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Abstract. Modern statistical inference tasks often require iterative opti-
mization methods to approximate the solution. Convergence analysis from
optimization only tells us how well we are approximating the solution deter-
ministically, but overlooks the sampling nature of the data. However, due
to the randomness in the data, statisticians are keen to provide uncertainty
quantification, or confidence, for the answer obtained after certain steps
of optimization. Therefore, it is important yet challenging to understand
the sampling distribution of the iterative optimization methods.

This paper makes some progress along this direction by introducing a
new stochastic optimization method for statistical inference, the moment
adjusted stochastic gradient descent. We establish non-asymptotic theory
that characterizes the statistical distribution of the iterative methods, with
good optimization guarantee. On the statistical front, the theory allows for
model misspecification, with very mild conditions on the data. For opti-
mization, the theory is flexible for both the convex and non-convex cases.
Remarkably, the moment adjusting idea motivated from “error standard-
ization” in statistics achieves similar effect as Nesterov’s acceleration in
optimization, for certain convex problems as in fitting generalized linear
models. We also demonstrate this acceleration effect in the non-convex
setting through experiments.

Key words and phrases: Non-asymptotic inference, discretized Langevin al-
gorithm, stochastic gradient methods, Nesterov’s acceleration, model mis-
specification, population landscape.

1. INTRODUCTION

Statisticians are interested in inferring properties about a population, based on independently
sampled data. In the parametric regime, the inference problem boils down to constructing point
estimates and confidence intervals for a finte number of unknown parameters. When the data-
generation process is well-specified by the parametric family, elegant asymptotic theory has been
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established for maximum likelihood estimation (MLE) credited to Ronald Fisher in 1920s. This
asymptotic theory is readily generalizable to the model mis-specification setting, for a properly-
chosen risk function `(θ; z)1 and the corresponding empirical risk minimizer (ERM)

θ̂ERM , arg min
θ

1

N

N∑
i=1

`(θ; zi) empirical risk minimizer,

θ∗ , arg min
θ

E
z∼P

`(θ; z) population minimizer,

with

√
N
(
θ̂ERM − θ∗

)
d−→ N

(
0,H(θ∗)

−1Σ(θ∗)H(θ∗)
−1
)
.

Here θ is the parameter of the model, zi’s are i.i.d copies from the unknown distribution z ∼ P ,
H(θ) , EHess [`(θ; z)], and Σ(θ) , E [∇θ`(θ; z)⊗∇θ`(θ; z)]. Define the population landscape L(θ)
as

L(θ) , E
z∼P

`(θ; z).(1.1)

One should notice that the elegant statistical theory for inference holds under rather mild regularity
conditions, without requiring L(θ) being convex. However, it overlooks one important aspect: the
optimization difficulty of the landscape on θ.

Optimization techniques are required to solve for the above estimators θ̂, as they rarely take
closed-form. Global convergence and computational complexity is only well-understood when the
sample analog 1

N

∑N
i=1 `(θ; zi) is convex. The optimization is done iteratively

θt+1 = θt − ηh(θt),(1.2)

where h is based on the first and/or second order information, η is step-size. For the non-convex
case, the convergence becomes less clear, but in practice people still employ iterative methods.
Nevertheless, in either case, the available convergence results fall in short of the statistical aspect:
after certain t iterations, one is interested in knowing the sampling distribution of θt, for uncertainty
quantification of the optimization algorithm.

The goal of the present work is to combine the strength of the two worlds in inference and opti-
mization: to characterize the statistical distribution of the iterative methods, with good optimization
guarantee. Specifically, we study particular stochastic optimization methods for the (possibly non-
convex) population landscape L(θ), and at the same time characterize the sampling distribution
at each step, through establishing a non-asymptotic theory. We allow for model mis-specification,
and require only mild moment conditions on the data generating process.

1.1 Motivation

Observe the simple fact that what one actually aims to optimize is the population objective
L(θ) = Ez∼P `(θ; z), not the sample version. Therefore, stochastic approximation pioneered by

1It is also called loss function in the statistical learning literature. In generalized methods of moment,
Ez∼P∇θ`(θ; z) = 0 is also called moment condition. The MLE can be also viewed as a special case with `(θ; z) =
− log pθ(z) and the data-generation process being P = Pθ∗ .
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Robbins and Monro [1951], Kiefer and Wolfowitz [1952] stands out as a natural optimization ap-
proach for the statistical inference problem. In modern practice, Stochastic Gradient Descent (SGD)
with mini-batches of size n is widely used,

θt+1 = θt − ηÊn∇θ`(θt, z),(1.3)

where Ên is the empirical expectation over n independently sampled mini-batch data at each step.
Our first motivation follows from the intuition that one can approximate the above step when n

is not too small, which we will make rigorous in a moment. Define

b(θ) = E
z∼P
∇θ`(θ, z),(1.4)

V(θ) = {Cov[∇θ`(θ, z)]}1/2 ,(1.5)

then observe the following approximation

θt+1 = θt − ηÊn∇θ`(θt, z)

= θt − η E∇θ`(θt, z) + η
[
E∇θ`(θt, z)− Ên∇θ`(θt, z)

]
≈ θt − ηb(θt) +

√
2β−1ηV(θt)gt, with β ,

2n

η
,(1.6)

where gt, t ≥ 0 are independent isotropic Gaussian vectors. The combination of n, η provides a
stronger approximation guarantee at each iteration for large n, in contrast to the asymptotic normal
approximation for the average of trajectory in Polyak and Juditsky [1992] as t → ∞. The β−1

quantifies the “variance” injected each step (due to sampled mini-batches), or the “temperature”
parameter: the larger the β is, the closer the distribution is concentrated near the deterministic
steepest gradient descent updates. The scaling of the step-size η relates to Cauchy discretization of
the Itô diffusion process (as η → 0)

dθt = −b(θt)dt+
√

2β−1V(θt)dBt.

Our second motivation comes from a classic “standardization” idea in statistics — we want to
adjust the stochastic gradient vector at step t by V(θt) so that the conditional noise (conditioned
on θt) for each coordinate is independent and on the same scale,

θt+1 = θt − ηV(θt)
−1Ên∇θ`(θt, z)

≈ θt − ηV(θt)
−1b(θt) +

√
2β−1ηgt.(1.7)

This standardization trick is similar to the classic method of inverse-variance weighting, though
with notable difference. The similarity lies in the fact that noisier gradient information is weighted
less in both approaches and vice versa. However, the former scales weights proportional to inverse
standard deviation, while the latter uses inverse standard variance instead.

To answer the inference question about L(θ) using the “moment adjusted” iterative method (1.7),
one needs to know the sampling distribution of θt for a fixed t. One hopes to directly describe the
distribution in a non-asymptotic fashion, instead of characterizing this distribution either through
the asymptotic normal limit [Polyak and Juditsky, 1992] (passing over data once at a time) in the
convex senario, or through the invariant distribution which could in theory take exponential time to
converge for general non-convex L(θ) [Raginsky et al., 2017]. One thing to notice is that, at a fixed
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time t, the distribution is distinct from Gaussian, for general b and V. From an optimization angle,
one would like the iterative algorithm to converge (to a local optima) fast. This is also important
for the purpose of inference: given the distribution can be approximately characterized at each step,
one hopes that the distribution will concentrate near a local minimum of the population landscape
L(θ) within a reasonable time budget, before the error accumulates in the stochastic process and
invalidates the approximation.

