
HiGrad: Uncertainty Quantification for Online Learning and
Stochastic Approximation

Weijie J. Su suw@wharton.upenn.edu
University of Pennsylvania, USA

Yuancheng Zhu yuancheng.zhu@gmail.com

Renaissance Technologies LLC, USA

Abstract

Stochastic gradient descent (SGD) is an immensely popular approach for online learn-
ing in settings where data arrives in a stream or data sizes are very large. However, despite
an ever-increasing volume of work on SGD, much less is known about the statistical in-
ferential properties of SGD-based predictions. Taking a fully inferential viewpoint, this
paper introduces a novel procedure termed HiGrad to conduct statistical inference for on-
line learning, without incurring additional computational cost compared with SGD. The
HiGrad procedure begins by performing SGD updates for a while and then splits the single
thread into several threads, and this procedure hierarchically operates in this fashion along
each thread. With predictions provided by multiple threads in place, a t-based confidence
interval is constructed by decorrelating predictions using covariance structures given by
a Donsker-style extension of the Ruppert–Polyak averaging scheme, which is a technical
contribution of independent interest. Under certain regularity conditions, the HiGrad con-
fidence interval is shown to attain asymptotically exact coverage probability. Finally, the
performance of HiGrad is evaluated through extensive simulation studies and a real data
example. An R package higrad has been developed to implement the method.

Keywords: HiGrad, stochastic gradient descent, online learning, stochastic approxima-
tion, Ruppert–Polyak averaging, uncertainty quantification, t-confidence interval

1. Introduction

In recent years, scientific discoveries and engineering advancements have been increasingly
driven by data analysis. Meanwhile, modern datasets exhibit new features that impose two
challenges to conventional statistical approaches. First, as datasets grow exceedingly large,
many basic statistical tasks such as maximum likelihood estimation (MLE) may become
computationally infeasible. The other common feature is that data are frequently collected
in an online fashion or computers do not have enough memory to load the entire dataset. As
a consequence, we are often constrained from using batch learning methods such as gradient
descent.

In this context, stochastic gradient descent (SGD), also known as incremental gradient
descent, has been shown to resolve these two issues for online learning. SGD is used to find
a minimizer of the optimization problem

min
θ

f(θ) := Ef(θ, Z),

c© Weijie J. Su and Yuancheng Zhu.

Su and Zhu

where the expectation is over the randomness embodied in the random data Z. Letting N
be the sample size, this method in its simplest form performs iterations according to

θj = θj−1 − γjg(θj−1, Zj) (1)

for j = 1, . . . , N , where γj ’s are the step sizes, each Zj is a realization of Z, and g is the
gradient of f(θ, z) with respect to the first argument. These types of optimization problems
appear ubiquitously in MLEs and, more broadly, inM -estimation (Huber, 1964). As is clear,
SGD makes only one pass over the data, thereby having a much lower computational cost
than batch methods such as the Newton–Raphson method and gradient descent. These
batch methods need to pass over the entire dataset even in one iteration. Furthermore,
SGD can discard data points on-the-fly after evaluating the gradient and, put slightly
differently, SGD is online in nature, requiring essentially no memory cost. In addition
to its computational efficiency and low memory cost, SGD achieves optimal convergence
rates under certain conditions (Nemirovskii and Yudin, 1983; Agarwal et al., 2012; Bach
and Moulines, 2013). Among others, these advantages have contributed to the immense
popularity of SGD in large-scale machine learning problems (Zhang, 2004; Duchi et al.,
2011; LeCun et al., 2015).

These appealing features of SGD, however, are accompanied by the cost of having ran-
dom solutions; as such, decision making based on SGD predictions might suffer from un-
certainty. The randomness originates either from the stochasticity of data points in the
online setting or from the random sampling scheme of SGD in the case of fixed datasets
where multiple epochs are executed1. This randomness is potentially non-negligible and
could even jeopardize the interpretation of predictions at worst. To illustrate this, we ap-
ply SGD to the Adult dataset hosted on the UCI Machine Learning Repository (Lichman,
2013) as an example. The dataset contains demographic information of a sample from the
1994 US Census Database, and the goal is to predict whether a person’s annual income
exceeds $50,000. To fit a logistic regression on the dataset, we run SGD for 25 epochs
(approximately 750,000 steps of SGD updates), and use the estimated model to predict the
probabilities for a randomly selected test set containing 1,000 sample units. The procedure
above is repeated for a total of 500 times, and Figure 1 plots the length of the 90%-coverage
empirical prediction interval (an interval covering 450 predicted probabilities) against the
average predicted probability for each sample unit, showing the variability of SGD-predicted
probabilities. Even with a relatively large number of passes through the training dataset,
there are a fair proportion of the test sample units with a large variability near 50%. This
is the regime where variability must be addressed since the decision based on predictions
can be easily reversed.

This paper aims to assess the uncertainty in SGD estimates via confidence intervals.
Using the off-the-shelf bootstrap for this purpose is infeasible due to its prohibitively high
computational cost and unsuitability for streaming data. In response, we propose a new
method called HiGrad, short for Hierarchical Incremental GRAdient Descent, which es-
timates model parameters in an online fashion, just like SGD, and provides a confidence
interval for the true population value. Unlike the vanilla SGD, HiGrad adopts a tree struc-
ture and performs iterations using gradients along the tree. An example of HiGrad is shown

1. If the fixed dataset is treated as a finite population, these two types of randomness are equivalent.

2

HiGrad

0.01%

0.1%

1%

10%

100%

0% 25% 50% 75% 100%

Average predicted probability

E
m

p
ir

ic
al

p
re

d
ic

ti
o
n

in
te

rv
a
l

le
n
gt

h

Figure 1: Length of 90% empirical prediction intervals versus average predicted probabilities
on a test set of size 1,000 from the Adult dataset, calculated based on 500 independent SGD
runs, each with 25 epochs.

in Figure 2, which illustrates the flexible structure that makes HiGrad easier to parallelize
compared with SGD2.

Figure 2: Graphical illustration of the HiGrad tree. Here we have three levels. At the end
of the first level, the segment is split into two; at the end of the second level, each segment
is further split into three.

More specifically, HiGrad begins by performing SGD iterations for a certain number of
steps and then splits the single thread into several. This method hierarchically operates
in this fashion at every level until leaf nodes, generating multiple threads3. Moreover,
it naturally fits the online setting and requires no more computational effort compared
with SGD. In particular, the HiGrad algorithm agrees with the vanilla SGD restricted to

2. Parallelizing SGD is a very important and challenging problem. See, for example, Recht et al. (2011)
and references therein.

3. A path from the root to a leaf node.

3

Su and Zhu

every thread of the tree. With the HiGrad iterates in place, a weighted average across
each thread yields an estimate. These multiple estimates are used to construct a t-based
confidence interval for the quantity of interest by recognizing the correlation structure, which
is obtained by making use of the Ruppert–Polyak normality result for averaged SGD iterates
(Ruppert, 1988; Polyak, 1990; Polyak and Juditsky, 1992). Under certain conditions, the
HiGrad confidence interval is shown to have asymptotically correct coverage probabilities,
and its center, referred to as the HiGrad estimator, achieves the same statistical efficiency
as the vanilla SGD.

At a high level, HiGrad integrates the ideas of contrasting and sharing, two competing
ingredients that require balancing. On the one hand, contrasting is gained by hierarchi-
cally splitting the threads to get more than one estimate, which allows us to measure the
associated variability. On the other hand, every two threads share some segments in order
to elongate the total length between the root and a leaf. The benefit of having a longer
thread is that it ensures better convergence and accuracy of the solutions. On the contrary,
splitting SGD at the beginning (see, for example, Jain et al. (2016)) with the same com-
putational budget N gives much shorter threads and, as a consequence, it might lead to
a significant bias of the solutions, as demonstrated by simulation studies in Section 5. To
facilitate the use of HiGrad in practice, we set a default configuration of this method in our
R package higrad (https://cran.r-project.org/web/packages/higrad/) through bal-
ancing between contrasting and sharing, showing its satisfactory performance in a variety
of scenarios in Section 5.

This paper contributes to the rich literature on online learning. As a modern online
learning tool, SGD has a root extended to stochastic approximation, which was pioneered by
Robbins and Monro (1951) and Kiefer and Wolfowitz (1952) in the 1950s (see Lai (2003) for
an overview). More recently, the optimization and machine learning communities have been
extensively studying SGD (Zhang, 2004; Nemirovski et al., 2009; Recht et al., 2011; Rakhlin
et al., 2012), mostly focused on the convergence of SGD iterates or generalization error
bounds. Much less work has been done taking an inferential point of view on SGD. That
said, very recently there has been a flurry of interesting activities on statistical inference for
SGD (Toulis and Airoldi, 2017; Chen et al., 2020; Li et al., 2017; Fang et al., 2017; Mandt
et al., 2017; Lan et al., 2012). In short, Toulis and Airoldi (2017) propose the implicit
SGD, showing its robustness to step sizes and carrying over the Ruppert–Polyak normality
to this method; in Chen et al. (2020), the authors first develop an asymptotically valid
inference approach based on averaged SGD iterates. Their procedure takes the form of a
new batch-means estimator that is derived by truncating the SGD iterates into blocks as a
way to decorrelate nearby SGD iterates; further, Li et al. (2017) argue that discarding some
intermediate iterates helps to reduce correlations of SGD iterates; in a different route, Fang
et al. (2017) consider an inferential procedure through running perturbed-SGD in parallel.
The HiGrad procedure significantly differs from this work in that it essentially provides
a new template for online learning, including SGD as the simplest example. For future
research, it would be of great interest to explore potential benefits of this new template for
purposes other than providing a confidence interval.

The remainder of the paper is structured as follows. We introduce the HiGrad algorithm
in Section 2, along with a sketch proof of the coverage properties of the HiGrad confidence
interval and a form of statistical optimality. Section 3 considers the choice of parameters that

4

HiGrad

determine the HiGrad procedure. In Section 4, some practical extensions and improvements
for implementing the algorithm are discussed. Results on a set of simulation studies and
a real data example are presented in Section 5. We conclude the paper in Section 6 with
suggested future research. Technical details of the proofs are deferred to the appendix.

2. The HiGrad Procedure

2.1 Problem statement

Let f(θ) be a convex function defined on Euclidean space Rd and denote by θ∗ the unique
minimizer of f(θ). Suppose the objective function f is given by an expectation

f(θ) = E f(θ, Z),

where f(θ, z) is a loss function and Z, throughout the paper, denotes a random variable
drawn from an (unknown) infinite population or a finite population {z1, . . . , zm}. In the
latter case, the objective function is f(θ) = 1

m

∑m
l=1 f(θ, zl). We sample N i.i.d. data points

Z1, Z2, . . . , ZN from the population, each having the same distribution as Z (in the case of
finite population, the number N/m is often called epochs). For an observation unit Z = z,
we have access to a noisy gradient g(θ, z) that obeys

E g(θ, Z) = ∇f(θ)

for all θ. Namely, g(θ, Z) is unbiased for ∇f(θ) or is, equivalently, the partial derivative of
f(θ, Z) with respect to θ.

A rich class of such problems is ubiquitous in statistics and machine learning: f(θ, z)
is taken to be the negative log-likelihood function and the random variable is written as
z = (x, y), with x ∈ Rd being the feature vector and y ∈ R being the response or label.
Although the joint distribution of (X,Y) is typically unknown, the conditional distribution
of Y given X is often assumed to be specified by the parameter θ∗. Below is a list of several
representative problems frequently encountered in practice (up to constants independent of
θ).

• Linear regression: f(θ, z) = 1
2(y − x>θ)2.

• Logistic regression: f(θ, z) = −yx>θ + log
(

1 + ex
>θ
)

.

The examples above fall into the broad class of generalized linear models (GLM). In its

canonical form without dispersion, a GLM density takes the form pθ(y|x) = h(y)eyx
>θ−b(x>θ),

where h is the base measure and the function b satisfies b′(x>θ) = E(Y |X = x). Ignoring
the factor log h, the negative log-likelihood is

f(θ, z) = −yx>θ + b(x>θ).

In its domain, f(θ, z) is a convex function of θ. Hence, the objective function f(θ), derived
through integrating out the randomness of Z = (X,Y), is also convex. This is the case for
the two examples above4. In addition, two popular types of problems are also included.
Below, ‖ · ‖ denotes the `2 norm and λ > 0.

4. In the case of linear regression, f(θ, z) includes an additional term y2/2. This term does not affect the
minimizer θ∗.

5

Su and Zhu

• Penalized generalized linear regression: f(θ, z) = −yx>θ + b(x>θ) + λ‖θ‖2.

• Huber regression: f(θ, z) = ρλ(y − x>θ), where ρλ(a) = a2/2 for |a| ≤ λ and
ρλ(a) = λ|a| − λ2/2 otherwise.

The first one includes ridge regression as a well-known example, using an `2 penalty to
impose regularization. The function b should satisfy some growth assumption and Poisson
regression, as a result, is excluded. The second is an instance of robust estimation, which
is used to make regression less sensitive to outliers. However, it is worth pointing out that
the formal treatment given later in Section 2.4 considers a much broader class of problems.

As the model gets more and more complex, of practical importance is often the predictive
performance of the model rather than the interpretation of a single unknown parameter.
In the context above, a plethora of statistical and machine learning problems can be cast
as estimating a univariate function µx(θ) evaluated at θ∗. Put concretely, imagine that we
observe the feature X = x of a freshly sampled data point and would like to predict the
conditional mean of Y given X = x:

µx(θ∗) ≡ E(Y |X = x).

Above, note that the conditional mean is a function of the model parameter θ∗ and indepen-
dent variable x. In the aforementioned examples, µx(θ) = x>θ (linear regression), µx(θ) =

ex
>θ/(1 + ex

>θ) (logistic regression) and, more broadly, µx(θ) = E(Y |X = x) ≡ b′(x>θ)
(generalized linear models). Generally, µx(θ) can be any smooth univariate function of θ.

The main goal of this paper is to attach some confidence statements, such as a confidence
interval, to an estimate of µx(θ∗) solely based on noisy gradient information evaluated at
the sample Z1, . . . , ZN . Given that N is exceedingly large or data is available in a stream,
one challenge is to evaluate the noisy gradient g only once for each Zj . While the SGD
algorithm (1) fulfills the computational constraint, it fails to provide a confidence interval
in a natural way. On the other hand, bootstrap is a flexible technique to yield confidence
statements but does not, in general, scale up to large datasets. Next, we present the HiGrad
algorithm as an approach to bringing together all considered needs.

