D.1) with nonnegative, nonincreasing sequence {λi}pi=1.
Let R(b∗) be number of all nonzeros in b∗ and r ≥ 1. Then, for any i ∈ {1, . . . , p}{

y : b∗i 6= 0 and R(b∗) = r
}

=
{
y : di|yi| > λr and R(b∗) = r

}
.

Proof. Suppose that b∗ has r > 0 nonzero coefficients and let π be permutation which places
components of D|y| in a nonincreasing order. From Corollary D.4 it holds that {i : b∗i 6= 0} =

{π(1), . . . , π(r)}. Define ỹ := PπSy and D̃ := PπDP
T
π , for S being the diagonal matrix such as

Si,i = sgn(yi). Then PπSb
∗ is solution to problem

arg min
b

1

2

∥∥∥ỹ − D̃b∥∥∥2

2
+ Jλ(b), (D.10)
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which satisfies the assumptions of Lemma D.5. Taking j = r in (D.4) and j = r + 1 in (D.5) we
immediately get

dπ(r)|y|π(r) > λr and dπ(r+1)|y|π(r+1) ≤ λr+1. (D.11)

We will now show that
{
y : b∗i 6= 0 and R(b∗) = r

}
⊂
{
y : di|yi| > λr and R(b∗) = r

}
.

Fix i ∈ {1, . . . , p} and suppose that b∗i is nonzero coefficient. Then i ∈ {π(1), . . . , π(r)} and
therefore di|yi| ≥ dπ(r)|y|π(r) > λr, thanks to first inequality from (D.11). To show the second
inclusion assume that di|yi| > λr. Then, from the second inequality in (D.11), di|yi| > λr+1 ≥
dπ(r+1)|y|π(r+1), which gives i ∈ {π(1), . . . , π(r)}. �

Lemma D.7. For given sequence {yi}pi=1, sequence of positive numbers {di}pi=1, nonincreasing,
nonnegative sequence {λi}pi=1 and fixed j ∈ {1, . . . , p}, consider a following procedure

• define ỹ := (y1, . . . , yj−1, yj+1, . . . , yp)
T, D̃ := diag(d1, . . . , dj−1, dj+1, . . . , dp), d̃i := D̃i,i for

i = 1, . . . , p− 1 and λ̃ := (λ2, . . . , λp)
T;

• find b̃∗ := arg min
b∈Rp−1

1
2

∥∥ỹ − D̃b∥∥2

2
+ Jλ̃(b);

• define R̃j (̃b∗) := |{i : b̃∗i 6= 0}|.

Then for r ≥ 1 it holds
{
y : dj |yj | > λr and R(b∗) = r

}
⊂
{
y : dj |yj | > λr and R̃j (̃b∗) = r − 1

}
.

Proof. We have to show that solution b̃∗ to problem

minimize
b

F (b) :=
1

2

p−1∑
i=1

(
ỹi − d̃ibi

)2

+

p−1∑
i=1

λ̃ib(i) (D.12)

has exactly r − 1 nonzero coefficients. From Proposition D.1 we know that the change of signs of
yi’s does not affect the support, hence without loss of generality we can assume that ỹ � 0, and
b̃∗ � 0 as a result (from Proposition D.2). We will start with situation when d1y1 ≥ . . . ≥ dpyp and

consequently d̃1ỹ1 ≥ . . . ≥ d̃p−1ỹp. If j is fixed index such as dj |yj | > λr and R(b∗) = r, this gives

j ∈ {1, . . . , r}. (D.13)

To show that solution to (D.12) has at least r − 1 nonzero entries, suppose by contradiction that

b̃∗ has exactly k − 1 nonzero entries with k < r. Let us define b̂ ∈ Rp−1 as

b̂i :=

{
h, i ∈ {k, . . . , r − 1}
b̃∗i , otherwise

,

where 0 < h < min{b̃∗1, . . . , b̃∗k−1}. Then

F (̃b∗)− F (̂b) = h

r−1∑
i=k

(d̃iỹi − λ̃i)− h2
r−1∑
i=k

1

2
d̃2
i . (D.14)

Now
r−1∑
i=k

(d̃iỹi − λ̃i) =

r∑
i=k+1

(d̃i−1ỹi−1 − λi) ≥
r∑

i=k+1

(diyi − λi) > 0, (D.15)

where the first equality follows from λ̃i = λi+1, the first inequality from d̃i−1ỹi−1 ≥ diyi and the

second from Lemma D.5. If h is small enough, we get F (̂b) < F (̃b∗) which leads to contradiction.
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Suppose now by contradiction that b̃∗ has k nonzero entries with k ≥ r and define

b̂i :=

{
b̃∗i − h, i ∈ {r, . . . , k}
b̃∗i , otherwise

.

Analogously to (D.6), we get Jλ̃(̃b∗)− Jλ̃(̂b) ≥ h
∑k
i=r λ̃i and consequently

F (̃b∗)− F (̂b) ≥ h

[
k∑
i=r

(λ̃i − d̃iỹi) +

k∑
i=r

d̃2
i b̃
∗
i

]
− 1

2
h2

k∑
i=r

d̃2
i . (D.16)

Now
k∑
i=r

(λ̃i − d̃iỹi) =

k+1∑
i=r+1

(λi − diyi) ≥ 0, (D.17)

where the first equality follows from definition of λ̃ and (D.13), while the inequality follows from

Lemma D.5. If h is small enough, we get F (̂b) < F (̃b∗), which contradicts the optimality of b̃∗.
Consider now general situation, i.e. without assumption concerning the order of D|y|. Suppose

that π, with corresponding matrix Pπ, is permutation which orders D|y|. Define yπ := Pπy and
Dπ := PπDP

T
π . Applying the procedure described in the statement of Lemma simultaneously to

(y,D, λ) for j, and to (yπ, Dπ, λ) for π(j) we end with
(
ỹ, D̃, λ̃, R̃j1(̃b∗)

)
and

(
ỹπ, D̃π, λ̃, R̃

π(j)
2 (̃b∗π)

)
.