1.2 Contributions

We propose the Moment Adjusted Stochastic Gradient descent (MasGrad), an iterative opti-
mization method that infers about the stationary points of the population landscape L(θ), namely
{θ : ‖∇L(θ)‖ = 0}. The MasGrad is a simple variant of SGD that adjusts the descent direction
using the square root of the covariance matrix V(θt) (defined in (1.5)) of the gradient at the current
location,

MasGrad : θt+1 = θt − ηV(θt)
−1Ên∇θ`(θt, z).

We summarize our main contributions in two perspectives. Other extensions will be discussed
later along the paper. During the discussion, we use Oε,δ(·) to denote the order of magnitude for
parameters ε, δ only, treating others as constants.

Inference. The distribution of MasGrad updates θt, with n independently sampled mini-batch
data at each step, can be characterized in a non-asymptotic fashion. Informally, for any data-
generating distribution z ∼ P under mild conditions, the distribution of θt — denoted as µ(θt) —
satisfies,

DTV(µ(θt), νt,η) ≤ C
√
t

n
⇒ µ(θt)

L→ νt,η, converge in distribution as n→∞.

Here νt,η is the distribution of ξt that follows the update initialized with ξ0 = θ0

ξt+1 = ξt − ηV(ξt)
−1b(ξt) +

√
2β−1ηgt, gt ∼ N (0, Ip) and β =

2n

η
.(1.8)

Remark that νt,η only depends on t, η, and the first and second moments b,V of ∇`(θ, z), regard-
less of the specific the data-generating distribution z ∼ P . The rigorous statement is deferred to
Thm. 3.1, and further extensions to the continuous time analog are discussed in Section 3.

Optimization. Interestingly, in the strongly convex case such as in generalized linear models
(GLMs), the “standardization” idea achieves the Nesterov’s acceleration [Nesterov, 1983, 2013].
Informally, the number of iterations for an ε-minimizer for gradient descent requires

TGD = Oε,κ
(
κ log

1

ε

)
, for some κ > 1.

We show that for GLMs under mild conditions, MasGrad reduces the number of iterations to

TMasGrad = Oε,κ
(√

κ log
1

ε

)
,

which matches Nesterov’s acceleration in the strongly convex case. The formal statement is deferred
to Section 4.
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Combining the inference and optimization theory together, we present informally the results for
both the convex and non-convex cases. Recall that θ ∈ Rp.

Convex. In the strongly convex case, MasGrad with a properly chosen step-size and the following
choice of parameters

T = Oε
(

log
1

ε

)
, and n = Oε,p

(p
ε

)
,

satisfies

inference : DTV (µ(θT ), µ(ξT )) ≤ Oε
(√

ε log 1/ε
)
,

optimization : EL(θT )−min
θ
L(θ) ≤ ε, EL(ξT )−min

θ
L(θ) ≤ ε, where ξT ∼ νT,η.

The formal result is stated in Thm. 4.1.

Non-convex. Under mild smoothness condition, MasGrad with a proper step-size and the fol-
lowing choice of parameters

T = Oε,δ,p
(

1 ∨ pδ2

ε2

)
, and n = Oε,δ,p

(
δ−2 ∨ p
ε2

)
,

satisfies

inference : DTV (µ(θt, t ∈ [T ]), µ(ξt, t ∈ [T ])) ≤ Oδ(δ),
optimization : Emin

t≤T
‖∇L(θt)‖ ≤ ε, Emin

t≤T
‖∇L(ξt)‖ ≤ ε, where ξt ∼ νt,η, for t ∈ [T ],

where the evolution of ξt is defined in (1.8). The formal result is deferred to Thm. 5.1.

2. RELATIONS TO THE LITERATURE

In the case of a differentiable convex L, finding a minimum of this function is equivalent to
solving ∇L(θ) = 0 for θ. This simple equivalence reveals that the vanilla SGD, which takes the
form2

θt+1 = θt − ηt∇θ`(θt, zt),(2.1)

is an instance of stochastic approximation methods. This class of methods are iterative algorithms
that attempt to solve fixed point equations (for example, ∇L(θ) = 0) provided noisy observations
(for example, ∇θ`(θt, zt)) [Robbins and Monro, 1951, Kiefer and Wolfowitz, 1952]. Using slowly
diminishing step-sizes ηt = O(1/tα) (0 < α < 1), Ruppert [1988] and Polyak [1990] showed that
the average 1

t

∑t
i=1 θi over trajectories of this recursive stochastic approximation algorithm attains

optimal acceleration of convergence rate for a strongly convex L (see Polyak and Juditsky [1992]
for more details).

In a different route, a fruitful line of research has focused on how to improve asymptotic con-
vergence rate as t → ∞ through pre-conditioning, a technique that involves approximating the
unknown Hessian H(θ) = ∇2L(θ) near the optimum θ∗ (see, for instance, Bordes et al. [2009] and
references therein). A popular example as such is AdaGrad [Duchi et al., 2011], which is a variant

2Recognize that ∇θ`(θt, zt) is an unbiased estimate of the population gradient as ∇θL(θt) = Ez∼P [∇θ`(θt, z)].
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of SGD that adaptively determines learning rates for different coordinates by incorporating the
geometric information of past iterates. In its simplest form, AdaGrad records previous gradient
information through

Gt =
t∑
i=1

∇`(θi, zi)⊗∇`(θi, zi),

and this procedure then updates iterates according to

θt+1 = θt − γG
− 1

2
t ∇`(θt, zt),

where γ > 0 is fixed. In large-scale learning tasks, evaluatingG
− 1

2
t is computationally prohibitive and

thus is often suggested to use diag(Gt)
− 1

2 instead. It should be, however, noted that the theoretical

derivation of AdaGrad considers G
− 1

2
t . AdaGrad is a flexible improvement on SGD and can easily

extend to non-smooth optimization and non-Euclidean optimization such as mirror descent. With
the geometric structure Gt learned from past gradients, AdaGrad assigns different learning rates to
different components of the parameter, allowing infrequent features to take relatively larger learning
rates. This adjustment is shown to speed up convergence dramatically in a wide range of empirical
problems [Pennington et al., 2014].

Another closely related method is the natural gradient [Amari, 1998, 2012] raised first in the
information geometry literature. When the parameter space enjoys certain structure, it has been
shown that natural gradient outperforms the classic gradient descent both theoretically and em-
pirically. To adapt the natural gradient to our setting, we relate the loss function to a generative
model `(θ, z) = − log pθ(z). The Riemannian structure of the parameter space (manifold) of the
statistical model is defined by the Fisher information

I(θ) = E
z∼P

[∇θ`(θ, z)⊗∇θ`(θ, z)] .

The natural gradient can be viewed as the steepest descent induced by the Riemannian metric

θt+1 = arg min
θ

[
L(θt) + 〈∇θL(θt), θ − θt〉+

1

2ηt
‖θ − θt‖2I(θt)

]
= θt − ηtI(θt)

−1∇θL(θt).

It should be noted that there is an intimate connection between natural gradient descent and
approximate second-order optimization method, as the Fisher information can be heuristically
viewed as an approximation of the Hessian [Schraudolph, 2002, Martens, 2014]. The above heuristics
sheds light on why in practice, natural gradient descent converges with fewer iterations compared
to the classic gradient descent. However, in problems where the dimension is high, the per iteration
computation for the inverse of the Fisher information can be burdensome.