2.2 The HiGrad tree

The HiGrad algorithm is best visualized by its tree structure. A HiGrad tree is param-
eterized by (B1, B2, . . . , BK) and (n0, n1, . . . , nK), where K is the depth of the tree. All
Bi ≥ 2 and ni are positive integers. Figure 2 illustrates an example of (B1, B2) = (2, 3),
while Figure 3 illustrates (B1, B2) = (2, 2). At level 0, the root node is a segment comprised
of n0 data points and has B1 child nodes. Each of these nodes at level 1 is a segment
comprised of n1 data points and has B2 child nodes. Recurse this process according to the
parameters (B1, B2, . . . , BK) and (n0, n1, . . . , nK) until the HiGrad tree has K + 1 levels.
Write Lk := n0 + n1 + · · ·+ nk for k = 0, 1, . . . ,K (as a convention, set L−1 = 0). A path
connecting the root node and a leaf node (a level K node) is called a thread. Note that
there are T := B1B2 · · ·BK threads, each of which traverses K + 1 segments, having data
points totaling LK . As a constraint, the number of data units in the full tree should equal
the total number of observations, that is,

n0 +B1n1 +B1B2n2 +B1B2B3n3 + · · ·+B1B2 · · ·BKnK = N. (2)

6

HiGrad

The HiGrad algorithm is to run SGD on the tree structure above. Given a sequence of
step sizes {γj}∞j=1, HiGrad begins by iterating

θ∅j = θ∅j−1 − γjg(θ∅j−1, Z
∅
j)

for j = 1, . . . , n0, starting from θ∅0 = θ0. Above, the superscript ∅ denotes the root segment
and Z∅ := {Z∅

j }
n0
j=1 is a sub-sample of the observations {Z1, . . . , ZN}. Next, HiGrad

proceeds to all level 1 segments, at one of which, say segment s = (b1) for 1 ≤ b1 ≤ B1, it
iterates according to

θsj = θsj−1 − γL0+jg(θsj−1, Z
s
j)

for j = 1, . . . , n1, starting from θ∅n0
(the last iterate from the previous segment). As Z∅,

Zs := {Zsj }
n1
j=1 is defined by partitioning the total N data points as in (3). More generally,

consider a segment s = (b1, · · · , bk) at level k, where 1 ≤ bi ≤ Bi for i = 1, . . . , k. At this
segment, the procedure is updated according to

θsj = θsj−1 − γLk−1+j g(θsj−1, Z
s
j)

for j = 1, . . . , nk, with the initial point θs0 being the last iterate from the segment s− :=
(b1, . . . , bk−1). Through the whole procedure, the N data points should be partitioned as

{Z1, . . . , ZN} = ∪{Zsj : 1 ≤ j ≤ n#s}, (3)

where the union is taken over all the segments s and #s = k if s = (b1, . . . , bk) (with the
convention that #∅ = 0).

To make the HiGrad algorithm online, a formal description of the construction is given
in Algorithm 1, with more details to be specified in the next section. In particular, the data
stream can feed segments at the same level in a cyclic manner, thus enabling the HiGrad
algorithm to be implemented in an online fashion.

2.3 A t-confidence interval

Restricted to one thread, HiGrad amounts to performing the vanilla SGD (1) for LK ≡
n0 + n1 + · · · + nK steps. Thus, HiGrad yields T sets of vanilla SGD results, and the
ultimate goal is to utilize these results to obtain an estimator of µ∗x := µx(θ∗) with a
confidence interval. To this end, we start by introducing some notation to facilitate our
discussion. Given any segment s = (b1, . . . , bk) of the HiGrad tree5, denote by θ

s
the average

of the nk iterates in s, that is6,

θ
s

=
1

nk

nk∑
j=1

θsj .

Averaged SGD is known to achieve optimal convergence rates and to make estimates robust
for strongly convex objectives (Bach and Moulines, 2011; Rakhlin et al., 2012) (for more
work related to averaged SGD, see Bach and Moulines (2013); Cardot et al. (2013); Duchi

5. Throughout the paper, we use non-bold letters to denote scalars, vectors, and matrices, except for the
case where it is necessary to emphasize that the notion is not a scalar, for example, s, t, and µx.

6. The letter t is placed in subscript for a thread as a way to distinguish a thread from a segment.

7

Su and Zhu

θ∅1 , , θ
∅
n0

θ
(1)
1 , , θ

(1)
n1

θ
(2)
1 , , θ

(2)
n1

θ
(1,1)
1 , , θ

(1,1)
n2

θ
(1,2)
1 , , θ

(1,2)
n2

θ
(2,1)
1 , , θ

(2,1)
n2

θ
(2,2)
1 , , θ

(2,2)
n2

θ̄∅

θ̄(1)

θ̄(2)

θ̄(1,1)

θ̄(1,2)

θ̄(2,1)

θ̄(2,2)

θ̄(1,1) = w0θ̄
∅ + w1θ̄

(1) + w2θ̄
(1,1)

θ̄(1,2) = w0θ̄
∅ + w1θ̄

(1) + w2θ̄
(1,2)

θ̄(2,1) = w0θ̄
∅ + w1θ̄

(2) + w2θ̄
(2,1)

θ̄(2,2) = w0θ̄
∅ + w1θ̄

(2) + w2θ̄
(2,2)

Figure 3: Graphical illustration of the HiGrad algorithm. Here we have three levels and at
the end of each level, each segment is split into two segments. Averages are obtained for
each level and at each leaf a weighted average is calculated. The weights wj are detailed in
Section 2.3.

and Ruan (2016); Jain et al. (2017); Liang and Su (2017); Fan et al. (2018)). Let w =
(w0, w1, . . . , wK) be a vector of weights such that w0 +w1 + · · ·+wK = 1 and wi ≥ 0. Then,
for any thread t = (b1, . . . , bK), write θt for the weighted average over the K + 1 segments
through t, that is,

θt =
K∑
k=0

wkθ
(b1,...,bk). (4)

For notational convenience, we suppress the dependence of w on θt. Denote by µx ∈ RT
the T -dimensional vector consisting of all µtx := µx(θt) defined for every thread t, and write
µ∗x = µx(θ∗) for short.

Now, we turn to infer µ∗x based on the T -dimensional vector µx. This requires recogniz-
ing the correlation structure of the T threads. For two different threads t = (b1, . . . , bK) and
t′ = (b′1, . . . , b

′
K) with 1 ≤ bk, b

′
k ≤ Bk for k = 1, . . . ,K, the number of data points shared

by t and t′ vary from n0 to n0 +n1 + · · ·+nK−1. Intuitively, the more they share, the larger
the correlation is. This point is made explicit by Lemma 2.5 in Section 2.6, which, loosely
speaking, states that as the length of the data stream N → ∞, under certain conditions
the vector µx is asymptotically normally distributed with mean µ∗x1 := (µ∗x, µ

∗
x, . . . , µ

∗
x)>

and covariance proportional to Σ ∈ RT×T . The covariance Σ is defined as

Σt,t′ =

p∑
k=0

w2
kN

nk
(5)

8

HiGrad

Algorithm 1 The HiGrad Algorithm

1: input: HiGrad tree structure (B1, . . . , BK) and (n0, n1, . . . , nK), partition of the
dataset {Z1, . . . , ZN} = ∪s{Zsj : 1 ≤ j ≤ n#s}, step sizes (γ1, . . . , γLK), and initial
point θ0

2: output: θ
s

for all segments s

3: Set θ
s

= 0 for all segments s
4: function SegmentHiGrad(θ, s)
5: θs0 = θ
6: k = #s
7: for j = 1 to nk do
8: θsj ← θsj−1 − γj+Lk−1

g(θsj−1, Z
s
j)

9: θ
s ← θ

s
+ θsj /nk

10: end for
11: if k < K then
12: for bk+1 = 1 to Bk+1 do
13: s+ ← (s, bk+1)
14: execute SegmentHiGrad

(
θsnk , s

+
)

15: end for
16: end if
17: end function

18: execute SegmentHiGrad(θ0,∅)

for any two threads t, t′ that agree exactly on the first p segments. In particular, the
diagonal entries all equal

Σt,t =
K∑
k=0

w2
kN

nk
.

Making use of this distributional property, Proposition 2.1 in the next section devises an
(asymptotic) pivotal quantity for µ∗x. This pivot suggests estimating µ∗x using the sample
mean of µx:

µx :=
1

T

∑
t∈T

µtx, (6)

where T denotes the set of all threads. We propose[
µx − tT−1,1−α2 SEx, µx + tT−1,1−α

2
SEx

]
(7)

as a t-based confidence interval for µ∗x at nominal level 1−α. Above, tT−1,1−α
2

is the 1− α
2

quantile of the t-distribution with T − 1 degrees of freedom, and the standard error SEx
takes the form

SEx =

√
1>Σ1 (µ>x − µx 1>)Σ−1(µx − µx 1)

T 2(T − 1)
. (8)

9

Su and Zhu

Formal statements are given in Section 2.4, along with explicit conditions required by the
results, and Section 2.6 sheds light on how the correlation structure of µx is derived and
used in obtaining the confidence interval.

In passing, we remark that the HiGrad confidence interval construction, which will be
discussed starting from (10) in Section 2.6, relies on the delta method to linearly approxi-
mate µx near θ∗. To improve on the linear approximation in the case of a large curvature
of µx at θ∗, one could consider a certain bijective function η(·) in a neighborhood of µ∗x and
construct a confidence interval for η∗x := η(µ∗x). Note that many interesting examples of µx
in generalized linear models depend on θ only through x>θ, and thus a good choice of η
could be the link function, satisfying η(µx(θ)) = x>θ. With this transformation in place,
we may construct a confidence interval for η∗x as earlier. By recognizing the correspon-
dence between η and µx, a confidence interval for µ∗x can be derived by simply inverting the
endpoints of that for η∗x.

2.4 Correct coverage probabilities

The subject of this section is to provide theoretical support for the HiGrad confidence
interval. We begin by stating the assumptions needed for the main theoretical results,
Proposition 2.1, Theorem 1, and Theorem 2. As earlier, ‖ · ‖ denotes the `2 norm for a
vector and the spectral norm for a matrix.

Assumption 1 (Regularity of the objective). The objective function f(θ) is differentiable
and convex, and its gradient ∇f is Lipschitz continuous, that is, for some L > 0,

‖∇f(θ1)−∇f(θ2)‖ ≤ L‖θ1 − θ2‖

holds for all θ1 and θ2. In addition, the Hessian ∇2f(θ) exists in a neighborhood of θ∗ with
∇2f(θ∗) being positive-definite, and it is locally Lipschitz continuous in the sense that there
exists L′, δ1 > 0 such that ∥∥∇2f(θ)−∇2f(θ∗)

∥∥ ≤ L′‖θ − θ∗‖2
if ‖θ − θ∗‖ ≤ δ1.

In the next assumption, denote by V := E
[
g(θ∗, Z)g(θ∗, Z)>

]
and ε = g(θ, Z)−∇f(θ).

Thus, V = Eθ∗ εε> by using the fact ∇f(θ∗) = 0. Note that ε has mean zero and its
distribution in general depends on θ.

Assumption 2 (Regularity of noisy gradient). There exists a constant C > 0 such that∥∥∥Eθ εε> − V ∥∥∥ ≤ C(‖θ − θ∗‖+ ‖θ − θ∗‖2)

for all θ. Moreover, assume there exists a constant δ2 > 0 such that

sup
‖θ−θ∗‖≤δ2

Eθ ‖ε‖2+δ2 <∞.

Assumptions exactly the same as or basically equivalent to the above two have been made
in a series of papers working on averaged SGD and beyond, see Ruppert (1988); Polyak

10

HiGrad

(1990); Polyak and Juditsky (1992); Bach and Moulines (2011); Fort (2012); Dieuleveut
and Bach (2016); Chen et al. (2020); Toulis and Airoldi (2017); Li et al. (2017); Fang et al.
(2017) and references therein. Specifically, Assumption 1 considers a form of local strong
convexity of the objective f at the minimizer θ∗. More precisely, the positive-definiteness
of the Hessian ∇2f at θ∗ together with the local Lipschitz continuity of the Hessian implies
that f(θ) − δ‖θ‖2/2 is convex on {θ : ‖θ − θ∗‖ ≤ δ} for some small δ > 0. Hence, the
idea here is that we first run SGD in one thread and after a number of steps, the iterate
would be sufficiently close to θ∗ so that the strong convexity kicks in. This viewpoint is
consistent with the current opinion about SGD that it automatically adapts to local strong
convexity (see Bach and Moulines (2013); Bach (2014); Gadat and Panloup (2017)). In the
first display of Assumption 2, the term ‖θ − θ∗‖ is used to ensure the continuity of the
covariance of ε at θ∗, while the second term ‖θ− θ∗‖2 controls the growth of the covariance.
Recognizing that the first two assumptions remain to hold if both δ1, δ2 are replaced by
min{δ1, δ2}, we shall simply use δ > 0 for both cases.

These two assumptions are generally satisfied for the four aforementioned examples in
Section 2.1. Below, we only consider the example of linear regression. Note that

f(θ) = E
1

2
(Y −X>θ)2 =

1

2
θ>
[
EXX>

]
θ − [EY X]> θ +

1

2
EY 2,

which is a simple quadratic function. Hence, Assumption 1 readily follows as long as EXX>
exists, that is, ‖X‖ has a second moment, and is positive-definite. The positive-definiteness
holds if the vector X ∈ Rd is in generic positions (Tibshirani and Taylor, 2012), for example,
having probability density well-defined in a small ball. Next, Assumption 2 is satisfied if
E ‖X‖4+c < ∞ and E |Y |2+c‖X‖2+c < ∞ for a sufficiently small c > 0. More details and
the other examples are considered in the appendix.

Now, we are in a position to state our main theoretical result, namely, Proposition
2.1. Throughout the paper, the function µx is differentiable in a neighborhood of θ∗ and
dµx(θ)

dθ

∣∣∣
θ=θ∗

6= 0. The weights w are taken to be any fixed vector of non-negative entries

that sum to 1. Recall that µx and SEx are defined in (6) and (8), respectively.

Proposition 2.1. Let K and B1, . . . , BK be fixed. For each k, assume nk/N converges to
a nonzero constant as N →∞. Under Assumptions 1 and 2, taking step sizes γj = c1

(j+c2)α

for fixed α ∈ (0.5, 1), c1 > 0 and c2 ensures the following convergence in distribution as
N →∞:

µx − µ∗x
SEx

=⇒ tT−1.

Remark 2.2. The choice of step sizes γj � j−α obeys

∞∑
j=1

γj =∞ and

∞∑
j=1

γ2j <∞.

In particular, the step sizes vanish to zero at a rate slower than O(j−1), and this is shown
to be necessary for the averaged SGD to outperform the Robbins–Monro algorithm (see,
for example, Kushner and Yin (2003))7.

7. The assumption on step sizes can be relaxed significantly by Assumption 3 in the appendix, without
affecting the validity of any results in this section. We opt for the present one in the main text for its
simplicity.

11

Su and Zhu

The two theorems below are immediate consequences of Proposition 2.1. We prefer to
state them as theorems rather than corollaries as to highlight their key roles in this paper.
Throughout the paper, significance level α ∈ (0, 1) is fixed.

Theorem 1 (Confidence intervals). Under the assumptions of Proposition 2.1, the HiGrad
confidence interval is asymptotically correct. That is,

lim
N→∞

P
(
µ∗x ∈

[
µx − tT−1,1−α2 SEx, µx + tT−1,1−α

2
SEx

])
= 1− α.

In words, the deterministic value µ∗x is contained in the (random) interval[
µx − tT−1,1−α2 SEx, µx + tT−1,1−α

2
SEx

]
with probability tending to 1− α.

Although continuing to hold, Theorem 1 might lose interpretability in the case of model
misspecification (for example, f is not the negative log-likelihood). As a consequence, the
HiGrad confidence interval (7) might merely cover a value irrelevant to its own interpreta-
tion.

Theorem 2 below provides a prediction interval with correct asymptotic coverage 1−α.
Derived from widening the HiGrad confidence interval by a factor of

√
2, this prediction

interval covers the estimator in (6) computed from a fresh dataset following the same dis-
tribution with probability tending to 1 − α. Even in the case of model misspecification, it
has substantive interpretation. For instance, its length shall shed light on the variability of
the estimator µx.

Theorem 2 (Prediction intervals). Let {Z ′j}Nj=1 be an independent copy of the sample

{Zj}Nj=1. Under the assumptions of Proposition 2.1, apply the same HiGrad procedure to

{Z ′j}Nj=1 and get the estimator µ′x. Then, we have

lim
N→∞

P
(
µ′x ∈

[
µx −

√
2tT−1,1−α

2
SEx, µx +

√
2tT−1,1−α

2
SEx

])
= 1− α.

Remark 2.3. The proof of this result follows from the simple fact that

µx − µ′x√
2 SEx

=
(µx − µ∗x)− (µ′x − µ∗x)√

2 SEx

converges weakly to tT−1. Using optimal weights, HiGrad can also give a prediction interval
for the vanilla SGD. Details are stated in Theorem 3 in Section 2.5. As a caveat, while a
wide prediction interval implies large variability of the estimator, a short one does not
necessarily ensure trustworthiness of the estimator due to a potentially large bias.