It is straightforward to see, that there exists permutation π̃ : {1, . . . , p − 1} −→ {1, . . . , p − 1}
such that ỹπ = Pπ̃ ỹ and D̃π = Pπ̃D̃P

T
π̃ . From Proposition D.1 we have that b̃∗π = Pπ̃ b̃

∗ and

R̃j1(̃b∗) = R̃
π(j)
2 (̃b∗π). Moreover, from the first part of proof R̃

π(j)
2 (̃b∗π) = r − 1, which gives the

claim. �

E Minimax estimation of gSLOPE

Proof of Theorem 2.6. Once again we will employ the equivalent formulation of gSLOPE under
assumption about orthogonality at groups level, i.e. problem (2.8), and we will consider statistically

equivalent model ỹ ∼ N
(
β̃, σ2Ip̃

)
, with β̃Ii = RiβIi , i = 1, . . . ,m. Then JβKX,I = Jβ̃KI and for

solution b∗ to (2.8) it holds Jb∗KI = JβgSKX,I for any solution βgS to problem (2.2). Without loss

of generality, assume σ = 1. Note that ‖ỹIi‖22 is distributed as the noncentral χ2
li

(‖β̃Ii‖22), where

‖β̃Ii‖22 is the noncentrality.

The lower bound of the minimax risk can be obtained as follows. For each Ii, only β̃j with the

smallest index j ∈ Ii is possibly nonzero and the rest li − 1 components of β̃Ii are fixed to be zero.
Then, this is reduced to a simple Gaussian sequence model with length m and sparsity at most k.
Given the condition k/m→ 0, this classical sequence model has minimax risk (1+o(1))2k log(m/k)
(see e.g. [13]).

Our next step is to evaluate the worst risk of gSLOPE over the nearly black object. We would
completes the proof if we show this worst risk is bounded above by (1 + o(1))2k log(m/k). For

simplicity, assume that ‖β̃Ii‖2 = 0 for all i ≥ k + 1 and write µi = ‖β̃Ii‖2, ζi = ‖ỹIi‖2 ∼ χli(µ
2
i ).

Denote by ζ̂ the SLOPE solution. Then, the risk is

E‖ζ̂ − µ‖22 = E
k∑
i=1

(ζ̂i − µi)2
2 + E

m∑
i=k+1

ζ̂2
i .

Then, it suffices to show

E

[
k∑
i=1

(ζ̂i − µi)2

]
≤ (1 + o(1))2k log(m/k) (E.1)

29



and

E

[
m∑

i=k+1

ζ̂2
i

]
= o(1)2k log(m/k). (E.2)

Below, Lemmas E.1, E.2, and E.3 together give (E.2). The remaining part of this proof serves to
validate (E.1). To start with, we employ the representation ζ2

i = (ξi1 +µi)
2 +ξ2

i2 + · · ·+ξ2
ili

for i.i.d.
ξij ∼ N (0, 1) (we can assume this representation without loss of generality, since the distribution
of (ξi1 + a1)2 + (ξi2 + a2)2 + · · ·+ (ξili + ali)

2 depends only on the non-centrality a2
1 + · · ·+ a2

li
). As

in the proof of Lemma 3.2 in [26], we get

k∑
i=1

(ζ̂i − µi)2 ≤
(
‖ζ̂[1:k] − ζ[1:k]‖2 + ‖ζ[1:k] − µ[1:k]‖2

)2

≤
(
‖λ[1:k]‖2 + ‖ζ[1:k] − µ[1:k]‖2

)2
.

(E.3)

As l is fixed and k/m→ 0, [18] gives λi ∼
√

2 log m
qi for all i ≤ k. From this we know

‖λ[1:k]‖22 =

k∑
i=1

λ2
i ∼ 2k log

m

k
. (E.4)

Next, we see∣∣∣√(ξi1 + µi)2 + ξ2
i2 + · · ·+ ξ2

ili
− µi

∣∣∣ ≤√ξ2
i2 + · · ·+ ξ2

ili
+ |ξi1|

≤ 2
√
ξ2
i1 + ξ2

i2 + · · ·+ ξ2
ili
≡ 2‖ξi‖2,

which yields

‖ζ[1:k] − µ[1:k]‖22 ≤ 4

k∑
i=1

‖ξi‖22 (E.5)

Note that
∑k
i=1 ‖ξi‖22 is distributed as the chi-square with l1 + · · · + lk ≤ lk degrees of freedom.

Taking (E.4) and (E.5) together, from (E.3) we get

E

[
k∑
i=1

(ζ̂i − µi)2

]
≤ ‖λ[1:k]‖22 + E‖ζ[1:k] − µ[1:k]‖22 + 2‖λ[1:k]‖2E‖ζ[1:k] − µ[1:k]‖2

≤ (1 + o(1))2k log
m

k
+ 4lk + 2

√
(1 + o(1))2k log

m

k
·
√

4lk

∼ (1 + o(1))2k log
m

k
,

where the last step makes use of m/k →∞. This establishes (E.1) and consequently completes the
proof.