Stochastic Gradient Langevin Dynamics (SGLD) has been an active research field in sampling
and optimization in recent years [Welling and Teh, 2011, Dalalyan, 2017b, Bubeck et al., 2015,
Raginsky et al., 2017, Mandt et al., 2017]. SGLD injects an additional

√
2β−1η level isotropic

Gaussian noise to each step of SGD with step-size η, where β is the inverse temperature parameter.
Besides similar optimization benefits as SGD such as convergence and chances of escaping stationary
points, the injected randomness of SGLD provides an efficient way of sampling from the targeted
invariant distribution of the continuous time diffusion process, which has been shown to be useful
statistically in Bayesian sampling [Welling and Teh, 2011, Mandt et al., 2017]. In the current paper,
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we take a distinct approach, we motivate and analyze a variant of SGD through lens of Langevin
dynamics, from a frequentist point of view, and then present the optimization benefits as a by-
product of the statistical motivation.

The approximation in Eqn. (1.6) relates the density evolution of θt to a discretized version of Itô
diffusion process (as η → 0)

dθt = −b(θt)dt+
√

2β−1V(θt)dBt.

The invariant distribution π(θ) satisfies the following Fokker–Planck equation

β−1
∑
i,j

∂2

∂xixj
(πaij) +

∑
i

∂

∂xi
(πbi) = 0

where aij(x) = (V(x)V(x)′)ij . In general, the stationary distribution is hard to characterize unless
both V and b take special simple forms. For example, when b(x) is linear and V(x) is independent
of x as in [Mandt et al., 2017], the diffusion process reduces to Ornstein-Uhlenbeck process with mul-
tivariate Gaussian as the invariant distribution. Another simple case is when V(x) = I, the diffusion
process is also referred to as Langevin dynamics, with the Gibbs measure π(θ) ∝ exp(−βL(θ)) as
the unique invariant distribution [Welling and Teh, 2011, Dalalyan, 2017b, Raginsky et al., 2017].

3. STATISTICAL INFERENCE VIA LANGEVIN

Recall the Moment Adjusted Stochastic Gradient descent (MasGrad) we introduced, which ad-
justs the descent direction using the root of the covariance matrix at the current location,

MasGrad : θt+1 = θt − ηV(θt)
−1Ên∇θ`(θt, z).(3.1)

Here we present the simplest version of the algorithm, assuming that V(θ) can be evaluated at
any given θ. We will explain why MasGrad (3.1) produces recursive updates whose statistical
distribution can be characterized in the current section. We would like to mention that MasGrad
at the same time achieves significant acceleration (compared to SGD) in optimization, when L(θ)
is strongly convex, which we defer the discussions to Section 4. For the general non-convex case,
we provide non-asymptotic theory for inference and optimization in Section 5.

3.1 Inference via discretized diffusion approximation

As we have heuristically outlined in Eqn. (1.6), the MasGrad can be approximated by the fol-
lowing discretized Langevin diffusion,

Discretized diffusion : ξt+1 = ξt − ηV(ξt)
−1b(ξt) +

√
2β−1ηgt.(3.2)

In this section, we establish non-asymptotic bounds on the distance between the distribution of
MasGrad process L(θt, t ∈ [T ]) and discretized diffusion process L(ξt, t ∈ [T ]).

The proof is based on the entropic central limit theorem (CLT) [Barron, 1986, Bobkov et al.,
2013, 2014]. The classic CLT based on convergence in distribution is too weak for our purpose:
we need to translate the non-asymptotic bounds at each step to the whole stochastic process. It
turns out that the entropic CLT couples naturally with the chain-rule property of relative entropy,
which together provides non-asymptotic characterization on closeness of the distributions for the
stochastic processes.
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Let’s state the mild assumptions before introducing the theorem. Define ∀i,

Xi(θ) = V(θ)−1

[
E

z∼P
∇θ`(θ, z)−∇θ`(θ, zi)

]
.

It is clear that EXi(θ) = 0 and Cov[Xi(θ)] = Ip, and Xi’s are i.i.d. vector-valued random variables.

Assumption 3.1 (Entropic distance). Assume that X has bounded entropic distance to the
Gaussian distribution, in the following sense

sup
θ
DKL (µ(X(θ))||µ(g)) ≤ D, where g ∼ N (0, Ip).(3.3)

Assumption 3.2 (Finite (4 + δ)-th moments). Assume that E‖X(θ)‖4+δ <∞, for all θ.

Theorem 3.1 (Non-asymptotic bound for inference). Let µ(θt, t ∈ [T ]) denote L(θt, t ∈ [T ]), the
joint distribution of MasGrad process, and µ(ξt, t ∈ [T ]) be the joint distribution of the discretized
diffusion process in (3.2). Assume θ0 = ξ0. Under the Assumptions 3.1 and 3.2, the following bound
holds,

DTV (µ(θt, t ∈ [T ]), µ(ξt, t ∈ [T ])) ≤ C

√√√√T

n
+ o

(
T (log n)

p−(4+δ)
2

n1+ δ
2

)
,(3.4)

where C is some constant that depends on the (4 + δ)-moments in the Assumption 3.2.

Remark 3.1. The above theorem characterize the sampling distribution of MasGrad – θt,
using a measure that only depends on the first and second moments of ∇`(θ, z), namely b and
V, regardless of the specific the data-generating distribution z ∼ P . Observe that the distribution
closeness is in a strong total variation distance sense, for the two stochastic processes {θt, t ∈ [T ]}
and {ξt, t ∈ [T ]}. If we dig in to the proof, one can easily obtain the following marginal result

DTV (µ(θT ), µ(ξT )) ≤
√

2DKL (µ(θT )||µ(ξT )) ≤
√

2DKL (µ(θt, t ∈ [T ])||µ(ξt, t ∈ [T ])),

where the last inequality follows from the chain-rule of relative entropy. Therefore, one can as well
prove

DTV (µ(θT ), µ(ξT )) ≤ C
√
T

n
.

Remark 3.2. One important fact about the Thm. 3.1 is that it holds for any step-size η, which
provides us additional freedom of choosing the optimal step-size for the optimization purpose.
This theorem is stated in the fix dimensional setting when p does not changes with n. Remark
in addition that the Gaussian approximation at each step still holds with high probability, in the
moderate dimensional setting when p = o( logn

log logn), as shown in the non-asymptotic bound in the
above Thm. 3.1.

For the purpose of statistical inference, one can always approximately characterize the distri-
bution of MasGrad using Thm. 3.1. As an additional benefit, the result naturally provides us an
algorithmic way of sampling this target universal distribution µ(ξt). For some particular tasks,
it remains of theoretical interest to analytically characterize the distribution of MasGrad using
the continuous time Langevin diffusion and its invariant distribution. In the next section, we will
analyze the discrepancy between the discretized diffusion to the continuous time analog.
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3.2 Continuous time Langevin diffusion

In this section we will provide non-asymptotic bounds on the closeness of the discretized and the
continuous time Langevin diffusion, in terms of both the Wasserstein-2 distance, and the entropic
distance. Let us introduce few notations within this section. Denote h(x) = V(x)−1b(x), and let’s
define two processes θt and ξt with the same initial position ξ0 as follows

Continuous : θt = θ0 −
∫ t

0
h(θs)ds+

√
2β−1

∫ t

0
dBs,(3.5)

Interpolation : ξt = θ0 −
∫ t

0
h(ξbs/ηcη)ds+

√
2β−1

∫ t

0
dBs.(3.6)

Here θt is the continuous time Langevin diffusion, and ξt is an interpolation of the discretization
process ξk in Eqn. (3.2): for any integer k, the marginal distribution of ξkη is the same as ξk, and is
well-defined for any t ∈ [(k − 1)η, kη]. Under the following standard assumptions, we can establish
Lemma 3.1 for Wasserstein distance and Lemma 3.2 for relative entropy.