2.5 Optimality

The weights w have been treated so far as a generic nonnegative vector that sums to
one. Moving forward, this section aims to identify a certain w that leads to the smallest
asymptotic variance of the estimator µx. We begin with the fact8

√
N(µx − µ∗x)⇒ N

(
0,
σ21>Σ1

T 2

)
.

8. The notation 1 denotes a column vector with all entries being 1. Its dimension is often clear from the
context.

12

HiGrad

Above, σ2 is a constant independent of w (see more details in Section 2.6) and Σ given

in (5) depends on w (recall that Σt,t′ =
∑p

k=0
w2
kN
nk

for any two threads t, t′ that agree
exactly on the first p segments). The display above reveals that µx attains the minimum
asymptotic variance if 1>Σ1 is minimized. The result below highlights the optimal weights
in this sense.

Proposition 2.4. Under the assumptions of Proposition 2.1, 1>Σ1 attains the minimum
if and only if

wk =
nk
∏k
i=0Bi
N

(9)

for all k = 0, . . . ,K.

Note that the optimal weights are independent of the choices of step sizes as long as the
step sizes are specified by the assumptions of Proposition 2.1.

Proof of Proposition 2.4. Let p(t, t′) denote the number of shared segments between two
threads t and t′. Note that

1>Σ1 =
∑
t,t′

p(t,t′)∑
k=0

w2
kN

nk
=

K∑
k=0

∑
t,t′

w2
kN

nk
1(k ≤ p(t, t′))

=
K∑
k=0

w2
kN

nk

∑
t,t′

1(k ≤ p(t, t′)).

To proceed, note that9

∑
t,t′

1(k ≤ p(t, t′)) = B0 · · ·Bk(Bk+1 · · ·BK)2 =
T 2∏k
i=0Bi

.

Hence, we get

1>Σ1 = NT 2
K∑
k=0

w2
k

nk
∏k
i=0Bi

= T 2

[
K∑
k=0

nk

k∏
i=0

Bi

][
K∑
k=0

w2
k

nk
∏k
i=0Bi

]

≥ T 2

[
K∑
k=0

√
w2
k

]2
= T 2.

Above, we have made use of (2) and the Cauchy–Schwarz inequality, which is reduced to
an equality if and only if (9) holds for all k = 0, . . . ,K.

9. Note that we use the convention that B0 = 1.

13

Su and Zhu

In particular, the proof suggests that asymptotic variance of the HiGrad estimator with
the optimal weights is σ2T 2/(NT 2) = σ2/N , no matter the configuration of the HiGrad
tree (B1, . . . , BK) and (n0, . . . , nK). As a special case, taking K = 0 and n0 = N shows
that the HiGrad variance is the same as the vanilla averaged SGD. This fact demonstrates
that the splitting strategy in HiGrad does not lose any statistical efficiency in providing
uncertainty quantification. As a consequence, the discussion implies that the prediction
interval in Theorem 2 applies to the vanilla SGD using step sizes γj = c1/(j + c2)

α for
α ∈ (0.5, 1) as well.

Theorem 3 (Prediction intervals for vanilla SGD). Under the assumptions of Theorem 2,
apply the vanilla SGD to {Z ′j}Nj=1 and get the estimator µSGD

x . Then, we have

lim
N→∞

P
(
µSGD
x ∈

[
µx −

√
2tT−1,1−α

2
SEx, µx +

√
2tT−1,1−α

2
SEx

])
= 1− α.

This optimality of the HiGrad variance merits a stronger sense in the case where f(θ, Z)
is the negative log-likelihood of θ, that is, the model is correctly specified. In that case, σ2

is shown in the discussion right below Lemma 2.5 to coincide with the inverse of the Fisher
information of µx(θ) at θ∗. Put more simply, the HiGrad procedure with the optimal weights
achieves the Cramér–Rao lower bound among all (asymptotically) unbiased estimators.

2.6 Proof sketch

This section provides an overview of the proof of Proposition 2.1, with an emphasis on
high-level ideas rather than technical details, which can be found in the appendix. As will
be shown, Proposition 2.1 is implied by Lemma 2.5. To state this lemma, we introduce some
notations as follows. Consider the SGD rule (1) for j = 1, . . . , n. Write n = n0+n1+· · ·+nK ,
and denote by sk = n0 + · · ·+ nk, with the convention that s−1 = 0. Define

θ(k) =
1

nk

sk∑
j=sk−1+1

θj

for k = 0, . . . ,K. Again, the choice of step sizes γj = c1
(j+c2)α

used here can be relaxed by
Assumption 3 in the appendix.

Lemma 2.5. For each k, assume nk/n converges to some nonzero constant as n → ∞.
Under Assumptions 1 and 2,

√
n0(θ(0)− θ∗),√n1(θ(1)− θ∗), . . . ,√nK(θ(K)− θ∗) converge

weakly to K + 1 i.i.d. centered normal random variables.

This lemma is in fact a Donsker-style generalization of the normality of the celebrated
Ruppert–Polyak averaging scheme (Ruppert, 1988; Polyak, 1990; Polyak and Juditsky,
1992), and this generealization requires certain technical novelties. Explicitly, results in
Ruppert (1988); Polyak (1990); Polyak and Juditsky (1992) state that, writing θ for the
sample mean of the vanilla SGD iterates θ1, . . . , θn, the random variable

√
n(θ − θ∗) con-

verges to N (0,W) in distribution under the same assumptions as in Lemma 2.5. The
covariance matrix W takes the following sandwich form (White, 1980):

W = H−1V H−1,

14

HiGrad

where V has appeared in Assumption 2 and H is the Hessian ∇2f(θ∗). Both V and H
coincide with the Fisher information

I(θ) = E ∇θf(θ, Z)∇θf(θ, Z)> = E∇2f(θ, Z)

at θ = θ∗ if f(θ, Z) is taken to be the negative log-likelihood. Therefore, the averaged
SGD iterates θ matches the Cramér–Rao lower bound. Going back to Lemma 2.5, every√
nk(θ(k) − θ∗) converges to N (0,W) as the Ruppert–Polyak normality kicks in, and the

(asymptotic) independence between these K+1 random variables is established in the proof
of Lemma 2.5 in the appendix by observing the rapid decaying of correlations among distant
SGD iterates. As will be seen right below, the proof of Proposition 2.1 using Lemma 2.5
holds regardless of the covariance W . In other words, the lemma does not make full use of
the Ruppert–Polyak normality result.

To obtain a confidence interval based on µx, one needs to specify the correlation structure
of µtx for all threads t. Lemma 2.5 serves this purpose. To begin with, observe that

µx(θ) = µ∗x + (θ − θ∗)>dµx
dθ

∣∣∣
θ=θ∗

+ o(‖θ − θ∗‖). (10)

Drop the small term o(‖θ− θ∗‖) and denote by ν the column vector dµx
dθ (θ∗). Applying the

Taylor expansion together with (4) yields10

µx(θt) ≈ µ∗x + ν>

(
K∑
k=0

wkθ
tk − θ∗

)

= µ∗x + ν>
K∑
k=0

wk(θ
tk − θ∗).

(11)

Now, suppose two threads t, t′ agree in the first p segments, hence sharing the first p
summands in the second line of (11). Making use of the fact that the K + 1 summands
are asymptotically independent as claimed by Lemma 2.5, the asymptotic covariance of√
N(µtx − µ∗x) and

√
N(µt

′
x − µ∗x) equals(

p∑
k=0

w2
kN

nk

)
ν>Wν.

Consequently, the covariance of µx ∈ RT is approximately given by Σ up to a scaling factor
of ν>Wν/N , which is independent of the weights w and the HiGrad tree structure. Taking
σ2 := ν>Wν, the discussion above is summarized in the following lemma:

Lemma 2.6. Under the assumptions of Proposition 2.1,
√
N(µx − µ∗x1) converges weakly

to a normal distribution with mean vector zero and covariance σ2Σ as N →∞.

With Lemma 2.6 in place, we are ready to give an informal proof of Proposition 2.1.

10. Write t = (b1, . . . , bK) and let tk = (b1, . . . , bk) for k = 0, 1, . . . ,K.

15

Su and Zhu

Sketch proof of Proposition 2.1. First, we point out that the HiGrad estimator µx in (6)
coincides with the least-squares estimator of µ∗x. To see this, note that Lemma 2.6 amounts
to saying µx ≈ µ∗x1 + z with z ∼ N (0, σ2Σ/N), which is equivalent to

Σ−
1
2µx ≈ (Σ−

1
2 1)µ∗x + z̃. (12)

The noise term z̃ = Σ−
1
2z ∼ N (0, σ

2

N I) has been whitened. Thus, (12) is a linear regression
with T observations and one unknown parameters µ∗x. The least-squares estimator of µ∗x is

µ̂x = (1>Σ−
1
2 Σ−

1
2 1)−11>Σ−

1
2 Σ−

1
2µx

= (1>Σ−11)−11>Σ−1µx.

To proceed, recognize that 1 is an eigenvector of Σ (denote by λ the corresponding eigen-
value) due to the symmetric construction of Σ. Hence, we get

µ̂x = (1>Σ−11)−11>Σ−1µx

=

(
1>1

λ

)−1
1>

λ
µx

=
1

T

∑
t∈T

µtx,

which is simply the sample mean µx. Moreover, the standard error of µ̂x ≡ µx is

SEx =
σ̂√
N
·
√

1>Σ1

T
,

where

σ̂2 =
N‖Σ−

1
2 (µx − µx1)‖2

T − 1
=
N(µ>x − µx1>)Σ−1(µx − µx1)

T − 1
.

Note that the present form of SEx is equivalent to that in (8). Hence, the pivot

µ̂x − µ∗x
SEx

=
µx − µ∗x

SEx
=

√
N(µx − µ∗x)

σ̂
√

1>Σ1 / T

converges in distribution to a Student’s t random variable with T − 1 degrees of freedom.
This concludes the proof.

3. Configuring HiGrad

The HiGrad algorithm takes as input (B1, . . . , BK) and (n0, n1, . . . , nK), and this section
aims to shed some light on how to choose the structural parameters. With the goal of bal-
ancing contrasting and sharing, we consider the confidence interval length as a measure to
evaluate HiGrad structures. While the results in Section 2 show that all HiGrad confidence
intervals have the same coverage probability asymptotically, the average length of the con-
fidence interval allows us to distinguish between different HiGrad structures. Apparently, a
shorter confidence interval is better appreciated.

16

HiGrad

Denote by LCI = 2tT−1,1−α
2

SEx the length of the HiGrad confidence interval. Using

the optimal weights,
√
N(µx−µ∗x) is known to converge to N (0, σ2) in distribution. Hence,√

N SEx /σ follows χT−1/
√
T − 1 asymptotically, a rescaled chi random variable. As a

consequence, the expectation of LCI equals11

(2 + o(1))tT−1,1−α
2
σ EχT−1√

N(T − 1)
=

(2
√

2 + o(1))σ√
N

·
tT−1,1−α

2
Γ
(
T
2

)
√
T − 1 Γ

(
T−1
2

) .
The expression above reveals that the average length depends on the tree structure only
through T , the number of threads. Moreover, one can show that, for any fixed 0 < α < 1,

tT−1,1−α
2
Γ
(
T
2

)
√
T − 1 Γ

(
T−1
2

) (13)

is a decreasing function of T ≥ 2.
A direct consequence of this decreasing monotonicity is: the larger the number T of

HiGrad threads, the shorter the confidence interval on average (asymptotically). The literal
meaning of this sentence suggests splitting more—or, equivalently, seeking more contrast—
would imply a better confidence interval. From a practical perspective, however, splitting
too much is not necessarily effective, and it could even lead the HiGrad results to be
untrustworthy at worst because some segments would not be long enough to ensure the
normality in Lemma 2.5. In particular, the thread length n0 + n1 + · · ·+ nK would not be
long enough to guarantee convergence if the width T is too large. This point is consistent
with Figure 4, where the function in (13) decreases noticeably when T is small. However,
the marginal gain by increasing T becomes tiny once T exceeds 4. In fact, the value at
T = 4 is 1.318 times of the value at T = ∞ for α = 0.1. Moreover, with a large T , either
some segments or every thread would be relatively short. The former case undermines the
correlation structures given by (5) and thus might yield an undesired coverage probability
of the HiGrad confidence interval, while the latter might even fail to achieve satisfactory
convergence to the minimizer.

To generate T = 4 threads in HiGrad, one could either set K = 1, B1 = 4, or choose
K = 2, B1 = B2 = 2. Since longer HiGrad threads in general lead to better convergence,
we can distinguish between the two configurations by the length of threads. Explicitly, the
latter case yields a longer thread in the case of an equal length of all threads and thus is
preferred in this regard. More generally, let T be a large number, and it is clear that the
thread length is 2N/(T + 1) in the setup where n0 = n1, B1 = T , and K = 1. In contrast,
if n0 = n1 = · · · = nK and B1 = B2 = · · · = BK = 2, where K = log2 T , from (2) a little
analysis shows that the thread length is

(K + 1)N

2K+1 − 1
≈ (log2 T + 1)N

2T
= O

(
log T

T

)
N,

which is an order of magnitude larger than O(1/T)N as in the direct splitting case. This
comparison indeed demonstrates the benefit brought about by sharing segments. As one of
the two core ideas in HiGrad, sharing segments at early levels elongates threads.

11. It is possible to construct examples where ELCI is infinite by letting µx(θ) grow very fast away from θ∗.
We omit these types of examples.

17

Su and Zhu

0

2

4

6

8

2 4 6 8 10

T

E
x
p

ec
te

d
le

n
g
th

0

2

4

6

8

2 4 6 8 10

T

Figure 4: Rescaled expected length of confidence intervals versus T , the number of HiGrad
threads. The left plot and right plot correspond to α = 0.05 and α = 0.1, respectively. The
gray dashed lines indicate the confidence interval lengths at T =∞.

In light of the above, an R package called higrad implementing this procedure sets
the default tree structure to K = 2, B1 = B2 = 2, T = 4. This package is available
at https://cran.r-project.org/web/packages/higrad/. From a practical perspective,
however, the optimal HiGrad tree structure might vary with different problems. To approach
the optimal performance, one needs to choose a value of T that is not too large or small. For
example, one possibility is to leverage experiments to examine whether the HiGrad iterates
bounce around some point. If not, it suggests that T might be too large such that the SGD
algorithm is not convergent (Sordello et al., 2019).

In addition to the tree structure, we still need to specify n0, n1, . . . , nK under the con-
straint (2). On the one hand, although the threads would be long if the segment length nk
decreases fast as level k increases, the covariance matrix given in (5) might suffer from a bad
condition number due to strong correlations among threads. As a result, the standard error
given by (8) might not be accurate. On the other hand, a rapidly increasing segment length
would lead to a short thread. To balance the two considerations, the default values are set
to n0 = n1 = n2 = N/7 in the higrad package. The performance of this configuration of
the HiGrad algorithm is corroborated by extensive simulation studies shown in Section 5,
with satisfactory results across a range of examples. That being said, it is worth mentioning
that this set of default parameters is employed in recognition of several considerations and
constraints, and a different HiGrad configuration might be preferred in other settings.

4. Extensions

In this section, we showcase a number of extensions of HiGrad to incorporate some practical
considerations and to improve efficiency. These extensions follow from results that have
been developed in Section 2 without much additional effort, but might bring appreciable
improvements in certain settings.

18

HiGrad

Flexible tree structures. In its present formulation, the HiGrad tree is grown symmetri-
cally across different branches. In fact, asymmetry is permitted, allowing for more flexibility
to incorporate certain practical needs. Explicitly, after the first segment gets split into B1

branches, we can build each subtree differently, with possibly different segment lengths and
even various depths. Proposition 2.1 remains to hold if all the segments in the fully grown
tree are asymptotically proportional to each other.