�

The following three lemmas aim to prove (E.2). Denote by ζ(1) ≥ · · · ≥ ζ(m−k) the order
statistics of ζk+1, . . . , ζm. Recall that ζi ∼ χli for i ≥ k + 1. As in the proof of Lemma 3.3 in [26],
we have

m∑
i=k+1

ζ̂2
i ≤

m−k∑
i=1

(ζ(i) − λk+i)
2
+,
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where x+ = max{x, 0}. For a sufficiently large constant A > 0 and sufficiently small constant α > 0
both to be specified later, we partition the sum into three parts:

m−k∑
i=1

E(ζ(i) − λk+i)
2
+ =

bAkc∑
i=1

E(ζ(i) − λk+i)
2
+ +

bαmc∑
i=dAke

E(ζ(i) − λk+i)
2
+ +

m−k∑
i=dαme

E(ζ(i) − λk+i)
2
+

The three lemmas, respectively, show that each part is negligible compared with 2k log(m/k). We
indeed prove a stronger version in which the order statistics ζ(1) ≥ · · · ≥ ζ(m−k) ≥ ζ(m−k+1) ≥
· · · ≥ ζ(m) come from m i.i.d. χl. Let U1, . . . , Um be i.i.d. uniform random variables on (0, 1),
and U(1) ≤ U(2) ≤ · · · ≤ U(m) be the increasing order statistics. So we have the representation
ζ(i) = F−1

χl
(1− U(i))

Lemma E.1. Under the preceding conditions, for any A > 0 we have

1

2k log(m/k)

bAkc∑
i=1

E(ζ(i) − λk+i)
2
+ → 0.

Proof of Lemma E.1. Recognizing that l is fixed, from [18] it follows that

F−1
χl

(1− q1)− F−1
χl

(1− q2) ∼
√

2 log
1

q1
−
√

2 log
1

q2

for q1, q2 → 0. We also know that ζi is distributed as F−1
χl

(1− U(i)). Making use of these facts, we
get

E(ζ(i) − λk+i)
2
+ = E(F−1

χl
(1− U(i))− F−1

χl
(1− q(k + i)/m))2

+

∼ E

(√
2 log

1

U(i)
−
√

2 log
m

q(k + i)

)2

+

≤ E

(√
2 log

1

U(i)
−
√

2 log
m

q(k + i)

)2

. E

(
log2(q(k + i)/mU(i))

log(m/q(k + i))

)
.

Now, we proceed to evaluate

E
[
log2 q(k + i)

mU(i)

]
= log2 q(k + i)

m
+ E log2 U(i) − 2 log

q(k + i)

m
E logU(i).

Observing that U(i) follows Beta(i,m+ i− i), we get (see e.g. [2])

E logU(i) = − log
m+ 1

i
+ δ1,

E log2 U(i) =

(
log

m+ 1

i
− δ1

)2

+
1

i
− 1

m+ 1
+ δ2

for some δ1 = O(1/i) and δ2 = O(1/i2). Thus we can evaluate E log2 q(k+i)
mU(i)

as

E log2 q(k + i)

mU(i)
= log2 q(k + i)

m
− 2 log

q(k + i)

m
E logU(i) + E log2 U(i)

= log2 q(k + i)

m
+ 2 log

q(k + i)

m

(
log

m+ 1

i
− δ1

)
+

(
log

m+ 1

i
− δ1

)2

+
1

i
− 1

m+ 1
+ δ2

= log2 q(k + i)(m+ 1)

im
− 2δ1 log

q(k + i)(m+ 1)

im
+

1

i
− 1

m+ 1
+ δ2

1 + δ2.
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Hence, we get

bAkc∑
i=1

E(ζ(i) − λk+i)
2
+

.
1

log m
q(A+1)k


bAkc∑
i=1

log2 q(k + i)(m+ 1)

im︸ ︷︷ ︸
I

−
bAkc∑
i=1

2δ1 log
q(k + i)(m+ 1)

im︸ ︷︷ ︸
II

+

bAkc∑
i=1

(1

i
− 1

m+ 1
+ δ2

1 + δ2
)

︸ ︷︷ ︸
III


=

1

log m
q(A+1)k

(I + |II|+ |III|).

Since m
q(A+1)k →∞. The proof would be completed once we show I, |II|, and |III| are bounded. To

this end, first note that

I =

bAkc∑
i=1

log2 q(k + i)(m+ 1)

im

≤
bAkc∑
i=1

max

{
k

∫ i/k

(i−1)/k

log2 q(m+ 1)(1 + x)

mx
dx, k

∫ (i+1)/k

i/k

log2 q(m+ 1)(1 + x)

mx
dx

}

≤ 2k

∫ A+1

0

log2 q(m+ 1)(1 + x)

mx
dx � k = o

(
2k log

m

k

)
.

The second term II obeys

|II| ≤
bAkc∑
i=1

2
∣∣∣δ1 log

q(k + i)(m+ 1)

im

∣∣∣ . bAkc∑
i=1

1

i

∣∣∣ log
q(k + i)(m+ 1)

im

∣∣∣
≤
bAkc∑
i=1

max

{
k

∫ i/k

(i−1)/k

∣∣∣ log
q(m+ 1)(1 + x)

mx

∣∣∣dx, k ∫ (i+1)/k

i/k

∣∣∣ log
q(m+ 1)(1 + x)

mx

∣∣∣dx}

≤ 2k

∫ A+1

0

∣∣∣ log
q(m+ 1)(1 + x)

mx

∣∣∣dx � k = o
(

2k log
m

k

)
,

where we use the fact that
∫ A+1

0

∣∣∣ log q(m+1)(1+x)
mx

∣∣∣dx is bounded by some constant. The last term

is simply bounded as

|III| ≤
bAkc∑
i=1

∣∣∣1
i
− 1

m+ 1
+ δ2

1 + δ2

∣∣∣ . bAkc∑
i=1

1

i
. log(Ak) = o

(
2k log

m

k

)
.