Assumption 3.3 (Lipschitz). Assume that h(·) is `-Lipschitz,

‖h(x)− h(y)‖ ≤ `‖x− y‖, ∀x, y ∈ Rd.

Assumption 3.4 (Boundedness). Assume that h(·) is M -bounded,

‖h(x)‖ ≤M, ∀x ∈ Rd.

Assumption 3.5 (Expansiveness). Assume that x 7→ x− ηh(x) is δ-expansive,

‖ (x− ηh(x))− (y − ηh(y)) ‖ ≤ δ‖x− y‖, ∀x, y ∈ Rd.

Lemma 3.1 (Wasserstein). Let W2(µ, ν) denote the Wasserstein-2 distance,

W2(µ, ν) ,

{
inf

γ∈Γ(µ,ν)

∫
‖x− y‖2dγ(x, y)

}1/2

, Γ(µ, ν) are all couplings of µ, ν.

Under Assumptions 3.3, 3.4 and 3.5, the Wasserstein-2 distance between the ξkη in (3.6) and θkη
in (3.5) satisfies

W2 (µ(ξkη), µ(θkη)) ≤
(

2`2M2

3
η4 + 2`2p · β−1η3

)1/2

·
k−1∑
i=0

δi.

Remark 3.3. Let’s make few remarks to dissect the non-asymptotic upper bound in Lemma 3.1.
Here we borrow Lemma 3.7 in Hardt et al. [2015], which accounts for the expansiveness of updates
induced by the vector field h, as follows:

1. If h is `-smooth, then x− ηh(x) is (1 + η`)-expansive;
2. If in addition h = ∇U , where U is a convex, then for η ≤ 2

` , x− ηh(x) is 1-expansive;

3. If in addition U is α-strongly convex, then for η ≤ 2
α+` , x− ηh(x) is (1− ηα`

α+`)-expansive.

First, let’s focus on the dependence of η and k in the Wasserstein bound. Plug in β = 2n
η , we discuss

the three cases for the expansiveness parameter δ.
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1. Smooth non-convex: δ = 1 + η`, we have W2 (µ(ξkη), µ(θkη)) ≤ O(ηe`kη).
2. Convex: δ = 1, the Wasserstein-2 distance reads W2 (µ(ξkη), µ(θkη)) ≤ O(kη2).

3. Strongly convex: δ = 1− ηα`
α+` , we have W2 (µ(ξkη), µ(θkη)) ≤ O(ηα+`

α` ).

In the convex and strongly convex cases, the Wasserstein bound depends on k in a desirable weak
manner, as one utilizes the non-expansiveness of the vector fields h. In the most general smooth
non-convex case, the Wasserstein bound O(ηe`kη) agrees with the Grönwall’s inequality [Borkar and
Mitter, 1999] on the exponential dependence (ekη for effective time scaling kη). This undesirable
exponential dependence motivates us to also present the non-asymptotic bound using a different
notion — the relative entropy via Girsanov formula in Lemma 3.2.

Lemma 3.2 (Relative entropy). Under Assumptions 3.3 and 3.4, the relative entropy between
stochastic processes {ξt, 0 ≤ t ≤ kη} in (3.6) and {θt, 0 ≤ t ≤ kη} in (3.5) satisfies,

DKL (µ(θt, 0 ≤ t ≤ kη)||µ(ξt, 0 ≤ t ≤ kη)) ≤
(
`2M2

6
βη3 +

`2p

2
η2

)
· k.

Remark 3.4. Let’s explain the pros and cons of the upper bound in Lemma 3.2. On the one
hand, the bound on relative entropy reads O((n + p)kη2) when plug in β = 2n

η , which results
in better dependence on k for the general non-convex case. On the other hand, the bound is
not as desirable as in Lemma 3.1 for two reasons. First, notions like total variation or entropic
distance can be very strong, which can be easily seen in the extreme case when n → ∞ and
β = 2n

η → ∞ — the distribution of the discretized diffusion and the continuous time analog are
two δ measures with total variation distance 1, even though we know they are path-wise close. The
Wasserstein distance captures the path-wise closeness. Second, bound in Lemma 3.2 fails to provide
more detailed characterization when the vector field h(x) enjoys the non-expansive property as in
Lemma 3.1.

4. OPTIMIZATION AND ACCELERATION

In this section, we will demonstrate that the “moment adjusting” idea motivated from stan-
dardizing the error from an inference perspective achieves similar effect as acceleration in convex
optimization. We will investigate Generalized Linear Models (GLMs) as the main example. Later,
we will also discuss the case with non-smooth regularization. It should be noted that using first-
order information to achieve acceleration was first established in the seminal work by Nesterov
[1983, 2013] based on the ingenious notion of estimating sequence.

4.1 Convergence to optima

Let us first state a simple convergence lemma for MasGrad, for general smooth convex function
L(θ) in the noiseless setting (β =∞). This lemma will be helpful for presenting the main theorem
for inference and optimization in the convex case, as well as in the study of GLMs.

Lemma 4.1 (Convergence: noiseless). Let L(w) : Rp → R be a smooth convex function. Recall
b(w) = ∇L(w), and denote H(w) as the Hessian matrix of L. V(w) ∈ Rp×p is a positive definite
matrix. Assume that

α , min
v,w

λmin

(
V(w)−1/2H(v)V(w)−1/2

)
> 0,

γ , max
v,w

λmax

(
V(w)−1/2H(v)V(w)−1/2

)
> 0.
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The deterministic updates wt+1 = wt − ηV(wt)
−1b(wt), with step-size η = 1/γ, satisfies

L(wt+1)−min
w
L(w) ≤

(
1− α

γ

)(
L(wt)−min

w
L(w)

)
.

Remark 4.1. If we define the condition number of MasGrad as

κMasGrad =
maxw,v λmax

(
[V(w)]−1/2H(v)[V(w)]−1/2

)
minw,v λmin

(
[V(w)]−1/2H(v)[V(w)]−1/2

) , κGD =
maxv λmax (H(v))

minv λmin (H(v))
,(4.1)

compared to the condition number in gradient descent. To obtain a solution such that L(wt) −
minw L(w) ≤ ε, one need the number of iterations being

t = κMasGrad · log
L(w0)−minw L(w)

ε
.

Now we are ready to state the theory for inference and optimization using MasGrad, in the
strongly convex case.

Theorem 4.1 (MasGrad: convex). Let L(w) and α, γ be the same as in Lemma 4.1. Consider
the MasGrad updates θt in (3.1) with step-size η = 1/γ, and the corresponding discretized diffusion
ξt,

ξt+1 = ξt − ηV(ξt)
−1b(ξt) +

√
2β−1ηgt, where β =

2n

η
.

Then for any precision ε > 0, one can choose

T =
γ

α
log

2(L(θ0)−minθ L(θ))

ε
, and n =

4pmaxθ ‖V(θ)‖
αε

,(4.2)

such that

(1) DTV (µ(θt, t ∈ [T ]), µ(ξt, t ∈ [T ])) ≤ Oε
(√

ε log(1/ε)
)
,

(2) EL(θt)−min
θ
L(θ) ≤ ε, EL(ξt)−min

θ
L(θ) ≤ ε,

with in total Oε(ε−1 log 1/ε) independent data samples.