An asymmetric HiGrad tree is favorable if it is used in a distributed environment once
split. This point recognizes that, in distributed computing, datasets in their local machines
are typically of different sizes and thus a symmetric HiGrad tree would inevitably incur
heavy communication cost to guarantee consistency across all threads. Moreover, the num-
ber of total data points (or epochs in the finite population setting) is often unknown or not
fixed a priori. An asymmetric structure admits more degrees of freedom to deal with such
cases.

Batch size. Mini-batch gradient descent is a trade-off between SGD and gradient descent.
To update the iterate at each time, mini-batch gradient descent takes the average of the
gradient over a certain number of data points so as to reduce the variance of the gradient.
As a major advantage, it has been shown that mini-batch SGD outperforms the vanilla
SGD in the low signal-to-noise ratio regime (Yin et al., 2018). For the HiGrad algorithm,
theoretical guarantees including Theorems 1 and 2 persist if iterations are updated in a
mini-batch fashion. An interesting question for future research is, however, to determine
how the mini-batch size affects the optimal HiGrad tree structures.

Multivariate generalizations. The HiGrad algorithm seamlessly applies to the case
where the function to estimate µx is multivariate. In particular, our main theoretical
result, Proposition 2.1, and the subsequent Theorems 1 and 2 admit multivariate versions
respectively, as follows. Denote by p the dimension of µx and let Mx be a T × p matrix
consisting of T rows of µx(θt) for all threads t. As earlier in the univariate case, consider
the simple multivariate linear regression

Σ−
1
2Mx = Σ−

1
2 1(µ∗x)> + z̃,

where µ∗x = µx(θ∗). Note that the T rows of z̃ are approximately i.i.d. normal vectors.
Omitting some technical details, we find that the least-squares solution is

µx =
1

T

∑
t∈T

µx(θt),

the sample covariance of z̃ is

Ŝx =
1

T − 1
(Mx − 1µ>x)>Σ−1(Mx − 1µ>x),

and Hotelling’s T -squared statistic reads

(1>Σ−
1
2 1)2 (µx − µ∗x)> Ŝ−1x (µx − µ∗x)

T
. (14)

The result below generalizes Proposition 2.1 to the multivariate setting where the Jaco-
bian ∂µx(θ)

∂θ exists and has full rank in a neighborhood of θ∗.

19

Su and Zhu

Proposition 4.1. Under the assumptions of Proposition 2.1, the HiGrad procedure ensures
that the statistic (14) asymptotically follows Hotelling’s T -squared distribution T 2

p,T−1 as
N →∞.

Above, note that T 2
p,T−1 is the same as the rescaled F random variable p(T−1)

T−p Fp,T−p.
Multivariate analogs of Theorems 1 and 2 for attaching confidence statements to the HiGrad
estimator µx immediately follow from Proposition 4.1. For instance, an asymptotically
1− α-coverage confidence region for µ∗x is{

µ :
(1>Σ−

1
2 1)2 (µx − µ)> Ŝ−1x (µx − µ)

T
≤ T 2

p,T−1,1−α

}
.

Likewise, a prediction region for µ′x obtained from a fresh dataset takes the same form
except that 2T 2

p,T−1,1−α is used in place of T 2
p,T−1,1−α above.

Burn-in and restarting. Discarding a small portion of the iterates at the beginning,
a trick referred to as burn-in, is widely adopted in practice (see, for example, Chen et al.
(2020); Li et al. (2017); Chee and Toulis (2017)). The rationale for using burn-in is that
initial iterates can be far from the minimizer and thus it might improve the accuracy by
returning the average of the last iterates. More concretely, burn-in is shown to improve the
rate of convergence for non-smooth objectives (Rakhlin et al., 2012). As a generalization
of SGD, HiGrad can easily incorporate this trick by, for example, discarding initial iterates
in the first segment. In addition, the HiGrad algorithm seamlessly employs a similar trick
called restarting in first-order methods (O’Donoghue and Candès, 2015; Su et al., 2016),
which resets the step size back to γ1 after a certain number of iterations. For example,
restarting, in the HiGrad setting, can be applied at the beginning of each segment.

5. Numerical Examples

5.1 Simulations

The empirical performance of HiGrad is evaluated in simulations from three perspectives:
accuracy, coverage, and informativeness. Explicitly, accuracy is measured by the distance
between the estimator averaged from all HiGrad threads and the true parameter, coverage
is measured by the probability that the HiGrad confidence interval contains the true value,
and informativeness is measured by the average length of the confidence interval.

Using the optimal weights, HiGrad is applied to linear regression and logistic regres-
sion. The former generates Y from N (µX(θ∗), 1), whereas the latter generates Y = 1 with
probability

eµX(θ∗)

eµX(θ∗) + 1

and Y = 0 otherwise, both conditional on the feature vector X. The quantity to be
estimated in both cases takes the form µx(θ) = x>θ and X follows a multivariate normal
distribution N (0, Id), where the dimension d = 50. The function f(θ, z) is taken to be the
negative log-likelihood (see Section 2.1). Upon a query from the HiGrad algorithm, a pair
of (X,Y) is generated according to the models described above. The step size γj is set to
0.1j−0.55 and 0.4j−0.55 for linear regression and logistic regression, respectively, and θ0 is

20

HiGrad

1.0

1.1

1.2

1.3

1e+04 1e+05 1e+06

Total number of steps

N
o
rm

al
iz

ed
ri

sk
Linear regression, null

1.0

1.1

1.2

1.3

1e+04 1e+05 1e+06

Total number of steps

N
o
rm

a
li

ze
d

ri
sk

Logistic regression, null

1.0

1.1

1.2

1.3

1e+04 1e+05 1e+06

Total number of steps

N
o
rm

a
li

ze
d

ri
sk

Linear regression, sparse

1.0

1.1

1.2

1.3

1e+04 1e+05 1e+06

Total number of steps

N
o
rm

a
li

ze
d

ri
sk

Logistic regression, sparse

1.0

1.1

1.2

1.3

1e+04 1e+05 1e+06

Total number of steps

N
or

m
al

iz
ed

ri
sk

Linear regression, dense

1.0

1.1

1.2

1.3

1e+04 1e+05 1e+06

Total number of steps

N
o
rm

al
iz

ed
ri

sk

Logistic regression, dense

: : : :

Figure 5: Estimation accuracy of HiGrad against the total number of iteration steps. The
risk is averaged over 100 replicates and is further normalized by that of vanilla SGD. The
four HiGrad configurations are described in Table 1.

initialized randomly with a N(0, 0.01I) distribution. Three types of the true coefficients θ∗

are examined: a null case where θ∗1 = · · · = θ∗d = 0, a dense case where θ∗1 = · · · = θ∗d = 1√
d
,

and a sparse case where θ∗1 = · · · = θ∗d/10 =
√

10/d, θ∗d/10+1 = · · · = θ∗d = 0. Table 1 presents
the HiGrad configurations considered in the simulation studies. Note that all of the four
HiGrad configurations have T = 4 threads.

K = 1, B1 = 4, n0 = 0, n1 = N/4

K = 2, B1 = B2 = 2, n0 = 0, n1 = N/6

K = 1, B1 = 4, n0 = n1 = N/5

K = 2, B1 = B2 = 2, n0 = n1 = N/7

Table 1: Configurations of HiGrad in the simulations.

Accuracy. Denote by θ the average of all HiGrad thread estimates (4) and record ‖θ−θ∗‖
as the estimation risk. The reported risks are averaged over 100 replicates, each with a total
number N of iterations varying from 104 to 106. Shown in Figure 5 are plots of the HiGrad

21

Su and Zhu

Linear regression Logistic regression

0.9044

0.9026

0.901

0.8919

0.897

0.905

0.8906

0.8919

0.892

0.8979

0.9

0.8997

0.8837

0.8857

0.8896

0.882

0.8876

0.8866

Coverage prob. Config.

0.0722

0.0707

0.0713

0.0308

0.0304

0.0305

0.0304

0.0299

0.0299

0.0703

0.0686

0.0695

0.0296

0.0291

0.0294

0.0296

0.0293

0.0296

CI length

0.8963

0.9017

0.9004

0.8901

0.892

0.9016

0.8887

0.8919

0.8903

0.8951

0.8957

0.8966

0.8899

0.8814

0.8851

0.8874

0.8846

0.8903

Coverage prob. Config.

0.1606

0.1647

0.1444

0.0695

0.0711

0.0631

0.0668

0.0677

0.0609

0.156

0.157

0.1431

0.0667

0.067

0.0602

0.0665

0.0668

0.0607

CI length

null sparse dense

Figure 6: Coverage probability and length of the HiGrad confidence intervals. In both
panels, the middle column presents the configuration graphically; the left column shows the
coverage probabilities (with the nominal coverage 90% indicated by a vertical gray line);
the right column illustrates the average lengths of the confidence intervals. The color of the
bar indicates the type of true parameters θ∗, as shown in the legend at the bottom.

risks normalized by those of SGD in the same setting as a function of the number of steps.
These plots demonstrate that, in general, a configuration with longer thread tends to yield
smaller risk. In particular, the fourth configuration (dash-dotted red line) is with the
longest thread length 3N/7, indeed having the lowest risk in all six plots. On the contrary,
the shortest thread length N/4 is from the first configuration (solid black line), which yields
the highest risk in most cases. As an aside, we point out that the case of a null θ∗ appears to
have the most accurate HiGrad results. This is not surprising as the algorithm is initialized
near the origin.

Coverage and informativeness. In addition to the four configurations listed in Table 1,
this exploration includes two more configurations, both with K = 1 and B1 = 2. The first
is set to n0 = 0, n1 = N/2, and the second is set n0 = n1 = N/3, where N = 106. Given a
configuration, the HiGrad procedure is performed for L = 100 times, each yielding a 90%
confidence interval CI` for µX(θ∗) with X being sampled from N (0, Id). Figure 6 shows
a concise summary of the results in the form of bar plots, which average the empirical
coverage probabilities

1

L

L∑
`=1

1(µX(θ∗) ∈ CI`)

22

HiGrad

and the average confidence interval length both over 100 independent copies of X. Note
that for logistic regression, the confidence interval length is on the scale of µx, the logit
value, instead of the probability. For all configurations, models and true parameter types,
the coverage probabilities are close to the nominal level 90%. In particular, the HiGrad
configuration with two directly split threads (at the bottom of the plots) attains the coverage
probability that is closest to 90%. However, its confidence interval is the longest among
all the six configurations (comparable to the configuration with two intermediately split
threads). The configurations with T = 4 threads give similar levels of informativeness,
which is consistent with the decreasing monotonicity of (13).

Sensitivity analysis of tuning parameters. In addition to the HiGrad tree configura-
tions, the practitioners need to determine the step sizes for running the algorithm. Following
our theoretical results and aforementioned experimental settings, our focus is on step sizes
taking the form

γj =
c1

(j + c2)α
,

for constants 0.5 < α < 1, c1 > 0, and c2. Using the same setting as Figure 6, Figure 7
shows that the performance of HiGrad is satisfactory and consistent over a range of the
triplet of tuning parameters (α, c1, c2).

Summary. To summarize the phenomena observed from the simulated studies, Table 2
assigns each HiGrad configuration three qualitative ratings. For comparison, the vanilla
SGD is included as the simplest example of HiGrad. The last configuration (two splits and
T = 4 threads) achieves the best overall performance according to the three criteria. As
a caveat, the summary table is informal and should be confined to the present simulation
context.

Config. Accuracy Coverage Informativeness

Table 2: Ratings of different HiGrad configurations.

5.2 A real data example

This section reports the results of applying HiGrad to the Adult dataset on the UCI repos-
itory (Lichman, 2013), which is discussed in Introduction. The original dataset contains 14
features, of which 6 are continuous and 8 are categorical. We use the preprocessed version
hosted on the LibSVM repository (Chang and Lin, 2011), which has 123 binary features and

23

Su and Zhu

Linear regression Logistic regression

0.9008
0.9007
0.9014
0.9013
0.9031
0.8995

0.8981
0.9013
0.8998
0.8979
0.9012
0.8984

0.8978
0.8993
0.8927
0.8942
0.8934
0.8952

0.8998
0.9003
0.8958
0.8985
0.8982
0.8972

0.8958
0.8983
0.886
0.8927
0.8854
0.8905

0.898
0.8967
0.887
0.8909
0.8878
0.8908

Coverage prob. Config

0.0721
0.0724
0.072
0.073

0.0736
0.0709

0.0311
0.0314
0.0311
0.0312
0.0316
0.0306

0.0306
0.0309
0.0302
0.0307
0.0306
0.0299

0.0712
0.071

0.0696
0.0713
0.0711
0.0696

0.0304
0.0308
0.0298
0.0304
0.0302
0.0297

0.0304
0.0307
0.0296
0.0303
0.0299
0.0295

CI length

0.9003
0.8919
0.8869
0.8961
0.8912
0.8968

0.8904
0.8637

0.784
0.8753
0.852

0.8812

0.8869
0.8723

0.8186
0.8679
0.8374

0.8699

0.8945
0.8929
0.8776
0.8913
0.8747
0.8892

0.8832
0.8768

0.8025
0.8498
0.8043

0.8491

0.8835
0.8783

0.8111
0.854
0.8127

0.8536

Coverage prob. Config

0.1599
0.1607
0.1642

0.16
0.1619
0.162

0.0686
0.0692
0.0711
0.0689
0.0711
0.0703

0.0663
0.0674

0.0616
0.0635
0.0608
0.0644

0.1538
0.1574

0.1395
0.1465

0.1358
0.1479

0.0656
0.0671

0.0568
0.0609

0.0556
0.0617

0.0652
0.067

0.0558
0.0603

0.0548
0.061

CI length

(0.51,0.1,0) (0.55,0.1,0) (0.51,0.1,100)

(0.55,0.1,100) (0.51,0.5,100) (0.55,0.5,100)

Figure 7: Coverage probability and length of the HiGrad confidence intervals with respect to
different choices of step sizes. In both panels, the middle column presents the configuration
graphically; the left column shows the coverage probabilities (with the nominal coverage
90% indicated by a vertical gray line); the right column illustrates the average lengths of
the confidence intervals. The color of the bar indicates the triplet (α, c1, c2) that specifies
the step sizes γj = c1

(j+c2)α
in Proposition 2.1. Here we show in particular the results for the

dense parameter type.

contains 32,561 samples. We randomly pick 1,000 as a test set, and the rest as a training
set. With the default configuration (K = 2, B1 = B2 = 2, n0 = n1 = n2 = N/7), HiGrad
is used to fit logistic regression on the training set with N = 106 iterations. The step size
is taken to be γj = 0.5j−0.505 and the initial points are chosen as earlier in Section 5.1.

In this real-world example, the coverage of confidence intervals cannot be evaluated
because the true probabilities of the test samples are unknown. Instead, we consider the
HiGrad prediction interval as a way of measuring the randomness of the algorithm. Ex-
plicitly, HiGrad is repeated for L = 500 times in the setting specified above. In the `th
run, HiGrad obtains the predicted probability p̂i` and the 90% prediction interval PIi` for
the ith unit in the test set12, where i = 1, . . . , 1000. We consider the empirical coverage

12. HiGrad first constructs estimates and intervals for the logit x>θ and then transform them to probabilities
using exp(x>θ)/(exp(x>θ) + 1).

24

HiGrad

probability for the ith unit given as

1

L(L− 1)

∑
`1 6=`2

1 (p̂i`1 ∈ PIi`2) , (15)

where the summation is over all L(L− 1) pairs of (`1, `2) such that 1 ≤ `1 6= `2 ≤ L.