Combining these established bounds on I, II, and III finishes proof. �

Lemma E.2. Under the preceding conditions, let A be any constant satisfying q(1 +A)/A < 1 and
α be sufficiently small such that l/λk+bαmc < 1/2. Then,

1

2k log(m/k)

bαmc∑
i=dAke

E(ζ(i) − λk+i)
2
+ → 0.
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Proof of Lemma E.2. Note that λk+bαmc ∼
√

2 log m
q(k+bαmc) ∼

√
2 log 1

qα . So it is clear that such

α exists. Pick any fixed i between dAke andbαmc. As in the proof of Lemma A.4 in [26], denote
by αu = P(χl > λk+i + u). Note that

αu = P(χl > λk+i + u) =

∫ ∞
(λk+i+u)2

1

el/2Γ(l/2)
xl/2−1e−x/2dx

=

∫ ∞
λ2
k+i

1

el/2Γ(l/2)

(
(λk+i + u)2

λ2
k+i

y

)l/2−1

exp

(
− (λk+i + u)2

2λ2
k+i

y

)
d

(λk+i + u)2

λ2
k+i

y

=

(
1 +

u

λk+i

)l ∫ ∞
λ2
k+i

1

el/2Γ(l/2)
yl/2−1 exp

(
− (λk+i + u)2

2λ2
k+i

y

)
dy

≤
(

1 +
u

λk+i

)l
e−λk+iu

∫ ∞
λ2
k+i

1

el/2Γ(l/2)
yl/2−1e−y/2dy

=

(
1 +

u

λk+i

)l
e−λk+iuα0

≤ exp

(
l

λk+i
u− λk+iu

)
α0.

With the proviso that l/λk+bαmc < 1/2 < λk+bαmc/2, it follows that

αu ≤ e−λk+iu/2α0.

The remaining proof follows from exactly the same reasoning as that of Lemma A.4 in [26].
�

Lemma E.3. Under the preceding conditions, for any constant α > 0 we have

1

2k log(m/k)

m−k∑
i=dαme

E(ζ(i) − λk+i)
2
+ → 0.

Proof of Lemma E.3. Recognizing that the value of the summation increases as α decreases, we
only prove the lemma for sufficiently small α. In the case of U(i) ≥ α/3, we get

(ζ(i) − λk+i)+ =
(
F−1
χl

(1− U(i))− F−1
χl

(1− q(k + i)/m)
)

+

�
(
1− U(i) − (1− q(k + i)/m)

)
+

= (q(k + i)/m− U(i))+,

since both U(i) and q(k + i)/m are bounded below away from zero. Otherwise, we use the trivial
inequality (ζ(i) − λk+i)+ ≤ ζ(i). In either case, we get

(ζ(i) − λk+i)
2
+ . ζ

2
(i)1U(i)<

α
3

+

(
q(k + i)

m
− U(i)

)2

+

=
(
F−1
χl

(1− U(i))
)2

1U(i)<
α
3

+

(
q(k + i)

m
− U(i)

)2

+

� 2 log

(
1

U(i)

)
1U(i)<

α
3

+

(
q(k + i)

m
− U(i)

)2

+

. log

(
1

U(i)

)
1U(i)<

α
3

+ 1
U(i)≤

q(k+i)
m

.
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Hence,

m−k∑
i=dαme

E(ζ(i) − λk+i)
2
+ .

m−k∑
i=dαme

E
(

log

(
1

U(i)

)
;U(i) <

α

3

)
+

m−k∑
i=dαme

P
(
U(i) ≤

q(k + i)

m

)
In the remaining proof we aim to show

m−k∑
i=dαme

E
(

log

(
1

U(i)

)
;U(i) <

α

3

)
→ 0 (E.6)

and
m−k∑

i=dαme

P
(
U(i) ≤

q(k + i)

m

)
→ 0. (E.7)

This is more than we need since 2k log(m/k)→∞.
Each summand of (E.6) is bounded above by

E
(

log

(
1

U(dαme)

)
;U(dαme) <

α

3

)
=

∫ α
3

0

xdαme−1(1− x)m−dαme log 1
x

B(dαme,m+ 1− dαme)
dx

≤
∫ α

3

0

xdαme−1 log 1
x

B(dαme,m+ 1− dαme)
dx

=
1

dαme2 B(dαme,m+ 1− dαme)

∫ (α3 )dαme

0

log
1

y
dy

∼
(α/3)dαme log 3

α

dαmeB(dαme,m+ 1− dαme)
.

The last line obeys

log

[
(α/3)dαme

B(dαme,m+ 1− dαme)

]
∼ −αm log

3

α
+ αm log

1

α
+ (1− α)m log

1

1− α

= −αm log 3 + (1− α)m log
1

1− α
.

For small α, we get −α log 3+(1−α) log 1
1−α = −α log 3+(1+o(1))(1−α)α = −(log 3−1+o(1))α.

(Note that log 3− 1 = 0.0986 . . . > 0.) This immediately yields

E
(

log

(
1

U(dαme)

)
;U(dαme) <

α

3

)
∼ e−(log 3−1+o(1))αm,

which implies (E.6) since me−(log 3−1+o(1))αm → 0.