Remark 4.2. Using Lemma 4.1, for all t > 0, one can prove

EL(ξt)−min
θ
L(θ) ≤

(
1− α

γ

)t
(L(θ0)−min

θ
L(θ)) + max

θ
‖V(θ)‖ · γ

α
β−1p.

If β = 2n
η and T, n are chosen as in (4.2), we know that EL(ξT ) − L(θ∗) ≤ ε. Recall the result we

establish in Thm. 3.1, the total variation distance between MasGrad and the discretize diffusion

in this case is bounded by
√
T/n = Oε

(√
ε log(1/ε)

)
, and the total number of samples used is

of the order nT = Oε,p(p/ε log(1/ε)). This result can be contrasted with the classical asymptotic
normality for MLE or ERM: to achieve an ε-minimizer,

ε ≥ L(θ̂N )− L(θ∗) � ‖θ̂N − θ∗‖2 �
p

N
⇔ N = Oε,p(p/ε),

the asymptotic sampling complexity is Oε,p(p/ε). Similar calculations also hold with the Ruppert–
Polyak average on stochastic approximation with a carefully chosen decreasing step-size. As we can
see, our result holds non-asymptotically, and it achieves both the optimization and inference goal,
with an additional log factor of samples.

11



4.2 Acceleration: GLMs

Now let’s take GLMs as an example to describe the effect of acceleration. We will first use an
illustrating toy example to show the intuition in an informal way, and then present the rigorous
acceleration result for GLMs.
Toy example, non-rigorous. Consider yi = 〈xi, θ∗〉 + εi, εi ∼ N (0, σ2) i.i.d. for i ∈ [N ].
Let’s focus on the fixed design case (where the expectation is only over y), the loss `(θ; (x, y)) =
1
2(〈x, θ〉 − y)2. Denote X ∈ RN×p, then we have

b(θ) = E

[
1

N

N∑
i=1

(xTi θ − yi)xi

]
=

1

N

N∑
i=1

xix
T
i (θ − θ∗) =

1

N
XTX(θ − θ∗),

V(w) =

[
1

N

N∑
i=1

xix
T
i σ

2

]1/2

= σ[
1

N
XTX]1/2,

and the Hessian is H(w) = XTX/N. Therefore, in this case, we have

κMasGrad =
√
κGD.

Apply Lemma 4.1, one achieves the same effect as Nesterov’s acceleration in the strongly convex
case [Nesterov, 2013]. Remark that the above analysis is to demonstrate the intuition, and is not
rigorous — as MasGrad only makes sense with the random design.
Generalized linear models, random design, mis-specified model. Now let’s provide a
rigorous and unified treatment for the generalized linear models. Consider the generalized linear
model where the response y follows from the exponential family parametrize by θ, φ

f(y; θ, φ) = b(y, φ)e
yθ−c(θ)
d(φ)

where µ = E[y|x = x] = c′(θ), c′′(θ) > 0, and the natural parameter satisfies the linear relationship
θ = θ(µ) = xTw. In this case, we choose the loss function according to the negative log-likelihood

`(w; (x, y)) = −yixTi w + c(xTi w).

Remark that in the Bernoulli model (logistic regression), one has

c(θ) = log(1 + eθ), where xTi w = θ = log
µ

1− µ
.

In the Poisson model (Poisson regression),

c(θ) = eθ, where xTi w = θ = logµ.

In the Gaussian model (linear regression),

c(θ) =
1

2
θ2, where xTi w = θ = µ.

We are interested in inference even when the model can be mis-specified. We consider the sta-
tistical learning setting where zi = (xi, yi) ∼ P = PxPy|x, i ∈ [N ] i.i.d. from some unknown joint
distribution P . We are trying to infer the parameters w through fitting the data using a para-
metric exponential family, however, we allow the flexibility that the exponential family model for
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P (y|x = x) can be mis-specified. Specifically, the true regression function m∗(x) = E(y|x = x)
may not be c′(xTw) for all w, namely, may not be realized by any model in the exponential family
model class. We have the population landscape L(w)

L(w) = E
(x,y)∼P

[
−yxTw + c(xTw)

]
.(4.3)

Define the conditional variance ξ(x) = Var(y|x = x) ∈ R and the bias β(x, w) , c′(xTw) −
m∗(x) ∈ R, one can calculate,

b(w) = E
[
−yx + c′(xTw)x

]
= E

[
(c′(xTw)−m∗(x))x

]
,

V(w) =
(
E[ξ(x)2xxT ] + Cov[β(x, w)x]

)1/2
, H(w) = E

[
c′′(xTw)xxT

]
.

We have the following acceleration result for GLMs.

Theorem 4.2 (Acceleration). Consider the condition number defined in (4.1) for MasGrad
and GD, assume that there exists constant C > 1 such that for any x,w, v,

0 < max

{
ξ(x)2 + β(x,w)2

c′′(xT v)
,
c′′(xT v)

ξ(x)2

}
< C1/3.

Then for the optimization problem associated with GLMs defined in (4.3), the following holds

κMasGrad < C
√
κGD.

Remark 4.3. The above theorem together with Lemma 4.1 states that in the noiseless setting,
the time complexity for MasGrad accelerates to O

(√
κGD log 1/ε

)
in contrast to the complexity of

GD – O (κGD log 1/ε), which is crucial when the condition number is large.

4.3 Non-smooth regularization

In this section, we extend the acceleration result to inference problems with non-smooth reg-
ularization. We will investigate regression models with non-smooth regularizer h(·) motivated in
modern applications, including `1-regularized sparse regression, and matrix trace regression with
nuclear norm regularization. The main results are based on a Moment Adjusted Proximal Gradient
descent (MaProx). Again, we will present the convergence result in a general form.

In general, we consider when the population loss function can be decomposed into

L(w) = g(w) + h(w)(4.4)

where g(w) is a smooth and convex function in w, and h(w) is a non-smooth regularizer that is
convex. In the case of sparse regression,

`(w; (xi, yi)) =
1

2
(xTi w − yi)2 + λ‖w‖1

L(w) = E
(x,y)∼P

[
1

2
(xTw − y)2

]
+ λ‖w‖1 := g(w) + h(w),
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where g(·) is smooth convex and h(w) = λ‖w‖1 is convex but non-smooth. In the case of low rank
matrix trace regression, Xi,W ∈ Rp×q

`(W ; (Xi, yi)) =
1

2
(〈Xi,W 〉 − yi)2 + λ‖W‖∗

L(W ) = E
(X,y)∼P

[
1

2
(〈X,W 〉 − y)2

]
+ λ‖W‖∗ := g(W ) + h(W ),

where g(·) is smooth convex and h(W ) = λ‖W‖∗ is convex but non-smooth.
Now we will show the role of moment matrix V in “speeding up” the convergence of proximal

gradient descent. Here we focus on an easier case when V(w) does not depend on w3. Consider the
moment adjusted proximal function

proxη,V(w) = arg min
u

[
1

2η
‖u− w‖2V + h(u)

]
.(4.5)

One can see that

MaProx: wt+1 = proxη,V(wt − ηV−1∇g(wt))(4.6)

implements moment adjusting gradient (using implicit updates) because wt+1 satisfies the implicit
equation

wt+1 = wt − ηV−1(∇g(wt) + ∂h(wt+1)),

in comparison to the sub-gradient step (explicit updates)

wt+1 = wt − ηV−1(∇g(wt) + ∂h(wt)).