In addition, we investigate the coverage property of the HiGrad prediction intervals for
SGD estimates. To this end, SGD with N = 106 iterations is repeatedly performed for
L = 100 times, each yielding an “oracle sample” predicted probability p̂′i` for the ith test
unit. The empirical coverage probability for the ith unit is

1

L2

L∑
`1=1

L∑
`2=1

1
(
p̂′i`1 ∈ PIi`2

)
. (16)

Figure 8 plots the histograms of the empirical coverage probabilities (15) and (16) for
the 1,000 test sample units, respectively. Note that both the left and right histograms use
the same prediction intervals to cover different estimates. In both histograms, the coverage
probability is highly concentrated around the nominal level 90%, showing that the HiGrad
prediction intervals achieve a reasonable coverage probability for most units in the test set.
A noticeable left tail is observed in both histograms, however, indicating that more epochs
in HiGrad and SGD are needed to invoke the asymptotic results for such a small fraction
of units.

0

100

200

300

400

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average coverage probability

C
ou

n
t

0

100

200

300

400

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average coverage probability

C
ou

n
t

Figure 8: Histogram of average coverage probabilities for the 100 samples in the test set.
The left plot corresponds to a fresh HiGrad prediction (15), and the right corresponds to
an SGD prediction (16). The average coverage probabilities are calculated based on an set
of “oracle samples” and 100 runs of HiGrad.

25

Su and Zhu

6. Discussion and Future Work

This paper has proposed a method called HiGrad for statistical inference in online learning.
This novel procedure, compared with SGD, attaches a confidence interval to its predictions
without incurring additional computational or memory cost. The HiGrad confidence inter-
val has been rigorously shown to asymptotically achieve the correct coverage probability
for smooth (locally) strongly convex objectives. Moreover, the associated estimator has the
same asymptotic variance as the vanilla SGD and can even attain the Cramér–Rao lower
bound in the case of model specification. In both simulations and a real data example,
HiGrad is empirically observed to yield good finite-sample performance using a default set
of structural parameters derived by balancing the two competing criteria, namely sharing
and contrasting. In the spirit of reproducibility, code to generate the figures in the paper
is available at http://stat.wharton.upenn.edu/~suw/higrad.

HiGrad admits several potential theoretical refinements and practical extensions. The
theoretical results presented in Section 2 are asymptotic in nature. As such, it is tempting
to investigate the finite-sample properties of HiGrad, and doing so might provide insights
to improve the coverage properties of the confidence intervals. A direction related, or
roughly equivalent, to the prior one is to generalize the HiGrad procedure to the high-
dimensional setting where the dimension of the unknown vector θ∗ can increase. From a
technical perspective, it requires to extend our main technical ingredient, the Ruppert–
Polyak normality result, to the case of a growing dimension. An interesting step towards
this direction has been explored in Gadat and Panloup (2017). In the non-convex setting,
the multiple threads of HiGrad might help increase the odds of escaping saddle points. A
preliminary study of this important question has been provided by Sordello et al. (2019).

In essence, the HiGrad algorithm provides a broad class of templates for online learning.
It would be interesting to investigate how to best parallelize this new algorithm and to
explore the use of the HiGrad in addition to uncertainty quantification, for example, treating
the confidence interval length as a stopping criterion. More broadly, any variants of SGD
would presumably carry over to HiGrad, and the question to ask is how to obtain some form
of uncertainty quantification of the results. In conjunction with applying HiGrad, variants
worth considering include adaptive strategies for choosing step sizes (Duchi et al., 2011;
Kingma and Ba, 2015), variance reduction techniques (Johnson and Zhang, 2013; Defazio
et al., 2014), normality of the last SGD iterate (Toulis et al., 2014), and the implicit SGD
(Toulis and Airoldi, 2017). Moreover, for non-smooth or non-convex problems (for example,
SVM, online EM (Lange, 1995; Cappé and Moulines, 2009), and multilayer neural networks
(LeCun et al., 2015)), although exact normality results are unlikely to hold and the averaged
iterates are often replaced by the last iterate, particularly in the non-convex setting, the
hope is that the splitting strategy might help HiGrad get a panoramic view of the landscape
of the objective function, allowing it to better understand its algorithmic variability.

Acknowledgments

We thank Guanghui Lan and Panagiotis Toulis for helpful comments about an early version
of the manuscript. We are grateful to the three anonymous referees for their constructive
comments that helped improve the presentation of this work. This work was supported in

26

HiGrad

part by NSF through CAREER DMS-1847415, an Alfred Sloan Research Fellowship, and
the Wharton Dean’s Research Fund.

Appendix A. Proofs Under Assumption 1’

This appendix provides a self-contained proof of Lemma 2.5, which is a Donsker-style gen-
eralization of the Ruppert–Polyak theorem. The original Ruppert–Polyak normality follows
as a byproduct. Throughout Appendix A, we work on Assumption 1’, which is stronger
than Assumption 1 in the main text. This stronger assumption helps better highlight the
main ideas of this celebrated normality result. Later in Appendix B, we move back to
Assumption 1 and the proof only needs minor modifications to the present one. The proofs
presented in this appendix make use of a range of ideas in Polyak and Juditsky (1992);
Bach and Moulines (2011); Fort (2012).

Below, we present the assumption adopted throughout Appendix A.

Assumption 1’ (Global strong convexity of f). The objective function f(θ) is continuously
differentiable and strongly convex with parameter ρ > 0, that is, for any θ1, θ2,

f(θ2) ≥ f(θ1) + (θ2 − θ1)>∇f(θ1) +
ρ

2
‖θ2 − θ1‖2.

In addition, assume that ∇f is Lipschitz continuous:

‖∇f(θ1)−∇f(θ2)‖ ≤ L‖θ1 − θ2‖

for some L > 0. Last, the Hessian of f exists and is Lipschitz continuous in a neighborhood
of θ∗, that is, there is some δ1 > 0 such that

∥∥∇2f(θ)−∇2f(θ∗)
∥∥ ≤ L′‖θ − θ∗‖2

for some L′ > 0 if ‖θ − θ∗‖ ≤ δ1.

Before moving to the proofs, we introduce below a much less restrictive assumption on
the step sizes compared with the one given in the main text. In fact, both the proofs in the
present appendix and Appendix B holds with a broader class of step sizes as characterized
below. The choice γj = c1(j + c2)

−α for α ∈ (0.5, 1) in the main body of the paper is
included as a special example.

27

Su and Zhu

Assumption 3 (Slowly decaying step sizes). Assume that the sequence of positive step sizes
{γj}∞j=1 that obey

∞∑
j=1

γ2j <∞ (17)

∞∑
j=1

γj√
j
<∞ (18)

lim
j→∞

jγj =∞ (19)

lim
j→∞

1

γj
log

γj
γj+1

= 0 (20)

lim
j→∞

1√
j

j∑
l=1

1
√
γl

∣∣∣∣ γlγl+1
− 1

∣∣∣∣ = 0. (21)

Some direct consequences of this assumption are given as a lemma below. Its proof is
deferred to Section A.5.

Lemma A.1. Let {γj}∞j=1 be an arbitrary sequence of positive numbers. Then each of the
following statements is true.

1. Equation (20) implies that
∞∑
j=1

γj =∞.

2. If γj is a non-increasing sequence, then (18) implies (17).

3. If γj is a non-increasing sequence and γj+1/γj is bounded below away from 0, then
(19) implies (21).

A.1 Proof of Lemma 2.5

It suffices to prove Lemma 2.5 in the case of K = 1. We will prove: Under Assumptions 1,
2, and 3, we have that the SGD iterates obey

√
n1
(
θn1 − θ∗

)
and √

n2
(
θn1+1:n1+n2 − θ∗

)
are asymptotically distributed as two i.i.d. normal random variables with mean 0. In fact,
below we prove a stronger version of the normality of the Ruppert–Polyak averaging scheme.

Let Z1, Z2, . . . , Zn0 and Z ′1, Z
′
2, . . . , Z

′
n1

be n0 +n1 i.i.d. random variables with the same
distribution as Z, and consider the following iterations:

θj = θj−1 − γjg(θj−1, Zj)

28

HiGrad

for j = 1, . . . , n0 and

θ′i = θ′i−1 − γ′ig(θ′i−1, Z
′
i)

for i = 1, . . . , n1, with θ′0 = θn0 . Above, γ′i = γn0+i. Assume both n0 and n1 tend to infinity.

We write

εj = g(θj−1, Zj)−∇f(θj−1)

for j = 1, . . . , n0 and

ε′i = g(θ′i−1, Z
′
i)−∇f(θ′i−1)

for i = 1, . . . , n1. Note that θj is adapted to the filtration Fj := σ(Z1, . . . , Zj) and θ′i is
adapted to the filtration F ′i := σ(F∞, Z ′1, . . . , Z ′i), where F∞ := ∪jFj .

Now, we write the SGD update as

θj = θj−1 − γj∇f(θj−1)− γjεj ,

which can be alternatively written as

∇f(θj−1) =
θj−1 − θj

γj
− εj . (22)

Intuitively, assuming that θj−1 is close to θ∗, then ∇f(θj−1) is approximately equal to
H(θ − θ∗) (recall the notation H = ∇2f(θ∗)). This suggests us to write

∇f(θ) = H(θ − θ∗) + rθ, (23)

where rθ shall be shown to be sufficiently small later. Making use of (22) and summing
(23) over θj−1 for j = 1, . . . , n0 give

n0∑
j=1

H(θj−1 − θ∗) = −
n0∑
j=1

εj︸ ︷︷ ︸
I1

−
n0∑
j=1

rθj−1︸ ︷︷ ︸
I2

+

n0∑
j=1

θj−1 − θj
γj︸ ︷︷ ︸

I3

and, similarly,

n1∑
i=1

H(θ′i−1 − θ∗) = −
n1∑
i=1

ε′i︸ ︷︷ ︸
I′1

−
n1∑
i=1

rθ′i−1︸ ︷︷ ︸
I′2

+

n1∑
i=1

θ′i−1 − θ′i
γ′i︸ ︷︷ ︸

I′3

.

Below, we state three lemmas characterizing I1, I
′
1, I2, I

′
2, I3, and I ′3. While the first

lemma shows that both re-scaled I1 and I ′1 jointly converge to two i.i.d. normals with
zero mean, the other two lemmas say that I2, I

′
2, I3, and I ′3 are negligible with appropriate

29

Su and Zhu

scaling. Taking the three lemmas as given for the moment, one has

√
n0

 1

n0

n0∑
j=1

θj − θ∗
 =

1
√
n0

n0∑
j=1

(θj−1 − θ∗)−
θ0 − θn0√

n0

=
1
√
n0

n0∑
j=1

(θj−1 − θ∗)− oP(1)

= −H−1 I1√
n0
−H−1 I2√

n0
+H−1

I3√
n0
− oP(1)

= −H−1 I1√
n0
− oP(1) + oP(1)− oP(1)

= −H−1 I1√
n0

+ oP(1),

where we make use of the fact that
θ0−θn0√

n0
= θ0−θ∗+oP(1)√

n0
= oP(1) by Lemma A.7. Recogniz-

ing the fact I1√
n0
⇒ N (0, V) (recall that V = E g(θ∗, Z)g(θ∗, Z)>) given by Lemma A.2, we

readily get

√
n0

 1

n0

n0∑
j=1

θj − θ∗
⇒ N (0, H−1V H−1).

Likewise,

√
n1

(
1

n1

n1∑
i=1

θ′i − θ∗
)
⇒ N (0, H−1V H−1),

and the asymptotic independence is implied by the second half of Lemma A.2.
The discussion above indicates that the proof of Lemma 2.5 would be completed once

we establish these three lemmas. This is the subject of Sections A.2, A.3, and A.4. We
write ξn = oP(1) if ξn ⇒ 0 weakly.

Throughout this section, assume both n0, n1 →∞ and n0/n1 converges to a number in
(0,∞).

Lemma A.2 (Normality of I1 and I ′1). Under Assumptions 1’, 2, and 3, then

1
√
n0

n0∑
j=1

εj ⇒ N (0, V), and
1
√
n1

n1∑
i=1

ε′i ⇒ N (0, V).

Moreover, they are asymptotically independent.

Lemma A.3 (Negligibility of I2 and I ′2). Under Assumptions 1’, 2, and 3, then

1
√
n0

n0∑
j=1

rθj−1
= oP(1)

and
1
√
n1

n1∑
i=1

rθ′i−1
= oP(1).

30

HiGrad

Lemma A.4 (Negligibility of I3 and I ′3). Under Assumptions 1’, 2, and 3, then

1
√
n0

n0∑
j=1

θj−1 − θj
γj

= oP(1)

and
1
√
n1

n1∑
i=1

θ′i−1 − θ′i
γ′i

= oP(1).

A.2 Proof of Lemma A.2

By definition, {εj}n0
j=1 is a martingale difference with respect to {Fj}n0

j=1:

E(εj |Fj−1) = 0

for 1 ≤ j ≤ n0 (as a convention, set F0 = {∅,Ω} if θ0 is deterministic, otherwise F0 = σ(θ0)
) and, similarly,

E(ε′i|F ′i−1) = 0

for 1 ≤ i ≤ n1.
The lemma below is a martingale equivalent of the central limit theorem (CLT). As

a convention, set G0 = {∅,Ω}. The proof of this lemma is standard (for example, using
characteristic functions) and is thus omitted. Interested readers can find its proof, for
example, in Hall and Heyde (2014).

Lemma A.5 (Martingale difference CLT in the Lyapunov form). Let {Ml}∞l=1 be a mar-
tingale difference adapted to a filtration {Gl}∞l=1 satisfying

1

n

n∑
l=1

E(M2
l |Gl−1)⇒ σ2 (24)

for some constant σ2 ≥ 0 as n→∞ and

1

n1+κ/2

n∑
l=1

E(M2+κ
l)→ 0 (25)

for some constant κ > 0 as n→∞. Then, this martingale difference satisfies∑n
l=1Ml√
n

⇒ N (0, σ2)

as n→∞.

Note that this lemma includes σ2 = 0 as an example. In that case, we interpret N (0, σ2)
as a point mass at 0. It can be proved using the theory of characteristics functions. Before
turning to the proof of Lemma A.2, we state the following two lemmas. Lemma A.7 claims
that the SGD iterates are consistent for θ∗ and its proof is provided at the end of the
present section. The proof relies heavily on Lemma A.6, a well-known auxiliary result in
stochastic approximation. Interested readers can find the proof of Lemma A.6 in Robbins
and Siegmund (1985).

31

Su and Zhu

Lemma A.6 (Robbins–Siegmund theorem). Let {Dl, βl, ηl, ζl}∞l=1 be non-negative and adapted
to a filtration {Gl}∞l=1. Assume

E[Dl+1|Gl] ≤ (1 + βl)Dl + ηl − ζl

for all l ≥ 1 and, in addition, both
∑
βl < ∞ and

∑
ηl < ∞ almost surely. Then, with

probability one, Dl converges to a random variable 0 ≤ D∞ <∞ and
∑
ζl <∞.

Lemma A.7. Under Assumptions 1’, 2, and 3, we have θl → θ∗ almost surely.

As a consequence of the lemma above, for any υ > 0, the cardinality #{l : ‖θl−θ∗‖ > υ}
is finite almost surely. This lemma is mostly used through this fact. Next, we present the
proof of Lemma A.2.