Next, we turn to show (E.7). Note that P
(
U(i) ≤ q(k+i)

m

)
actually is the tail probability of the

binomial distribution with m trials and success probability q(k+i)
m . Hence, by the Chernoff bound,

this probability is bounded as

P
(
U(i) ≤

q(k + i)

m

)
≤ exp (−mKL(i/m||q(k + i)/m)) ,

where KL(a||b) := a log a
b + (1 − a) log 1−a

1−b is the Kullback-Leibler divergence. Thanks to i ≥
dαme � k, simple analysis reveals that

KL(i/m||q(k + i)/m) ≥ (1 + o(1))i

(
log

1

q
− 1 + q

)
/m.
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Combining the last two displays gives

P
(
U(i) ≤

q(k + i)

m

)
≤ e−(1+o(1))(log 1

q−1+q)i.

Plugging the above inequality into (E.7) yields

m−k∑
i=dαme

P
(
U(i) ≤

q(k + i)

m

)
≤

m−k∑
i=dαme

e−(1+o(1))(log 1
q−1+q)i → 0,

where the last step follows from log 1
q − 1 + q > 0 and dαme → ∞. �

F Strength of signals

Consider the case when all submatrices XIi have the same rank, l > 0, w > 0 is used as the universal
weight and X is orthogonal at groups level. From the interpretation of gSLOPE estimate coming
from (2.8), we see that the identification of the relevant groups could be summarized as follows: λ
decides on the number, R, of groups labeled as relevant, which correspond to indices of the R largest
values among w−1‖ỹI1‖2, . . . , w−1‖ỹIm‖2. The random variables w−1‖ỹIi‖2 have a (possibly) non-
central χ distributions with l degrees of freedom and noncentrality parameters given by the entries
of Jβ̃KI. Now, the nonzero ‖β̃Ii‖2 could be perceived as a strong signal, if with the high probability

the random variable having the noncentral χ distribution with the noncentrality parameter ‖β̃Ii‖2
is large comparing to the background composed of the independent random variables with the χl
distributions (then signal is likely to be identified by gSLOPE; otherwise, the signal could be easily
covered by random disturbances and its identification has more in common with good luck than
with the usage of particular method). The important quantity, which could be treated as a breaking
point, is the expected value of the maximum of the background noise. Group effects being close to
this value, could be perceived as medium under the orthogonal case and weak under the occurrence
of correlations between groups. The above reasoning applied to the considered case, yields the issue
of approximation of the expected value of the maximum of m independent χl-distributed variables.
Suppose that Ψi ∼ χl for i = {1, . . . ,m}. From Jensen’s inequality we have

E
(

max
i=1,...,m

{Ψi}
)

= E

(√
max

i=1,...,m
{Ψ2

i }

)
≤

√
E
(

max
i=1,...,m

{Ψ2
i }
)
,

hence we will replace the last problem by the problem of finding the reasonable upper bound on
the expected value of the maximum of m independent, χ2

l -distributed variables.

Theorem F.1. Let Ψ1, . . . ,Ψm be independent variables, Ψi ∼ χ2
l for all i. Then

E
(

max
i=1,...,m

{Ψi}
)
≤ 4 ln(m)

1−m− 2
l

. (F.1)

Proof. Denote Mm := maxi=1,...,m{Ψi}. From the Jensen’s inequality applied to etMm we have

etE[Mm] ≤ E
[
etMm

]
= E

[
max

i=1,...,m
etΨi

]
≤

m∑
i=1

E
[
etΨi

]
. (F.2)

We will consider only t ∈ [0, 1
2 ). Since the moment generating function for χ2

l distribution is given

by MGF := (1−2t)−
l
2 , for each i it holds E

[
etΨi

]
= (1−2t)−

l
2 and we get etE[Mm] ≤ m(1−2t)−

l
2 .

Applying the natural logarithm to both sides yields

E[Mm] ≤
ln(m) + ln

(
(1− 2t)−

l
2

)
t

, t ∈ [0, 1/2) . (F.3)
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Define tm,l := 1−m−
2
l

2 . Then for all positive, natural numbers l and m we have tm,l ∈ [0, 1
2 ).

Plugging tm,l to the right side of (F.3) gives inequality (F.1) and finishes the proof. �

The above theorem gives us the motivation to use the quantity
√

4 ln(m)/(1−m−2/l) as the upper
bound on the expected value of maximum over m independent χl-distributed variables. In all
simulations, which we have performed to investigate the performance of gSLOPE, we have generated
the effects for truly relevant groups basing on these upper bounds. In particular, in experiments
where li’s as well as weights were identical, we aimed at E (‖ỹIi‖2) =

√
4 ln(m)/(1−m−2/l), for

the truly relevant group i. Since E (‖ỹIi‖2) ≈
√
‖β̃Ii‖22 + l, this yields the setting

‖β̃Ii‖2 = B(m, l), for B(m, l) :=
√

4 ln(m)/(1−m−2/l)− l (F.4)

for groups chosen to be truly relevant.

G The sequence of tuning parameters when variables in dif-
ferent groups are independent

To model the situation when variables in different groups are stochastically independent we will
assume that n by p design matrix is a realization of the random matrix with independent entries
drawn from the normal distribution, N

(
0, 1

n

)
, so as the expected value of XT

i Xj is equal to 1 for
i = j, and equal to 0 otherwise. The main objective is to derive the lambda sequence, which could
be applied to achieve gFDR control under assumption that the JβKX,I is sparse. At first we will
confine ourselves only to the case l1 = . . . = lm := l, w1 = . . . = wm := w and when the number of
elements in each group is relatively small as compared to the number of observations (l << n). For
simplicity in this subsection we will fix σ = 1. In case when σ 6= 1, the proposed sequence lambda
should be multiplied by σ, as in expression (2.2). In the heuristics presented in this subsection, we
will use the notation A ≈ B, in order to express that with large probability the differences between
corresponding entries of matrices A and B are very small.