Remark the classic proximal gradient is when V being the identity matrix.

Theorem 4.3 (Moment Adjusted Proximal). Consider L(w) = g(w)+h(w) where g is a smooth
convex function and h is a non-smooth regularizer. Denote H as the Hessian of g, and define

α , min
v

λmin

(
V−1/2H(v)V−1/2

)
> 0, γ , max

v
λmax

(
V−1/2H(v)V−1/2

)
> 0.

Consider MaProx updates with step-size η = 1/γ and adjusting matrix V,

wt+1 = proxη,V(wt − ηV−1∇g(wt)),

then if

T ≥ γ

α
log
( α

2ε
‖w0 − w∗‖2V + 1

)
,

we have
L(wT )−min

w
L(w) ≤ ε.

3As is in the linear regression fixed design case, where V(w) =
(
E[ξ(x)2xxT ]

)1/2
does not depend on w.
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Remark 4.4. Remark that as in the GLM case, the moment adjusted idea speed up the com-
putation as the number of proximal steps scales with adjusted condition number

κMaProx =
maxv λmax

(
V−1/2H(v)V−1/2

)
minw λmin

(
V−1/2H(v)V−1/2

) ≈ √κrmGD.
However, to be fair, it can harder to implement each proximal step for a non-diagonal V. Motivated
from the diagonalizing idea in AdaGrad [Duchi et al., 2011], one can substitute V by diag(V) to
save the per-round computation.

In the limit case when α = 0, i.e., the function g is convex but not strongly convex, our complexity
scales with

lim
α↓0

γ

α
log
( α

2ε
‖w0 − w∗‖2V + 1

)
=
γ‖w0 − w∗‖2V

2ε
,

which means the convergence scales with O(1/T ). Remark that one can use explicit sub-gradient
updates. However, the convergence is considerably slower, which scales with O∗(1/

√
T ).

We would like to conclude this section by discussing the connections between pre-conditioning
methods and our moment adjusting method. Pre-conditioning considers performing a linear trans-
formation ξ = A−1θ on the original parameter space on θ. In other words, consider L̃(ξ) , L(Aξ),
and perform the updates on ξ yields

ξt+1 = ξt − η∇ξL̃(ξ) = ξt − ηAb(Aξt) ⇒ θt+1 = θt − ηA2b(θt),

Therefore, in the noiseless case, moment adjusting method is equivalent to pre-conditioning when
the moment matrix V(θ) is a constant matrix w.r.t. θ. However, in Langevin diffusion when the
isotropic Gaussian noise is presented, the connection becomes more subtle — as V−1(θ)b(θ) may
not be the gradient vector field for any function. The moment adjusting idea motivated from
standardizing noise in statistics is different from the pre-conditioning idea in optimization. We
would also like to point out that a nice idea using Hessian information to speed up the Langevin
diffusion for sampling from log-concave distribution has been considered in Dalalyan [2017b].

Remark that we use the moment matrix at the current point θt (time varying) instead of the
optimal point θ∗ (which is unknown). We also use the matrix root instead of the covariance matrix
itself. In the case when the model is well-specified, and the loss function chosen to be the negative
log-likelihood, the V (θ∗) is the root of the Fisher information matrix.

5. NON-CONVEX INFERENCE

In this section, we will study the non-asymptotic inference and optimization for stationary points
for a smooth non-convex population landscape L(θ), via our proposed MasGrad.

5.1 Convergence to stationary points

First we will state a theorem that quantifies how well our proposed MasGrad achieves both the
inference and optimization goal.

Theorem 5.1 (MasGrad: non-convex). Let L(w) : Rp → R be a smooth function. Recall b(w) =
∇L(w), and H(w) being the Hessian matrix of L. V(w) ∈ Rp×p is a positive definite matrix. Assume

γ , max
v,w

λmax

(
V(w)−1/2H(v)V(w)−1/2

)
> 0.
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Consider the MasGrad updates θt in (3.1) with step-size η = 1/γ, and the corresponding dis-
cretized diffusion ξt,

ξt+1 = ξt − ηV(ξt)
−1b(ξt) +

√
2β−1ηgt, where β =

2n

η
.

Then for any precision ε, δ > 0, one can choose

T =
2γ(L(θ0)−minθ L(θ)) + pδ2

ε2
· (max

θ
‖V(θ)‖ ∨ 1), and n =

T

δ2
,(5.1)

such that

(1) DTV (µ(θt, t ∈ [T ]), µ(ξt, t ∈ [T ])) ≤ Oδ(δ),
(2) Emin

t≤T
‖∇L(θt)‖ ≤ ε, Emin

t≤T
‖∇L(ξt)‖ ≤ ε,

with in total Oε,δ(ε−4δ−2) independent data samples.

Remark 5.1. We would like to contrast the optimization part of the above theorem to the com-
plexity result of classic SGD. To obtain an ε-stationary point w such that in expectation ‖∇L(w)‖ ≤
ε, SGD needs Oε(ε−4) for non-convex smooth functions (with step size ηt = min{1/γ, 1/

√
t}). Here

we show that one can achieve this accuracy with the same dependence on ε with MasGrad, while
being able to make statistical inference at the same time. And the additional price we pay for
δ-closeness in distribution for statistical inference is a factor of δ−2.

The result can also be compared to Thm. 4.1 (the strongly convex case). In both cases, statis-
tically, we have shown that the discretized diffusion ξt tracks the non-asymptotic distribution of
MasGrad θt, as long as the data generating process satisfies weak moment condition and bounded
entropic distance to Gaussian. The distribution of ξt is universal regardless of the specific data gen-
erating distribution. In terms of optimization, to obtain an ε-minimizer, the discretized diffusion
approximation to MasGrad — with the proper step-size η, and inverse temperature β = 2n/η —
achieves the acceleration in the strongly convex case, and enjoys the same dependence on ε as SGD
in the non-convex case.

5.2 Why local inference

For a general non-convex landscape, let us discuss why we focus on inference about local optima,
or more precisely stationary points. Our Thm. 5.1 can be read as, within reasonable number of steps,
the MasGrad converges to a population stationary point, and the distribution is well-described
by the discretized Langevin diffusion. One can argue that the random perturbation introduced
by the isotropic Gaussian noise in Langevin diffusion makes the process hard to converge to a
typical saddle point. Therefore, intuitively, the MasGrad will converge to a distribution that is
well concentrated near a certain local optima (depends on the initialization) as the temperature
parameter β−1 = η/2n is small. In this asymptotic low temperature regime, the Eyring-Kramer
Law states that the transiting time from one local optimum to another local optimum, or the exiting
time from a certain local optimum, is very long — roughly eβh where h is the depth of the basin
of the local optimum. Therefore, a reasonable and tangible goal is to establish statistical inference
for population local optima, for a particular initialization.
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6. NUMERICAL EXPERIMENTS

6.1 Linear model

The first numerical example is the simple linear regression, as in Fig. 1. Here we generate two
plots as a proof of concept. The top one summarizes the trajectory of several methods for inference
— our proposed MasGrad, the discretized diffusion approximation diff MasGrad, as well as classic
SGD, and the diffusion approximation diff SGD — with the confidence intervals (95% coverage) at
each time step t. In this convex setting, we can solve for the global optimum, which is labeled as the
truth. Here the mini-batch size is n = 50. We run 100 independent chains to calculate the confidence
intervals at each step. We look at the low dimensional case p = 4, and the four subfigures (on top)
each corresponds to one coordinate of the parameter wi, i ∈ [p]. The x-axis is t, the time of the
evolution, and y-axis is the value of the parameter w. Remark that, MasGrad and diff MasGrad, are
path-wise close in terms of distribution, which verifies our statistical theory in Thm. 3.1. Similar fact
holds for GD and diff GD. Remark that in this simulation, the condition number of the empirical
Gram matrix is 30.98, and the first and third coordinates have very small population eigenvalues,
which explains why in those coordinates MasGrad has significant acceleration compared to SGD
as shown in the figure. To be fair, at each time step, both MasGrad and SGD sample same amount
of data, and the step-size is chosen as in Thm. 4.2. All four chains start with the same random
initialization.