Proof of Lemma A.2. Fix some 0 < ν ≤ δ define

ε̃j =

{
εj , if ‖θj−1 − θ∗‖ ≤ ν
g(θ∗, Zj), if ‖θj−1 − θ∗‖ > ν

for j = 1, . . . , n0 and

ε̃′i =

{
ε′i, if ‖θ′i−1 − θ∗‖ ≤ ν
g(θ∗, Z ′i), if ‖θ′i−1 − θ∗‖ > ν

for i = 1, . . . , n1. Our approach is to prove that

1
√
n0

n0∑
j=1

ε̃j ⇒ N (0, V) (26)

and
1
√
n0

n0∑
j=1

εj −
1
√
n0

n0∑
j=1

ε̃j ⇒ 0, (27)

and
1
√
n1

n1∑
i=1

ε̃′i ⇒ N (0, V) (28)

and
1
√
n1

n1∑
i=1

ε′i −
1
√
n1

n1∑
i=1

ε̃′i ⇒ 0. (29)

Below, the first step is to prove (26) and (27). Then, going forward, we will prove (28)
and (29), meanwhile showing that (26) and (28) are asymptotically independent. This shall
complete the proof of Lemma A.2.

To show (27), note that Lemma A.7 ensures that, almost surely, the number of 1 ≤ j <
∞ such that εj and ε̃j differ is finite.

Now, we first turn to prove (26). For any fixed vector a of the same dimension as εj , to
prove (26) it suffices to show that

1
√
n0

n0∑
j=1

a>ε̃j ⇒ N (0, a>V a>).

32

HiGrad

Write Mj = a>ε̃j . We aim to verify (24) and (25) in Lemma A.5. Observe that

1

n0

n0∑
j=1

E(M2
j |Fj−1) =

1

n0
a>

 n0∑
j=1

E(ε̃j ε̃
>
j |Fj−1)

 a
By construction, it obeys

E(ε̃j ε̃
>
j |Fj−1) =

{
Eθj−1

εε>, if ‖θj−1 − θ∗‖ ≤ ν
V, if ‖θj−1 − θ∗‖ > ν,

which, together with Assumption 2, implies that it always satisfies∥∥∥E(ε̃j ε̃
>
j |Fj−1)− V

∥∥∥ ≤ C min{‖θj−1 − θ∗‖, ν}

for all j ≥ 1. As a result,∥∥∥∥∥∥ 1

n0

n0∑
j=1

E(ε̃j ε̃
>
j |Fj−1)− V

∥∥∥∥∥∥ ≤ C

n0

n0∑
j=1

min{‖θj−1 − θ∗‖, ν}.

By Lemma A.7, the right-hand side term above diminishes in probability since θj → θ∗

almost surely, that is,

C

n0

n0∑
j=1

min{‖θj−1 − θ∗‖, ν} → 0

almost surely. Hence,

1

n0
a>

 n0∑
j=1

E(ε̃j ε̃
>
j |Fj−1)

 a→ a>V a

almost surely. Thus, (24) is satisfied for the martingale difference ε̃j . Next, we turn to
verify (25). By the last point in Assumption 2, taking κ = δ gives

E(|Mj |2+δ|Fj−1) = E(|a>ε̃j |2+δ
∣∣Fj−1)

= E(|a>ε̃j |2+δ
∣∣Fj−1)

≤ ‖a‖2+δ E(‖ε̃j‖2+δ
∣∣Fj−1)

. ‖a‖2+δ.

Hence, we get

1

n
1+δ/2
0

n0∑
j=1

E |Mj |2+δ .
1

n
1+δ/2
0

n0∑
j=1

‖a‖2+δ =
‖a‖2+δ

n
δ/2
0

,

which clearly diminishes to zero as n0 → 0. Summarizing these results validates (26).
Now, we move to (28) and (29). Conditional on θ′0 ≡ θn0 , the proof of (26) and (27) can

seamlessly carry over to this case. And, if we can further show that convergence in (28) and
(29) does not depend on the initial point θn0 as n0 → ∞, then we would both verify the

33

Su and Zhu

desired independence between (26) and (28) and establish the unconditional convergence in
(28) and (29). To see this, note that Lemma A.7 ensures that θ′0 = θ∗ + oP(1) as n0 →∞.
(Actually, a stronger result holds

sup
1≤i<∞

‖θ′i − θ∗‖ = oP(1)

as n0 → ∞ due to the fact that {Zj}∞j=1 has the same distribution as {Zj}n0
j=1 ∪ {Z ′i}∞i=1.)

Put it differently, with probability tending to one, the second segment of the SGD starts at
a point uniformly close to θ∗, implying the convergence in (28) and (29) is asymptotically
independent of θn0 . This completes the proof of this lemma.

Remark A.8. The fact that n0 � n1 is not used in the proof above. As a matter of fact, the
proof can be significantly simplified provided that n0 � n1 by invoking Donsker’s theorem
for martingales.

We conclude this section by presenting the proof of Lemma A.7.

Proof of Lemma A.7. Write ∆l for the suboptimality f(θl) − f∗. By the L-smoothness of
f , we get

f(θl) = f(θl−1 − γlg(θl−1, Zl)) ≤ f(θl−1)− γlg(θl−1, Zl)
>∇f(θl−1) +

L

2
‖γlg(θl−1, Zl)‖2,

from which we get

E(∆l|Fl−1) = E(f(θl)− f∗|Fl−1)

≤ ∆l−1 − γl‖∇f(θl−1)‖2 + E
[
L

2
‖γlg(θl−1, Zl)‖2

∣∣∣Fl−1]
= ∆l−1 − γl‖∇f(θl−1)‖2 +

Lγ2l ‖∇f(θl−1)‖2

2
+
Lγ2l

2
Eθl−1

‖ε‖2

≤ ∆l−1 − γl × 2ρ∆l−1 +
Lγ2l × 2L∆l−1

2
+
Lγ2l

2
× c′(1 + ‖θl−1 − θ∗‖2)

≤ ∆l−1 − γl × 2ρ∆l−1 +
Lγ2l × 2L∆l−1

2
+
c′Lγ2l

2
+
c′Lγ2l

2

2∆l−1
ρ

where we have made use of the inequalities 2ρ(f(θ) − f∗) ≤ ‖∇f(θ)‖2 ≤ 2L(f(θ) − f∗).
Rearranging the inequality above, we get

E(∆l|Fl−1) ≤ (1 + c1γ
2
l)∆l−1 + c2γ

2
l − c3γl∆l−1, (30)

where

c1 = L2 +
c′L

ρ
, c2 =

c′L

2
, c3 = 2ρ.

To conclude the proof, we need to apply the Robbins–Siegmund theorem (Lemma A.6).
Observe that, by Assumption 3,

∞∑
l=1

c1γ
2
l <∞, and

∞∑
l=1

c2γ
2
l <∞

34

HiGrad

Hence, it follows from the Robbins–Siegmund theorem that, almost surely, ∆l ≡ f(θl)− f∗
converges to a finite random variable, say, ∆∞ ≥ 0. Moreover, this theorem ensures

∞∑
l=1

c3γl∆l−1 <∞. (31)

If P(∆∞ > 0) > 0, then the left-hand side of (31) would be infinite with positive probability
due to the fact

∑∞
l=1 γl =∞, a contradiction to (31). This reveals that f(θl)→ f∗ almost

surely and, as a consequence, θl → θ∗ with probability one.

A.3 Proof of Lemma A.3

Recognizing that n0 � n1 and the relationship that

1
√
n1

n1∑
i=1

rθ′i−1
=

√
n0 + n1
n1

· 1√
n0 + n1

n0+n1∑
l=1

rθl−1
−
√
n0
n1
· 1
√
n0

n0∑
j=1

rθj−1
,

where the convention θl = θ′l−n0
for l ≥ n0 is made. Thus, it suffices to prove that

1√
n

n∑
l=1

‖rθl−1
‖ = oP(1)

as n→∞.

Recall that rθ = ∇f(θ) − H(θ − θ∗), where H is the Hessian of f at θ∗. Using the
vector-valued mean value theorem, we get for any θ

‖rθ‖ = ‖∇f(θ)−H(θ − θ∗)‖
= ‖[∇f(θ)−H(θ − θ∗)]− [∇f(θ∗)−H(θ∗ − θ∗)]‖
≤
∥∥(∇2f(θ′)−H

)
(θ − θ∗)

∥∥ ,
where θ′ = cθ∗ + (1− c)θ for some 0 < c < 1. To proceed, note that from Assumption 1, if
‖θ − θ∗‖ ≤ δ, then ∥∥(∇2f(θ′)−H

)
(θ − θ∗)

∥∥ ≤ ∥∥∇2f(θ′)−H
∥∥ ‖θ − θ∗‖

≤ L′
∥∥θ′ − θ∗∥∥ ‖θ − θ∗‖

≤ L′ ‖θ − θ∗‖ ‖θ − θ∗‖
= L′ ‖θ − θ∗‖2 .

That is, ‖rθ‖ ≤ L′‖θ − θ∗‖2 if ‖θ − θ∗‖ ≤ δ. In general, we have

‖rθ‖ ≤ ‖∇f(θ)‖+ ‖H(θ − θ∗)‖
≤ L‖θ − θ∗‖+ L‖θ − θ∗‖
≤ 2L‖θ − θ∗‖,

35

Su and Zhu

no matter ‖θ − θ∗‖ ≤ δ or ‖θ − θ∗‖ > δ. Applying the results above yields

n∑
l=1

‖rθl−1
‖ ≤ 2L

n∑
l=1

‖θl − θ∗‖1‖θl−1−θ∗‖>δ + L′
n∑
l=1

‖θl−1 − θ∗‖21‖θl−1−θ∗‖≤δ

≤ 2L
n∑
l=1

‖θl − θ∗‖1‖θl−1−θ∗‖>δ + L′
n∑
l=1

‖θl−1 − θ∗‖2.

By Lemma A.7, we have

2L√
n

n∑
l=1

‖θl − θ∗‖1‖θl−1−θ∗‖>δ → 0

as n → ∞ with probability one. Hence, it suffices to show that
∑n

l=1 ‖θl−1 − θ∗‖2/
√
n =

oP(1), which is implied by

1√
n

n∑
l=1

E ‖θl − θ∗‖2 = o(1). (32)

Now, the proof of Lemma A.3 is reduced to showing (32). Before presenting the proof,
we list two useful lemmas. The first lemma is due to Leopold Kronecker and a proof can be
found in Shiryaev (1996), and the proof of Lemma A.10 is given at the end of this section
for self-containedness.

Lemma A.9 (Kronecker’s lemma). Let {al}∞l=1 be an infinite sequence that has a convergent
sum

∑∞
l=1 al. Then, for an arbitrary {bl}∞l=1 satisfying 0 < b1 ≤ b2 ≤ b3 ≤ · · · and bl →∞,

it must hold

lim
n→∞

1

bn

n∑
l=1

blal = 0.

Lemma A.10. Let c1 and c2 be arbitrary positive constants. Under Assumption 3 and
γj → 0, if Bj > 0 obeys

Bl ≤
γl−1(1− c1γl)

γl
Bl−1 + c2γl,

then suplBl <∞.

Proof of Lemma A.3. We begin by pointing out that (32) is implied by

E ‖θl − θ∗‖2 ≤ Cγl (33)

for some fixed C and all l ≥ 1. To see this, note that (33) gives

1√
n

n∑
l=1

E ‖θl − θ∗‖2 ≤
1√
n

n∑
l=1

Cγl

≤ C · 1√
n

n∑
l=1

√
l · γl√

l
.

36

HiGrad

Assumption 3 says that
∑∞

l=1
γl√
l

converges. Hence, taking bl =
√
l, Kronecker’s lemma

readily yields

1√
n

n∑
l=1

√
l · γl√

l
→ 0.

The rest of the proof is devoted to verifying (33). Rewriting (30) and taking expectations
on both sides give (recall that ∆l = f(θl)− f∗)

E∆l ≤ (1− c3γl + c1γ
2
l)E∆l−1 + c2γ

2
l ,

which is equivalent to

E∆l

γl
≤
γl−1(1− c3γl + c1γ

2
l)

γl

E∆l−1
γl−1

+ c2γl.

Since γl → 0, then for sufficiently large l, we have c1γ
2
l < c3γl/2. Plugging this inequality

to the display above gives

E∆l

γl
≤ γl−1(1− 0.5c3γl)

γl

E∆l−1
γl−1

+ c2γl (34)

for sufficiently large l. With (34) in place, Lemma A.10 immediately concludes that

sup
1≤l<∞

E∆l

γl
<∞

or, equivalent,
E(f(θl)− f∗) ≤ C ′γl

for all l and some constant C ′. Since f(θl)− f∗ ≥ ρ
2‖θl − θ

∗‖2 due to the strong convexity
of f , it follows that

E ‖θl − θ∗‖2 ≤
2C ′

ρ
γl.

This completes the proof of the lemma.

Proof of Lemma A.10. Suppose on the contrary that supBl = ∞. Consider a sequence
{Al} defined as

Al =
γl−1(1− c1γl)

γl
Al−1 + c2γl

for all l ≥ 1 (set γ0 to some appropriate constant). It is clear that Al ≥ Bl for all l. Together
with the assumption supBl =∞, this implies that supAl =∞. Now, observe that

γl−1(1− c1γl)
γl

Al−1 + c2γl =

(
1 +

γl−1 − γl
γl

)
(1− c1γl)Al−1 + c2γl

= (1 + o(γl))(1− c1γl)Al−1 + c2γl

= (1− (c1 − o(1))γl)Al−1 + c2γl

= Al−1 − [(c1 − o(1))Al−1 − c2] γl.

37

Su and Zhu

That is,
Al = Al−1 − [(c1 − o(1))Al−1 − c2] γl.

Thus, once Al ≥ (1 + o(1))c2/c1 for some l, this sequence starts to decreases until it falls
below the cutoff (1 + o(1))c2/c1. Therefore, this sequence can not diverge to ∞.

A.4 Proof of Lemma A.4

As earlier in the proof of Lemma A.3, we only need to prove that

1√
n

n∑
l=1

θl−1 − θl
γl

= oP(1)

as n→∞. Applying the Abel summation, we get

n∑
l=1

θl−1 − θl
γl

=
n−1∑
l=1

(θl − θ∗)(γ−1l+1 − γ
−1
l)− (θn − θ∗)γ−1n + (θ0 − θ∗)γ−11 .

Recognizing (19) in Assumption 3 and (33), we get

1√
n

E ‖θn − θ∗‖
γn

≤
√
E ‖θn − θ∗‖2√

nγn
≤
√
Cγn√
nγn

=

√
C

nγn
→ 0,

which together with
1√
n

θ0 − θ∗

γ1
→ 0

demonstrates that it suffices to show that

1√
n

n−1∑
l=1

∣∣γ−1l+1 − γ
−1
l

∣∣ ‖θl − θ∗‖ → 0.

The display above immediately follows from

lim
n→∞

1√
n

n−1∑
l=1

∣∣γ−1l+1 − γ
−1
l

∣∣E ‖θl − θ∗‖ = 0. (35)

Next, we turn to prove (35). In fact, (33) gives

1√
n

n−1∑
l=1

|γ−1l+1 − γ
−1
l |E ‖θl − θ

∗‖ ≤ 1√
n

n−1∑
l=1

|γ−1l+1 − γ
−1
l |
√
E ‖θl − θ∗‖2

≤ 1√
n

n−1∑
l=1

|γ−1l+1 − γ
−1
l |
√
Cγl

≤
√
C

n

n−1∑
l=1

γ
1
2
l

∣∣γ−1l+1 − γ
−1
l

∣∣
→ 0

as n→∞. This is given by (21) in Assumption 3, thereby establishing (35).

38

HiGrad

A.5 Proof of Lemma A.1

Proof of Lemma A.1. We prove the three statements one by one, as follows.

1. Given (20), suppose on the contrary that∑
γj <∞. (36)

Let

aj =
1

γj
log

γj
γj+1

.

Then, from this definition we get

γm+1 = γ1e
−amγm−···−a1γ1 .

The exponent, namely −amγm − · · · − a1γ1, satisfies

−amγm − · · · − a1γ1 ≥ − sup
l≥1
|al|

m∑
l=1

γl

≥ − sup
l≥1
|al|

∞∑
l=1

γl.