In situation when entries of X come from N
(
0, 1

n

)
distribution and sizes of groups are relatively

small, a very good approximation of βgS could be obtained by β̂, defined as

β̂ := arg min
b

{
1

2

∥∥∥y −Xb∥∥∥2

2
+ σJλ

(
W JbKI

)}
. (G.1)

Assume for simplicity that ‖βI1‖2 > . . . > ‖βIs‖2 > 0, ‖βIj‖2 = 0 for j > s, β̂ satisfies the
same conditions for some λ and the true model is sparse. Divide I into two families of sets Is :=
{I1, . . . , Is} and Ic := {Is+1, . . . , Im}. To derive optimality condition for β̂ we will prove the
following

Theorem G.1. Let b ∈ Rp be such that ‖bI1‖2 > . . . > ‖bIs‖2 > 0, ‖bIj‖2 = 0 for j > s and denote
λc := (λs+1, . . . , λm)T. If g ∈ ∂Jλ

(
wJbKI

)
, then it holds:{

gIi = wλi
bIi
‖bIi‖2

, i = 1, . . . , s

JgKIc ∈ Cwλc
, (G.2)

where the set Cλ (here with wλc instead of λ) is defined in appendix (B.4).

Proof. For b ∈ Rp define Jλ,I(b) := Jλ
(
JbKI

)
and put H :=

{
h ∈ Rp : ‖(b + h)I1‖2 > . . . >

‖(b + h)Is‖2, ‖(b + h)Is‖2 > ‖hIj‖2, j > s
}
. If g ∈ ∂Jλ,I(b), then for all h ∈ H from definition of

subgradient it holds

s∑
i=1

λi‖(b+ h)Ii‖2 +

m∑
i=s+1

λi
(
Jb+ hKI

)
(i)
≥

s∑
i=1

λi‖bIi‖2 +

s∑
i=1

gTIihIi + (gc)Thc, (G.3)
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for gc := (gTIs+1
, . . . , gTIm)T and hc := (hTIs+1

, . . . , hTIm)T. Define Ĩ :=
{
Ĩ1, . . . , Ĩm−s

}
, with set

Ĩi :=
{

(i − 1) · l + 1, . . . , i · l
}

. Then JgcKĨ = JgKIc . Consider first case, when h belongs to the set
Hc := {h ∈ H : hIi ≡ 0, i ≤ s}. This yields

m−s∑
i=1

λs+i
(
JhcKĨ

)
(i)
≥ (gc)Thc. (G.4)

Since {hc : h ∈ Hc} is open in Rl(m−s) and contains zero, from Proposition G.5 we have that
gc ∈ ∂Jλc,Ĩ(0) and the inequality (G.4) is true for any hc ∈ Rl(m−s) yielding

0 ≥ sup
hc

{
(gc)Thc − Jλc,Ĩ(h

c)
}

= J∗
λc,Ĩ

(gc) =

{
0, JgcKĨ ∈ Cλc
∞, otherwise

, (G.5)

see Proposition B.3. This result immediately gives condition JgcKĨ ∈ Cλc , which is equivalent with
JgKIc ∈ Cλc . To find conditions for gIi with i ≤ s, define sets Hi := {h ∈ H : hIj ≡ 0, j 6= i}.
For h ∈ Hi, (G.3) reduces to λi‖bIi + hIi‖2 ≥ λi‖bIi‖2 + gTIihIi . Since the set {hIi : h ∈ Hi}
is open in Rl and contains zero, from Proposition G.5 we have gIi ∈ ∂fi(bIi) for fi : Rl −→ R,

fi(x) := λi‖x‖2. Since fi is convex and differentiable in bIi , it holds gIi = λi
bIi
‖bIi‖2

, which finishes

the proof. �

The above theorem allows to write the optimality condition for β̂ in form XT
Ii

(y −Xβ̂) = wλi
β̂Ii
‖β̂Ii‖2

, i = 1, . . . , s

JXT(y −Xβ̂)KIc ∈ Cwλc
. (G.6)

Since XT
Ii
XIi ≈ Il, for i ≤ s we get XT

Ii

(
y −X\Ii β̂\Ii

)
≈ β̂Ii

(
1 + wλi

‖β̂Ii‖2

)
, where X\Ii is matrix X

without columns from Ii and β̂\Ii denotes vector β̂ with removed coefficients indexed by Ii. This

means that, for i = 1, . . . , s, vector vIi := XT
Ii

(
y −X\Ii β̂\Ii

)
is approximately collinear with β̂Ii .

Since 1 + wλi
‖β̂Ii‖2

> 0, we have
vIi
‖vIi‖2

≈ β̂Ii
‖β̂Ii‖2

. This yields β̂Ii ≈
(

1− wλi
‖vIi‖2

)
vIi and consequently

‖β̂Ii‖2 ≈
∣∣∣‖vIi‖2 − wλi∣∣∣. Therefore (G.6) can be written as{ ∣∣∣‖vIi‖2 − wλi∣∣∣ ≈ ‖β̂Ii‖2, i = 1, . . . , s