To examine the optimization side of the story, we plot the logarithm of the `2-error according to
time t, for diff MasGrad and diff SGD, in the bottom plot. Remark that the error bar quantifies
the confidence interval for the log error. In theory, we should expect that the slope of MasGrad is
twice as the slope of SGD. In simulation, it seems that the acceleration is slightly better than what
the theory predicts.

We would like to remark that compared to GD, which different coordinates make uneven process
(fast process in the second and fourth coordinates, but slow on the others), MasGrad adaptively
adjust the relative step-size on each coordinate to achieve synced progress. This effect has also been
observed in AdaGrad and natural gradient descent.

Let us provide the full details of the experiment. In the experiment, we generate a larger number of
samples as the population (so that we can evaluate V easily), then use bootstrap to sample from this
population at each step. The population minimizer can be solved using least squares. Here each row
of the “population” data matrixX ∈ R500×4 is sampled from a multivariate Gaussian independently,
with a covariance matrix Σ that has condition number 30.98. Each step we independently subsample
n = 50 rows with replacement. The response is generated from a well-specified linear model with
additive standard Gaussian noise. The step-size is through calculating the smoothness parameter
γ as in Thm. 4.2.

6.2 Logistic model

Fig. 2 illustrates the acceleration for inference in logistics regression. The figure should be read
the same way as in the linear case. In this case, we sample a much larger number of samples
(N = 500) and the use GLM package in R to fit the global optimum. Then for MasGrad and SGD,
we generate bootstrap subsamples (n = 25) to make stochastic descents at each iteration. Again,
we run 100 independent chains to calculate the confidence interval at each step. In this case, there
is no theoretically optimal way of choosing the step-size, so we choose the same step-size (η = 0.2)
for both MasGrad and SGD.

Statistically, the MasGrad and diff MasGrad are close in distribution when t < 100, and they
both reach a stationary distribution after around 50 steps, simultaneously for all p = 4 coordinates.
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Fig 1. Linear regression

Then the distribution fluctuates around stationarity. However, GD and diff GD makes much slower
progress, and they haven’t reach the global optimum in 100 steps.

For optimization, empirically, the acceleration in the log error plot seems to be better than what
the theoretical results predict. Remark that the confidence intervals are on the scale of log error,
therefore, it is negative-skewed.

Again we will provide the full details of the experiment. We fix a step-size η = 0.2 (other step-
sizes essentially provide similar results), which implies the inverse temperature is β = 2n/η = 250.
The data matrix X ∈ R500×4 is generated from multivariate Gaussian with identity covariance.
The response is generated from a well-specified logistic model with each coordinate of w∗ uniformly
sampled between [1, 2].

6.3 Gaussian mixture

In this section we showcase inference via MasGrad for the Gaussian mixture model. We will
consider a simple setting: the data zi ∈ Rn, 1 ≤ i ≤ [N ] generated from a mixture of p Gaussians,
with mean [θ1, θ2, . . . , θp] , θ respectively, and variance σ2. The goal is to infer the unknown mean
vector θ ∈ Rp. The problem is non-convex due to the mixture nature: the maximum likelihood is
multimodal, as we can shuffle the coordinates of θ to obtain equivalent class of local optima.

`(θ; z) = − log

(
p∑
i=1

qiφ(z − θi)

)
, s.t.

p∑
i=1

qi = 1,

where φ(x) = 1√
2πσ

e−
x2

2σ2 denotes the density function for Gaussian. Here in simulations we consider

the case when the mixture probability qi, i ∈ [p] is known and uniform for the simplicity that we
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Fig 2. Logistic regression

can apply the MasGrad without equality constraints4, and we have a clear picture of the global
optima due to symmetry.

Fig. 3 illustrates the acceleration for inference in the Gaussian mixture model. Here we run two
simulations, according to the difficulty or separability of the problem defined as SNR , mini 6=j |θi−
θj |/σ. The top one is for the easy case with SNR = 3.3 and the bottom one for the hard case with
SNR = 1. In both simulations, θ = (1, 2, 3) ∈ R3, and we choose a random initial point to start
the chains. The plot is presented as before. At each iteration, we subsample n = 20 data points to
calculate the decent direction, and the step-size is fixed to be η = 0.05.

Remark that there are many population local optima (at least 3! = 6), and both MasGrad and
diff MasGrad seem to be able to find a good local optimum relatively quickly (which concentrates
near a permutation of 1, 2, 3 for each coordinate), compared to SGD and diff SGD. The acceleration
effect in both cases seems to be apparent. Again, we want to emphasize that the convergence for
each coordinate in MasGrad seems to happen around the same number of iterations, which is not
true for SGD.

6.4 Shallow neural nets

In this section we run MasGrad on a 2-layer ReLU neural network, as a proof of concept for
non-convex models. Define the ReLU activation σ(x) = max(x, 0), a two layer neural network (with
k hidden units) represents a function

fw(x) = σ(W2σ(W1x)), where x ∈ Rd, w = {W1 ∈ Rk×d,W2 ∈ R1×k}.
4When the mixture probability is also unknown, one will need to consider adding a proper barrier function before

applying the gradient method.
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Fig 3. Gaussian mixture

In our experiment, we use the square loss

`(w; (x, y)) =
1

2
(y − fw(x))2.

The gradients can be calculated through back-propagation. In the experiment we generate from
a well-specified model with very small additive Gaussian noise. However, due to the presense of
the hidden layer, the problem is non-convex with many local optima. To break the ReLU scaling
invariance (i.e., {cW1, 1/cW2} is equivalent to {W1,W2}, for the purpose of letting stationary points
more separable), we add a non-programmable constant in each layer in the experiment, namely
fw(x) = σ(1 +W2σ(1 +W1x)). In this case, it is harder to calculate the global optimum, instead,
we run 50 experiments with random initializations to explore the population landscape, in order to
compare the diff MasGrad and SGD.