Due to (20) and (36), it must have a finite supl≥1 |al|
∑∞

l=1 γl. As a consequence,

γm+1 = γ1e
−amγm−···−a1γ1 ≥ γ1 exp

[
−sup
l≥1
|al|

∞∑
l=1

γl

]
.

This contradicts (36). Therefore, (20) implies

∞∑
j=1

γj =∞.

2. From (18) we can assume that
∑
γj/
√
j = C ∈ (0,∞). Now, we consider the problem

of maximizing
∞∑
j=1

γ2j

over all γj satisfying γ1 ≥ γ2 ≥ · · · ≥ 0 and
∑
γj/
√
j = C. To this end, recognize

that
∑∞

j=1 γ
2
j is a convex function and the feasible set is convex. This implies that

the function must attain the maximum at a vertex of the feasible set{γj}∞j=1 : γ1 ≥ γ2 ≥ · · · ≥ 0,

∞∑
j=1

γj√
j

= C

 .

It can be shown that a vertex must take the form γ1 = · · · = γl, γl+1 = · · · = 0 for
some l ≥ 1. Hence,

γ1 = · · · = γl =
C∑l

j=1 j
− 1

2

.

39

Su and Zhu

Further, the maximum of
∑∞

j=1 γ
2
j must be

C2 sup
l

l

(
∑l

j=1 j
− 1

2)2
= C2 1

(
∑1

j=1 j
− 1

2)2
= C2,

which is finite. Thus, (17) holds.

3. The proof of this part can be found on page 24 of Fort (2012). For self-containedness,
we complete the proof here. Due to the non-increasing of the sequence γj , it follows
that

n∑
j=1

1
√
γj

∣∣∣∣ γjγj+1
− 1

∣∣∣∣ =

n∑
j=1

1
√
γj

(
γj
γj+1

− 1

)

=
n∑
j=1

√
γj

(
1

γj+1
− 1

γj

)

=

n+1∑
j=2

1

γj

(√
γj−1 −

√
γj
)
− 1
√
γ1

+
1

√
γn+1

.
n+1∑
j=2

1
√
γjγj−1

(√
γj−1 −

√
γj
)
− 1
√
γ1

+
1

√
γn+1

=
2

√
γn+1

− 2
√
γ1
,

where . follows from the boundedness of γj−1/γj . Hence, the display above together
with (19) gives

1√
n

n∑
j=1

1
√
γj

∣∣∣∣ γjγj+1
− 1

∣∣∣∣→ 0

as n→∞.

Appendix B. Proofs Under Assumption 1

Appendix B presents a proof of Lemma 2.5 under the less restrictive Assumption 1, which
only assumes a form of local strong convexity of the objective function. The proof is built
on top of the one given in the previous appendix.

B.1 Proof of Lemma A.7 with local strong convexity

Denote by ∆̃l = ‖θl − θ∗‖2. Recognizing the SGD update (1), we get

E(∆̃l|Fl−1) = ‖θl−1 − θ∗ − γl∇f(θl−1)‖2 + γ2l Eθl−1
‖ε‖2

= ‖θl−1 − θ∗‖2 − 2γl(θl−1 − θ∗)>∇f(θl−1) + γ2l ‖∇f(θl−1)‖2 + γ2l Eθl−1
‖ε‖2.

(37)

40

HiGrad

By Assumption 2, for any θ,

Eθ ‖ε‖2 ≤ C ′(1 + ‖θ − θ∗‖2)

for some C ′ > 0. Then, we get from (37) that

E(∆̃l|Fl−1) ≤ ‖θl−1 − θ∗‖2 − 2γl(θl−1 − θ∗)>∇f(θl−1) + γ2l ‖∇f(θl−1)‖2 + C ′γ2l (1 + ‖θl−1 − θ∗‖2)
≤ ‖θl−1 − θ∗‖2 − 2γl(θl−1 − θ∗)>∇f(θl−1) + γ2l L

2‖θl−1 − θ∗‖2 + C ′γ2l (1 + ‖θl−1 − θ∗‖2)
≤ (1 + L2γ2l + C ′γ2l)‖θl−1 − θ∗‖2 + C ′γ2l − 2γl(θl−1 − θ∗)>∇f(θl−1)

(38)
To proceed, we need a lemma.

Lemma B.1. Let F be differentiable convex function defined on a Euclidean space and
F (x) − ρ

2‖x‖
2 is convex on the ball {x : ‖x − x∗‖ ≤ r} centered at the minimizer x∗ of F

and r > 0. Then,

(x− x∗)>∇F (x) ≥ ρ‖x− x∗‖min{‖x− x∗‖, r}.

By Assumption 1, we see that f(θ) is strongly convex at a neighborhood of θ∗. Hence,
there there exists δ′ > 0 such that f(θ) − δ′

2 ‖θ‖
2 is convex on {θ : ‖θ − θ∗‖ ≤ δ′}. Thus,

applying Lemma B.1, together with (38) gives

E(∆̃l|Fl−1) ≤ (1 +L2γ2l +C ′γ2l)‖θl−1 − θ∗‖2 +C ′γ2l − 2γlδ
′‖θl−1 − θ∗‖min{‖θl−1 − θ∗‖, δ′}.

(39)
Since both

∑
(L2γ2l +C ′γ2l) < 0 and

∑
C ′γ2l <∞, Lemma A.6 shows that ∆̃l ≡ ‖θl − θ∗‖2

converges to a random variable, say, ∆̃∞, almost surely, and

∞∑
l=1

2γlδ
′‖θl−1 − θ∗‖min{‖θl−1 − θ∗‖, δ′} <∞

almost surely. This implies that, almost surely,

∞∑
l=1

2γlδ
′
√

∆̃∞min{∆̃∞, δ′} <∞,

which together with the fact that
∑
γl =∞ yields that

∆̃∞ = 0

almost surely. This reveals that θl → θ∗ with probability one.

Proof of Lemma B.1. First, consider the case where ‖x− x∗‖ ≤ r. The gradient of F (x)−
ρ
2‖x‖

2 is a monotone operator on {x : ‖x− x∗‖ ≤ r} due to its convexity. Hence, we get

〈x− x∗,∇F (x)− ρx−∇F (x∗) + ρx∗〉 ≥ 0,

which can be written as
(x− x∗)>∇F (x) ≥ ρ‖x− x∗‖2. (40)

41

Su and Zhu

Now, consider x such that ‖x− x∗‖ > r. Denote by x̃ the projection of x onto the ball
{x : ‖x− x∗‖ ≤ r}. Then, using the property of monotone operator ∇F gives

〈x− x̃,∇F (x)−∇F (x̃)〉 ≥ 0,

from which we get
(x− x̃)>∇F (x) ≥ (x− x̃)>∇F (x̃).

To proceed, note that (40) is also satisfied for x̃. That is,

(x̃− x∗)>∇F (x̃) ≥ ρ‖x̃− x∗‖2 = ρr2.

From the geometry of projection, it follows that

(x− x̃)>∇F (x) =
‖x− x∗‖ − r
‖x− x∗‖

(x− x∗)>∇F (x)

and

(x− x̃)>∇F (x̃) =
‖x− x∗‖ − r

r
(x̃− x∗)>∇F (x̃).

Taking all the displays above gives

(x− x∗)>∇F (x) =
‖x− x∗‖
‖x− x∗‖ − r

(x− x̃)>∇F (x)

≥ ‖x− x∗‖
‖x− x∗‖ − r

(x− x̃)>∇F (x̃)

=
‖x− x∗‖
‖x− x∗‖ − r

· ‖x− x
∗‖ − r
r

(x̃− x∗)>∇F (x̃)

=
‖x− x∗‖

r
ρr2

= ρr‖x− x∗‖,
as desired.

B.2 Proof of Lemma A.3 without (33)

As in the proof presented in the preceding section, f is δ′-strongly convex on {θ : ‖θ−θ∗‖ ≤
δ′}. Denote by

τm := inf
l≥m

{
l : ‖θl − θ∗‖ > δ′

}
.

Note that τm is a stopping time adapted to F = {Fl}∞l=1. Denote by ∆̂l = ‖θl − θ∗‖21τm>l.
Hence, for l ≥ m+ 1, using (39) we have

E
[
∆̂l|Fl−1

]
≤ E

[
‖θl − θ∗‖21τm>l−1|Fl−1

]
= 1τm>l−1 E

[
‖θl − θ∗‖2|Fl−1

]
≤ 1τm>l−1

[
(1 + C ′′γ2l)‖θl−1 − θ∗‖2 + C ′γ2l − 2γlδ

′‖θl−1 − θ∗‖min{‖θl−1 − θ∗‖, δ′}
]

= 1τm>l−1
[
(1 + C ′′γ2l)‖θl−1 − θ∗‖2 + C ′γ2l − 2γlδ

′‖θl−1 − θ∗‖2
]

= 1τm>l−1
[
(1 + C ′′γ2l − 2δ′γl)‖θl−1 − θ∗‖2 + C ′γ2l

]
≤ (1 + C ′′γ2l − 2δ′γl)∆̂l−1 + C ′γ2l .

42

HiGrad

Since γl → 0, for sufficiently large l, say, l ≥ l0, we get

E ∆̂l ≤ (1− δ′γl)E ∆̂l−1 + C ′γ2l ,

which is equivalent to

E ∆̂l

γl
≤ γl−1(1− δ′γl)

γl

E ∆̂l−1
γl−1

+ C ′γl.

Making use of Lemma A.10 gives

sup
1≤l<∞

E ∆̂l

γl
<∞. (41)

Recall that our goal is to prove

1√
n

n∑
l=1

‖θl − θ∗‖2 = oP(1). (42)

Write the display above as

1√
n

n∑
l=1

‖θl − θ∗‖2 =
1√
n

m∑
l=1

‖θl − θ∗‖2 +
1√
n

n∑
l=m+1

‖θl − θ∗‖2.

Let Am be the event that τm =∞. We see

E

[
1√
n

n∑
l=m+1

‖θl − θ∗‖2;Am

]
≤ 1√

n

n∑
l=m+1

E
[
‖θl − θ∗‖2; τm > l

]
=

1√
n

n∑
l=m+1

E ∆̂l

.
1√
n

n−1∑
l=m

γl,

which, by Kronecker’s lemma, goes to zero as n → ∞. By Lemma A.7, P(Am,δ) → 1 as
m→∞. Note that

P

(
1√
n

n∑
l=m+1

‖θl − θ∗‖2 6=
1√
n

n∑
l=m+1

‖θl − θ∗‖21Am

)
= P(Am)

Recognize P(Am) → 0 as m → ∞ by Lemma A.7 (its extension in the previous section).
Hence, by first taking n→∞ and then m→∞ we complete the proof of (42).

B.3 Proof of Lemma A.4 without (33)

As earlier, it suffices to show that

1√
n

n∑
l=1

θl−1 − θl
γl

=
1√
n

n−1∑
l=1

(θl−θ∗)(γ−1l+1−γ
−1
l)− 1√

n
(θn−θ∗)γ−1n +

1√
n

(θ0−θ∗)γ−11 = oP(1)

43

Su and Zhu

as n→∞. This is a consequence of

1√
n

n−1∑
l=m

‖θl − θ∗‖|γ−1l+1 − γ
−1
l | = oP(1),

1√
n
‖θn − θ∗‖γ−1n = oP(1). (43)

Recall that Am denotes the event that ‖θl − θ∗‖ ≤ δ′ for all l ≥ m. Then, note that

1√
n

n−1∑
l=m

|γ−1l+1 − γ
−1
l |E [‖θl − θ∗‖;Am] ≤ 1√

n

n−1∑
l=m

|γ−1l+1 − γ
−1
l |
√
P(Am)E [‖θl − θ∗‖2;Am]

≤ 1√
n

n−1∑
l=m

|γ−1l+1 − γ
−1
l |
√
E [‖θl − θ∗‖2;Am]

≤ 1√
n

n−1∑
l=m

|γ−1l+1 − γ
−1
l |
√
E [‖θl − θ∗‖2; τm > l]

.
1√
n

n−1∑
l=m

|γ−1l+1 − γ
−1
l |γ

1
2
l ,

where the last inequality makes use of (41). From (21) in Assumption 3 it follows that

1√
n

n−1∑
l=m

|γ−1l+1 − γ
−1
l |γ

1
2
l → 0

as n → ∞. Hence, (43) holds on the complement of Am. Recognizing that P(Am) → 1 as
m→∞, the proof is completed.

Appendix C. Other Proofs

C.1 Verifying assumptions for logistic regression, ridge regression, and Huber
regression

Before verifying the assumptions, we state the following lemma, which will be helpful in
verifying the second assumption.

Lemma C.1. Suppose that E‖∇f(θ∗, Z)‖2 and E‖∇2f(θ, Z)‖2 are bounded for all θ. Then

‖E εε> − V ‖ ≤ C‖θ − θ∗‖+ C ′‖θ − θ∗‖2

for some constant C and C ′.

Proof of Lemma C.1. To validate Assumption 2, we write

E εε>

= E
(

(∇f(θ, Z)−∇f(θ))(∇f(θ, Z)−∇f(θ))>
)

= E
(

(∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z) +∇f(θ∗, Z))(∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z) +∇f(θ∗, Z))>
)

= E
(

(∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z))(∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z))>
)

+ 2E
(
∇f(θ∗, Z)(∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z))>

)
+ E

(
∇f(θ∗, Z)∇f(θ∗, Z)>

)
.

44

HiGrad

Therefore, noting that V = E
(
∇f(θ∗, Z)∇f(θ∗, Z)>

)
‖E εε> − V ‖

≤
∥∥∥E((∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z))(∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z))>

)∥∥∥︸ ︷︷ ︸
A

+ 2
∥∥∥E(∇f(θ∗, Z)(∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z))>

)∥∥∥︸ ︷︷ ︸
B

.

Next, we bound the two terms A and B separately. Firstly,

A =
∥∥∥E((∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z))(∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z))>

)∥∥∥
≤ E

∥∥∥(∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z))(∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z))>
∥∥∥

= E ‖∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z)‖2

= E ‖(∇f(θ, Z)−∇f(θ∗, Z))− (∇f(θ)−∇f(θ∗))‖2

≤ 2
(
E ‖∇f(θ, Z)−∇f(θ∗, Z)‖2 + ‖∇f(θ)−∇f(θ∗)‖2

)
= 2

(
E ‖∇f(θ, Z)−∇f(θ∗, Z)‖2 + ‖E (∇f(θ, Z)−∇f(θ∗, Z))‖2

)
≤ 2

(
E ‖∇f(θ, Z)−∇f(θ∗, Z)‖2 + (E ‖∇f(θ, Z)−∇f(θ∗, Z)‖)2

)
≤ 2

(
E ‖∇f(θ, Z)−∇f(θ∗, Z)‖2 + E ‖∇f(θ, Z)−∇f(θ∗, Z)‖2

)
= 4E ‖∇f(θ, Z)−∇f(θ∗, Z)‖2 .

By the mean value theorem that for some θ′ we have

A = 4E
∥∥∇2f(θ′, Z)(θ − θ∗)

∥∥2 ≤ 4‖θ − θ∗‖2E
∥∥∇2f(θ′, Z)

∥∥2 .
Now to bound the term B, by Cauchy-Schwarz inequality

B =
∥∥∥E(∇f(θ∗, Z)(∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z))>

)∥∥∥
≤ E

∥∥∥∇f(θ∗, Z)(∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z))>
∥∥∥

≤ E (‖∇f(θ∗, Z)‖ ‖∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z)‖)

≤
(
E ‖∇f(θ∗, Z)‖2 E ‖∇f(θ, Z)−∇f(θ)−∇f(θ∗, Z)‖2

)1/2
=
(
E ‖∇f(θ∗, Z)‖2

)1/2
A1/2

≤ 2
(
E ‖∇f(θ∗, Z)‖2 E

∥∥∇2f(θ′, Z)
∥∥2)1/2 ‖θ − θ∗‖.