JvKIc ∈ Cwλc
, (G.7)

for v := (vTI1 , . . . , v
T
Im

)T.
The task now is to select λi’s such that condition JvKIc ∈ Cwλc regulates the rate of false

discoveries. Denote IS :=
⋃s
i=1 Ii. Putting y = XISβIS + z, we obtain

vIi = XT
IiXIS (βIS − β̂IS ) +XT

Iiz, (G.8)

for i > s (irrelevant groups). Under orthogonal design this expression reduces only to the term
XT
Ii
z, and in such situation ‖vIi‖2 has χ distribution with l degrees of freedom which was used

in subsection G to define the sequence λ. In the considered near-orthogonal situation, the term
XT
Ii
XIS (βIS − β̂IS ) should be also taken into account. The following two assumptions will be

important to derive the appropriate approximation of vIi distribution:

• the distribution of vIi could be well approximated by multivariate normal distribution,

• for relatively strong effects it occurs
β̂Ii
‖β̂Ii‖2

≈ βIi
‖βIi‖2

for i = 1, . . . , s.
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The first assumption is justified when one works with large data scenario, based on the Central
Limit Theorem. In discussion concerning the second assumption it is important to clarify the effect
of penalty imposed on entire groups. The magnitudes of coefficients in β̂Ii , for truly relevant group
i, are generally significantly smaller than in βIi . This, a so-called shrinking effect, is typical for
penalized methods. It turns out, however, that under assumed conditions estimates of coefficients
of nonzero βIi are pulled to zero proportionally and after normalizing, β̂Ii and βIi are comparable.

From the upper equation in (G.6), we have that XT
IS

(XISβIS −XIS β̂IS ) +XT
IS
z ≈ wHλ,β , for

Hλ,β :=
(
λ1

βT
I1

‖βI1‖2
, . . . , λs

βT
Is

‖βIs‖2

)T
, (G.9)

which givesXT
Ii
XIS (βIS−β̂IS ) ≈ XT

Ii
XIS (XT

IS
XIS )−1(wHλ,β−XT

IS
z). Combining the last expression

with (G.8) yields

vIi ≈ XT
IiXIS (XT

ISXIS )−1
(
wHλ,β −XT

ISz
)

+XT
Iiz. (G.10)

To determine the parameters of multivariate normal distribution, which best describes the distribu-
tion of vIi , we will derive the exact values of the mean and the covariance matrix of the distribution
of the right-hand side expression in (G.10) for i > s. Since Ii ∩ IS = ∅ and entries of X matrix are
randomized independently with N

(
0, 1

n

)
distribution, the expected value of the random vector in

(G.10) is 0 and its covariance matrix is provided by the following Lemma.

Lemma G.2. The covariance matrix of v̂Ii := XT
Ii
XIS (XT

IS
XIS )−1

(
wHλ,β − XT

IS
z
)

+ XT
Ii
z, for

i > s, is given by the formula

Cov(v̂Ii) =

(
n− ls
n

+ w2 ‖λS‖22
n− ls− 1

)
Il,

where λS := (λ1, . . . , λs)
T.

Before proving Lemma G.2, we will introduce two auxiliary results, proofs of which can be found
at the end of this section.

Lemma G.3. Suppose that entries of a random matrix X ∈M(n, r), with r ≤ n, are independently
and identically distributed and have a normal distribution with zero mean. Then, there exists the
expected value of a random matrix AX = X(XTX)−1XT and E (AX) = r

nIn.

Lemma G.4. Suppose that X ∈ M(n, r), with r + 1 < n, and entries of X are independent and
identically distributed, Xij ∼ N (0, 1/n) for all i and j. Then, there exists expected value of random
matrix, MX,λ := BXHλ,βH

T
λ,βB

T
X , for BX = X(XTX)−1 and Hλ,β defined in (G.9). Moreover, it

holds E (MX,λ) =
‖λS‖22
n−r−1 In.

Proof of Lemma G.2. We have v̂Ii = ξX,z + ζX , for ξX,z := XT
Ii

(In −AX) z, ζX := wXT
Ii
BXHλ,β ,

AX := XIS (XT
IS
XIS )−1XT

IS
, BX := XIS (XT

IS
XIS )−1. Since E(ξX,zζ

T
X) = 0 and mean of v̂Ii is equal

to 0, it holds Cov(v̂Ii) = Cov(ξX,z) + Cov(ζX). Now thanks to Lemma G.3 and Lemma G.4

Cov(ξX,z) = E
[
XT
Ii

(
In −AX

)
zzT
(
In −AX

)T
XIi

]
=

E
[
XT
Ii

(
In −AX

)(
In −AX

)T
XIi

]
= E

[
XT
Ii

(
In −AX

)
XIi

]
=

1

n

(
n− ls

)
· E
[
XT
IiXIi

]
=

1

n

(
n− ls

)
· Il,

(G.11)

Cov(ζX) = w2E
[
XT
IiBXHλ,βH

T
λ,βB

T
XXIi

]
= w2 ‖λS‖22

n− sl − 1
E
[
XT
IiXIi

]
=

w2 ‖λS‖22
n− sl − 1

Il,

(G.12)

which finishes the proof. �
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We have shown that for i > s the distribution of ‖vIi‖2 could be approximated by scaled χ

distribution with l degrees of freedom and scale parameter S =
√

n−ls
n +

w2‖λS‖22
n−sl−1 . Now, analogously

to the orthogonal situation, lambdas could be defined as λi := 1
wi
F−1
Sχl

(
1− q·i

m

)
= S

wi
F−1
χ
l

(
1− q·i

m

)
.

Since s is unknown, we will apply the strategy used in [10]: define λ1 as in orthogonal case and for
j ≥ 2 define λi basing on already generated sequence, according to following procedure.

Procedure 6 Selecting lambdas in near-orthogonal situation: equal groups sizes

input: q ∈ (0, 1), w > 0, p, n, m, l ∈ N
λ1 := 1

w
F−1
χl

(
1− q

m

)
;

For i ∈ {2, . . . ,m}:
λS := (λ1, . . . , λi−1)T;

S :=
√

n−l(i−1)
n

+
w2‖λS‖22
n−l(i−1)−1

;

λ∗i := S
w
F−1
χl

(
1− q·i

m

)
;

if λ∗i ≤ λi−1, then put λi := λ∗i . Otherwise, stop the procedure and put λj := λi−1 for j ≥ i;
end for

Consider now the Gaussian design with arbitrary group sizes and sequence of positive weights
w1, . . . , wm. One possible approach is to construct consecutive λi as the largest scaled quantiles

among all distributions, i.e. as max
j=1,...,m

{
Sj
wj
F−1
χlj

(
1− q·i

m

)}
for corrections Sj ’s adjusted to different

li values (the conservative strategy). In this article, however, we will stick to the more liberal
strategy based on λmean, which leads to the modified sequence of tuning parameters presented in
Procedure 1.

Proposition G.5. For any open set H containing zero the subgradient of convex function f at b
could be equivalently defined as a vector g satisfying f(b+ h) ≥ f(b) + gTh, for all h ∈ H.

Proof. Suppose that f is convex function and for some b, g ∈ Rp it occurs f(b+h) ≥ f(b) + gTh for
h ∈ H, where H is open set containing zero. Let h0 ∈ Rp be arbitrary vector. Function F : R→ R,
defined as F (t) := f(b+ th0)− tgTh0, is convex. There exists t0 ∈ (0, 1) such that t0h0 ∈ H, what
gives

f(b) ≤ F (t0) = F
(
(1− t0) · 0 + t0 · 1

)
≤ (1− t0)f(b) + t0F (1) (G.13)

and f(b+ h0) ≥ f(b) + gTh0 as a result. �

G.1 The proof of Lemma G.3

The claim is obvious for n = 1 and we will assume that n > 1. First, we will list some basic
properties of AX . It could be easily noticed that: AX is symmetric matrix, AX is idempotent
matrix (meaning that AXAX = AX) and that trace(AX) = trace(XTX(XTX)−1) = r. We will
now show that for each i ∈ {1, . . . , n}, j ∈ {1, . . . , r} the support of a AX(i, j) distribution is
bounded, which will give us the existence of the expected value. Let ‖A‖F be the Frobenius norm.
Then ∣∣(AX)i,j

∣∣ ≤ ‖A‖F =
√

trace(AT
XAX) =

√
trace(AX) =

√
r. (G.14)

We will use notation EX := E (AX). Since entries of matrix X are randomized independently
with the same distribution, EX is invariant under permutation applied to rows, i.e. EX = EPX
for any permutation matrix P . This gives EX = PEXP

T, which means that applying the same
permutation to rows and columns has no impact on expected value. We will show that

(EX)i,j = (EX)1,n, for i < j. (G.15)

Consider first the case when i = 1 and 1 < j < n. Denoting by Pj↔n matrix corresponding to
transposition which replaces elements j and n, we have (EX)1,j =

(
Pj↔nEXP

T
j↔n

)
1,j

= (EX)1,n.
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When j = n and 1 < i < n, the same reasoning works with P1↔i. Suppose now, that 1 < i < n and
1 < j < n. We get (EX)i,j = (EX)1,n analogously by using arbitrary permutation matrix P which
replaces element j with n and element i with 1. Since AX is symmetric, (G.15) is true also for
i > j. On the other hand, for all i, j ∈ {1, . . . , n}, we have (EX)i,i =

(
Pj↔iEXP

T
j↔i
)
i,i

= (EX)j,j .

Consequently, all off-diagonal entries of EX are equal to some t and all diagonal entries have the
same value d. Since

nd = trace(EX) =

n∑
i=1

E(AX(i, i)) = E

(
n∑
i=1

(AX)i,i

)
= r, (G.16)

we have d = r
n and it remains to show that t = 0. Define Σ :=

[
−1 0T

0 In−1

]
. Then ΣXS differs from

XS only by signs of the first row. Since entries of matrix XS have zero-symmetric distribution, we
have EX = EΣX . Now d 1T

n−1t

1n−1t
. . .

 = EX = ΣEXΣ =

 d −1T
n−1t

−1n−1t
. . .

 , (G.17)

which implies t = 0 and proves the statement.

G.2 The proof of Lemma G.4

It is easy to see that MX,λ is symmetric, positive semi-definite matrix. Denote by ‖MX,λ‖∗ the
nuclear (trace) norm of matrix MX,λ. We have

E
∣∣(MX,λ)i,j

∣∣ ≤ E
(
‖MX,λ‖∗

)
= E

(
trace(MX,λ)

)
= E

(
trace(HT

λ,βB
T
XBXHλ,β)

)
=

E
(
HT
λ,β(XTX)−1Hλ,β

)
=

n

(n− r − 1)
HT
λ,βHλ,β =

n ‖λS‖22
n− r − 1

,
(G.18)

since XTX follows an inverse Wishart distribution. This gives the existence of EX := E(MX,λ).
Analogously to situation in Lemma G.3, EX is invariant under permutation or signs changes applied
to rows of X, i.e. EX = EPX for any permutation matrix P , and EX = EΣX for diagonal matrix
Σ with entries on diagonal coming from set {−1, 1}. Since EPX = PEXP

T and EΣX = ΣEXΣ, as
before we have that EX is diagonal matrix with all diagonal entries having the same value d. The
value d could be easy found using (G.18) since we have

nd = trace
(
EX
)

=
n ‖λS‖22
n− r − 1

. (G.19)
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