Combining the above two upper bounds we have

‖E εε> − V ‖ ≤ 4
(
E ‖∇f(θ∗, Z)‖2 E

∥∥∇2f(θ′, Z)
∥∥2)1/2 ‖θ − θ∗‖+ 4E

∥∥∇2f(θ′, Z)
∥∥2 · ‖θ − θ∗‖2.

Using the assumption that E‖∇f(θ∗, Z)‖2 and E‖∇2f(θ, Z)‖2 are bounded for all θ, we
come to the desired conclusion.

45

Su and Zhu

Linear regression. To begin with, note that

f(θ) = E
1

2
(Y −X>θ)2 =

1

2
θ>
[
EXX>

]
θ − [EY X]> θ +

1

2
EY 2,

which is a simple quadratic function. Hence, Assumption 1 readily follows as long as EXX>
exists, that is, ‖X‖ has a second moment, and is positive-definite. The positive-definiteness
holds if the distribution of X ∈ Rd is in a generic position, for example, its distribution has
probability density well-defined for an arbitrarily small region.

Next, to verify Assumption 2, we calculate

E ‖∇f(θ∗, Z)‖2 = E
∥∥∥(Y −X>θ∗)X

∥∥∥2 ≤ 2E
(
|Y |2‖X‖2

)
+ 2‖θ∗‖2E‖X‖4,

E
∥∥∇2f(θ, Z)

∥∥2 = E
∥∥∥XX>∥∥∥2 = E‖X‖4.

Then applying Lemma C.1, we conclude that the first part of Assumption 2 is satisfied as
long as both E

(
|Y |2‖X‖2

)
and E‖X‖4 exist and are finite. Furthermore, we have

E‖ε‖2+δ = E ‖∇f(θ, Z)−∇f(θ)‖2+δ

≤ 21+δE
(
‖∇f(θ, Z)‖2+δ + ‖∇f(θ)‖2+δ

)
≤ 22+δE ‖∇f(θ, Z)‖2+δ

≤ 23+2δE
(
|Y |2+δ‖X‖2+δ

)
+ 23+δ‖θ‖2+δE‖X‖4+2δ.

Hence, we conclude that given that E
(
|Y |2+δ‖X‖2+δ

)
< ∞ and E‖X‖4+2δ < ∞ for some

δ > 0, Assumption 2 is satisfied.

Logistic regression. For logistic regression, to ease the calculation, we use a formulation
where Y ∈ {−1,+1} and the log likelihood function takes the form

f(θ, z) = log
(

1 + exp(−y · x>θ)
)
.

Thus, we have

f(θ) = Ef(θ, Z) = E log
(

1 + exp(−Y ·X>θ)
)
,

∇f(θ) = −E Y X

1 + exp(Y ·X>θ)
,

∇2f(θ) = E
XX>

(1 + exp(Y ·X>θ)) (1 + exp(−Y ·X>θ))
.

Noting that

‖∇2f(θ)‖ ≤ E
‖XX>‖

(1 + exp(Y ·X>θ)) (1 + exp(−Y ·X>θ))
≤ 1

4
E‖X‖2,

we conclude that as long as ‖X‖ has a second moment, ∇f(θ) is Lipschitz continuous. On
the other hand, suppose that the distribution of X has positive probability density defined

46

HiGrad

for an open region in Rd. Let u be the unit vector associated with the smallest eigenvector
of ∇2f(θ). We then have

u>∇2f(θ)u = E
(u>X)2

(1 + exp(Y ·X>θ)) (1 + exp(−Y ·X>θ))
> 0

for a fixed θ. Hence ∇2f(θ) exists and is positive definite for a neighborhood of θ∗.
To verify Assumption 2, we apply Lemma C.1. Note that

E ‖∇f(θ∗, Z)‖2 = E
∥∥∥∥ Y X

1 + exp(−Y ·X>θ∗)

∥∥∥∥2 ≤ E ‖X‖2

E
∥∥∇2f(θ, Z)

∥∥2 = E
∥∥∥∥ XX>

(1 + exp(Y ·X>θ)) (1 + exp(−Y ·X>θ))

∥∥∥∥2 ≤ 1

16
E ‖X‖4 .

Therefore, as long as X has a finite fourth moment, we have

‖E εε> − V ‖ ≤ C
(
‖θ − θ∗‖+ ‖θ − θ∗‖2

)
.

In addition, following a similar argument in the discussion on linear regression, we have

E‖ε‖2+δ ≤ 22+δE‖∇f(θ, Z)‖2+δ ≤ 22+δE‖X‖2+δ.

Thus, Assumption 2 is shown to be satisfied given that E‖X‖4 <∞.

Penalized generalized linear regression. For the `2-penalized generalized linear re-
gression, we have f(θ, z) = −yx>θ + b(x>θ) + λ‖θ‖2. Furthermore, we assume that the
function b(w) is twice differentiable and that |b′′(w)| ≤ L for all w. To verify Assumption
1, we calculate

∇f(θ) = E∇f(θ, Z) = E
(
−Y X + b′(X>θ)X + 2λθ

)

∇2f(θ) = E∇2f(θ, Z) = E
(
b′′(X>θ)XX> + 2λI

)
= E

(
b′′(X>θ)XX>

)
+ 2λI

By the definition of the density function of the exponential family, we have

b′(x>θ) = E (Y |X = x) and b′′(x>θ) = Var(Y |X = x).

Therefore, b′′(X>θ) ≥ 0 and the minimum eigenvalue of ∇2f(θ) is at least λ. It then follows
that the function f(θ) is strongly convex. On the other hand, we have∥∥∇2f(θ)

∥∥ ≤ ∥∥∥E(b′′(X>θ)XX>)∥∥∥+ 2λ ≤ LE ‖X‖2 + 2λ.

Now let’s investigate Assumption 2 using Lemma C.1. In fact, we have

E ‖∇f(θ∗, Z)‖2 ≤ 3E
(
|Y |2‖X‖2

)
+ 3E

(∣∣∣b′(X>θ∗)∣∣∣2 ‖X‖2)+ 12λ2 ‖θ∗‖2

= 3E
(
|Y |2‖X‖2

)
+ 3E

(
|Y ∗|2‖X‖2

)
+ 12λ2‖θ∗‖2

47

Su and Zhu

where Y ∗ given X = x follows the conditional distribution specified by p(y|x) = f(θ∗, z).

E
∥∥∇2f(θ, Z)

∥∥2 = E
∥∥∥b′′(X>θ)XX> + 2λI

∥∥∥2
≤ 2L2E ‖X‖4 + 8λ2.

Therefore, by Lemma C.1, as long as E
(
|Y |2‖X‖2

)
, E
(
|Y ∗|2‖X‖2

)
and E‖X‖4 are finite,

we obtain
‖E εε> − V ‖ ≤ C‖θ − θ∗‖+ C ′‖θ − θ∗‖2.

Next, we compute as in the previous discussion

E‖ε‖2+δ ≤ 22+δE‖∇f(θ, Z)‖2+δ

≤ 22+δ
(

31+δE
(
|Y |2+δ‖X‖2+δ

)
+ 31+δE

(
|Yθ|2+δ‖X‖2+δ

)
+ 31+δ22+δλ2+δ‖θ‖2+δ

)
,

which is bounded for θ such that ‖θ − θ∗‖ ≤ δ provided that E
(
|Yθ|2+δ‖X‖2+δ

)
< ∞ and

E
(
|Yθ|2+δ‖X‖2+δ

)
<∞.

Huber regression For the Huber regression, we have f(θ, z) = ρλ(y−x>θ) where ρλ(a) =
a2/2 for |a| ≤ λ and ρλ(a) = λ|a| − λ2/2 otherwise. We then have

∇f(θ) = E∇f(θ, Z) = Eρ′λ(Y −X>θ)X,

∇2f(θ) = E∇2f(θ, Z) = E
(
1(|Y −X>θ| ≤ λ)XX>

)
.

The only thing we need to check is the local strong convexity; the other parts follow directly
from the discussion of linear regression. All we need to show is that for θ∗, the minimizer
of f(θ), P(|Y −X>θ∗| < λ) > 0. Towards that end, we assume that X and Y both have a
open and connected support. In addition, we augment X with an extra element of 1 (the
intercept). Now suppose that P(|Y − X>θ∗| < λ) = 0. Then since the domains are both
connected, we know that either P(Y −X>θ∗ > λ) = 1 or P(Y −X>θ∗ < −λ) = 1. Without
loss of generality, we assume that P(Y −X>θ∗ > λ) = 1. Then it follows that

0 = ∇f(θ∗) = Eρ′λ(Y −X>θ∗)X = λEX,

which leads to contradiction with the augmentation of the intercept. Therefore, with the
other requirements for the linear regression case such as X being in a generic position, and
E
(
|Y |2+δ‖X‖2+δ

)
< ∞ and E‖X‖4+2δ < ∞, Huber regression is shown to satisfy the two

assumptions.

References

Alekh Agarwal, Peter L Bartlett, Pradeep Ravikumar, and Martin J Wainwright.
Information-theoretic lower bounds on the oracle complexity of stochastic convex op-
timization. IEEE Transactions on Information Theory, 58:3235–3249, 2012.

Francis Bach and Eric Moulines. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing Systems,
pages 451–459, 2011.

48

HiGrad

Francis Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation
with convergence rate O(1/n). In Advances in Neural Information Processing Systems,
pages 773–781, 2013.

Francis R Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity
for logistic regression. Journal of Machine Learning Research, 15(1):595–627, 2014.

Olivier Cappé and Eric Moulines. On-line expectation–maximization algorithm for latent
data models. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
71(3):593–613, 2009.

Hervé Cardot, Peggy Cénac, and Pierre-André Zitt. Efficient and fast estimation of the
geometric median in Hilbert spaces with an averaged stochastic gradient algorithm.
Bernoulli, 19(1):18–43, 2013.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):27, 2011.

Jerry Chee and Panos Toulis. Convergence diagnostics for stochastic gradient descent with
constant step size. arXiv preprint arXiv:1710.06382, 2017.

Xi Chen, Jason D Lee, Xin T Tong, and Yichen Zhang. Statistical inference for model
parameters in stochastic gradient descent. The Annals of Statistics, 48(1):251–273, 2020.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in Neural
Information Processing Systems, pages 1646–1654, 2014.

Aymeric Dieuleveut and Francis Bach. Nonparametric stochastic approximation with large
step-sizes. The Annals of Statistics, 44(4):1363–1399, 2016.

John Duchi and Feng Ruan. Local asymptotics for some stochastic optimization
problems: Optimality, constraint identification, and dual averaging. arXiv preprint
arXiv:1612.05612, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul):
2121–2159, 2011.

Jianqing Fan, Wenyan Gong, Chris Junchi Li, and Qiang Sun. Statistical sparse online re-
gression: A diffusion approximation perspective. In Proceedings of the 21th International
Conference on Artificial Intelligence and Statistics, 2018.

Yixin Fang, Jinfeng Xu, and Lei Yang. On scalable inference with stochastic gradient
descent. arXiv preprint arXiv:1707.00192, 2017.

Gersende Fort. Central limit theorems for stochastic approximation algorithms. Technical
report, Technical report, 2012.

Sébastien Gadat and Fabien Panloup. Optimal non-asymptotic bound of the Ruppert–
Polyak averaging without strong convexity. arXiv preprint arXiv:1709.03342, 2017.

49

Su and Zhu

Peter Hall and Christopher C Heyde. Martingale limit theory and its application. Academic
Press, 2014.

Peter J Huber. Robust estimation of a location parameter. The Annals of Mathematical
Statistics, pages 73–101, 1964.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford.
Parallelizing stochastic approximation through mini-batching and tail-averaging. arXiv
preprint arXiv:1610.03774, 2016.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, Venkata Krishna
Pillutla, and Aaron Sidford. A markov chain theory approach to characterizing the
minimax optimality of stochastic gradient descent (for least squares). arXiv preprint
arXiv:1710.09430, 2017.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in Neural Information Processing Systems, pages 315–
323, 2013.

Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression
function. The Annals of Mathematical Statistics, 23(3):462–466, 1952.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Inter-
national Conference for Learning Representations, 2015.

Harold J Kushner and G George Yin. Stochastic approximation and recursive algorithms
and applications. Springer, New York, 2003.

Tze Leung Lai. Stochastic approximation. The Annals of Statistics, 31(2):391–406, 2003.

Guanghui Lan, Arkadi Nemirovski, and Alexander Shapiro. Validation analysis of mirror
descent stochastic approximation method. Mathematical Programming, 134(2):425–458,
2012.

Kenneth Lange. A gradient algorithm locally equivalent to the EM algorithm. Journal of
the Royal Statistical Society. Series B (Methodological), pages 425–437, 1995.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 2015.

Tianyang Li, Liu Liu, Anastasios Kyrillidis, and Constantine Caramanis. Statistical infer-
ence using SGD. arXiv preprint arXiv:1705.07477, 2017.

Tengyuan Liang and Weijie J Su. Statistical inference for the population landscape via
moment adjusted stochastic gradients. arXiv preprint arXiv:1712.07519, 2017.

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/

ml.

Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as
approximate Bayesian inference. arXiv preprint arXiv:1704.04289, 2017.

50

HiGrad

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust
stochastic approximation approach to stochastic programming. SIAM Journal on op-
timization, 19(4):1574–1609, 2009.

Arkadii Nemirovskii and David B Yudin. Problem complexity and method efficiency in
optimization. Wiley & Sons, 1983.

Brendan O’Donoghue and Emmanuel Candès. Adaptive restart for accelerated gradient
schemes. Foundations of Computational Mathematics, 15(3):715–732, 2015.

Boris T Polyak. New stochastic approximation type procedures. Automat. i Telemekh, 7
(2):98–107, 1990.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by aver-
aging. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal
for strongly convex stochastic optimization. In Proceedings of the 29th International
Conference on Machine Learning, pages 449–456, 2012.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in Neural Information
Processing Systems, pages 693–701, 2011.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, pages 400–407, 1951.

Herbert Robbins and David Siegmund. A convergence theorem for non negative almost
supermartingales and some applications. In Herbert Robbins Selected Papers, pages 111–
135. Springer, 1985.

David Ruppert. Efficient estimations from a slowly convergent Robbins–Monro process.
Technical report, Operations Research and Industrial Engineering, Cornell University,
Ithaca, NY, 1988.

Albert N Shiryaev. Probability. Springer-Verlag, New York, 1996.

Matteo Sordello, Hangfeng He, and Weijie Su. Robust learning rate selection for stochastic
optimization via splitting diagnostic. arXiv preprint arXiv:1910.08597, 2019.

Weijie Su, Stephen Boyd, and Emmanuel Candès. A differential equation for modeling Nes-
terov’s accelerated gradient method: Theory and insights. Journal of Machine Learning
Research, 17(153):1–43, 2016.

Ryan J Tibshirani and Jonathan Taylor. Degrees of freedom in lasso problems. The Annals
of Statistics, 40(2):1198–1232, 2012.

Panagiotis Toulis, Edoardo Airoldi, and Jason Rennie. Statistical analysis of stochastic
gradient methods for generalized linear models. In International Conference on Machine
Learning, pages 667–675, 2014.

51

Su and Zhu

Panos Toulis and Edoardo M Airoldi. Asymptotic and finite-sample properties of estimators
based on stochastic gradients. The Annals of Statistics, 45(4):1694–1727, 2017.

Halbert White. A heteroskedasticity-consistent covariance matrix estimator and a direct
test for heteroskedasticity. Econometrica, pages 817–838, 1980.

Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ramchandran,
and Peter L. Bartlett. Gradient diversity: a key ingredient for scalable distributed learn-
ing. In Proceedings of the 21th International Conference on Artificial Intelligence and
Statistics, 2018.

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the 21st International Conference on Machine learning, page
116, 2004.

52