For each experiment (as illustrated in the top figure in Fig. 4), we randomly initialize the weights
using standard Gaussians. Because we generate the data from a well specified model, we also
present the true parameter in the plot. Here we choose n = 30, and each step we subsample with
replacement from N = 300 data points. The step-size is fixed to be η = 0.1, which implies the inverse
temperature being β = 600. As usual, we run 100 independent chains with the same initial points
for diff MasGrad and SGD to calculate the confidence interval. As anticipated, the distribution
is rather non-Gaussian (for instance, in coordinate 2 and 6). We run the chain for 100 steps,
and then evaluate the population loss function for the two methods. Out of the 50 experiments,
45/50 = 90% time the population loss returned by diff MasGrad is much smaller than that of the
SGD. The bottom figure in Fig. 4 plots the histogram (dotplot using ggplot2 [Wickham, 2009]) of
the population error (test accuracy). Remarkably, the diff MasGrad seems to be able to converge
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to “better” local optima most of the time. There could be several explanations: first, MasGrad uses
better local geometry (similar to natural gradient) so that it induces better implicit regularization;
second, MasGrad as an optimization method accelerates the chain so that it mixes to a local optima
faster, compared to SGD which may not yet converge within a certain time budget.
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Fig 4. Shallow neural nets

7. FURTHER DISCUSSIONS

In this section, we will briefly discuss the issue with the unknown V(θt). Note that in the
fixed dimension setting, one can estimate the covariance matrix of the gradient ∇`(θ; z) using the
empirical version with N independent samples, when N is large. Let us be more careful in this
statement: (1) When the population landscape is convex, then the global optimum of L̂N (θ) and
L(θ) are within 1/

√
N . We can always treat L̂N (θ) as the population version and at each step, we

bootstrap subsamples of size n to evaluate the stochastic gradients, adjusted using the empirical
covariance V̂N calculated using N data points. Intuitively, when η < O(n/N) (so that β > N), we
know the MasGrad will concentrate near the optimum of L̂N (θ) with better accuracy than 1/

√
N .

(2) In the non-convex case, things become unclear. However, under stronger conditions such as
strongly Morse [Mei et al., 2016], i.e., when there are nice one-to-one correspondence between the
stationary points of L̂N (θ) and L(θ), one may still using the bootstrap idea above with V̂N . (3)
Computation of V̂N and its inverse could be burdensome, one may want to calculate a diagonalized
version of V̂N as done in AdaGrad [Duchi et al., 2011]. (4) To have fully rigorous non-asymptotic
theory as the case when V is known, one may require involved tools from self-normalized processes
[Peña et al., 2008] to establish a similar version of entropic CLT for multivariate self-normalized
processes, where we standardize Ên[∇`(θ, z)] by the empirical covariance matrix V̂n calculated
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based on the same samples. To the best of our knowledge, this is an ambitious and challenging goal
that is beyond the scope and focus of the current paper.

8. TECHNICAL PROOFS

Proof of Theorem 3.2. The MasGrad updates can be represented as

θt+1 = θt − ηV(θt)
−1b(θt) +

√
2β−1η

∑n
i=1Xi(θt)√

n
.(8.1)

Denote Sn(X, θt) =
∑n
i=1Xi(θt)√

n
. Under the Assumptions 3.1 and 3.2, Thm. 6.1 in Bobkov et al.

[2013] (with (4 + δ)-moment condition) implies at each step t,

DKL (µ(Sn(X, θt))||µ(gt)|θt) =
C

n
+ o

(
(log n)

p−(4+δ)
2

n
4+δ−2

2

)
=
C

n
+ o

(
(log n)

p−(4+δ)
2

n1+ δ
2

)
,(8.2)

conditioned on θt, or some constant C > 0.
Apply the chain-rule for relative entropy, we know that

DKL (µ(θt, t ∈ [T ])||µ(ξt, t ∈ [T ]))

= DKL (µ(θt, t ∈ [T − 1])||µ(ξt, t ∈ [T − 1])) +

∫
DKL (µ(Sn(X, θT−1)||µ(gT−1)|θT−1) dµ(θt, t ∈ [T − 1])

≤ DKL (µ(θt, t ∈ [T − 1])||µ(ξt, t ∈ [T − 1])) +
C

n
+ o

(
(log n)

p−(4+δ)
2

n1+ δ
2

)

≤ . . . ≤ DKL (µ(θ0)||µ(ξ0)) +
CT

n
+ o

(
T (log n)

p−(4+δ)
2

n1+ δ
2

)
,

where the second step uses the fact for a, b > 0, DKL(µ(X)||µ(Y )) = DKL(µ(a+ bX)||µ(a+ bY )),
therefore

DKL

(
µ

(
θT−1 − ηV(θt)

−1b(θT−1) +
√

2β−1η

∑n
i=1Xi(θT−1)√

n

)
||µ
(
θT−1 − ηV(θt)

−1b(θT−1) +
√

2β−1ηgT−1

)∣∣∣∣ θT−1

)
= DKL

(
µ

(
n∑

i=1

Xi(θT−1)/
√
n

)
||µ(gT−1)|θT−1

)
= DKL (µ(Sn(X, θT−1)||µ(gT−1)|θT−1) .

Apply the Pinsker’s inequality that for any random variables X,Y ,

1

2
DTV (µ(X), µ(Y ))2 ≤ DKL(µ(X)||µ(Y )),

we finish the proof.

Proof of Lemma 3.1. The proof is motivated from [Dalalyan, 2017a]. We will show that the
proof extends to more general vector fields h using the notion of expansiveness [Hardt et al., 2015],
without requiring h to be the gradient of a strongly convex function. Another difference is that
we are tracking the difference between the Cauchy discretization ξt and the Langevin diffusion θt,
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instead of characterizing the distance of ξt to the invariant measure. In addition, we generalize the
proof to review the explicit dependence on the inverse temperature β.

Consider θt and ξt defined using the same Brownian motion Bt, then we have

‖ξkη − θkη‖ ≤ ‖[ξ(k−1)η − ηh(ξ(k−1)η)]− [θ(k−1)η − ηh(θ(k−1)η)]‖

+

∥∥∥∥∥
∫ kη

(k−1)η

[
h(θt)− h(θ(k−1)η)

]
dt

∥∥∥∥∥(
E ‖ξkη − θkη‖2

)1/2 ≤ (E ‖[ξ(k−1)η − ηh(ξ(k−1)η)]− [θ(k−1)η − ηh(θ(k−1)η)]‖2
)1/2

+

E

∥∥∥∥∥
∫ kη

(k−1)η

[
h(θt)− h(θ(k−1)η)

]
dt

∥∥∥∥∥
2
1/2

︸ ︷︷ ︸
defined as ∆

≤ δ E
(
‖ξ(k−1)η − θ(k−1)η‖2

)1/2
+ ∆

where the first two steps use triangle inequality, on Rp and `2 space associated with E respectively.
The last step uses the following fact about the δ-expansiveness,

‖[ξ(k−1)η − ηh(ξ(k−1)η)]− [θ(k−1)η − ηh(θ(k−1)η)]‖ ≤ δ‖ξ(k−1)η − θ(k−1)η‖.

For the term ∆,

∆2 = E
d∑
i=1

∣∣∣∣∣
∫ kη

(k−1)η

[
h(θt)− h(θ(k−1)η)

]
i
dt

∣∣∣∣∣
2

≤ E
d∑
i=1

η

∫ kη

(k−1)η
|
[
h(θt)− h(θ(k−1)η)

]
i
|2dt by Cauchy-Schwartz

= η

∫ kη

(k−1)η
E ‖h(θt)− h(θ(k−1)η)‖2dt

≤ η`2
∫ kη

(k−1)η
E ‖θt − θ(k−1)η‖2dt by `-Lipschitz

= η`2
∫ kη

(k−1)η
E

∥∥∥∥∥−
∫ t

(k−1)η
h(θs)ds+

√
2β−1(Bt −B(k−1)η)

∥∥∥∥∥
2

dt

≤ η`2
∫ kη

(k−1)η

2E

∥∥∥∥∥−
∫ t

(k−1)η
h(θs)ds

∥∥∥∥∥
2

+ 2E
∥∥∥√2β−1(Bt −B(k−1)η)

∥∥∥2

 dt

≤ 2η`2
∫ kη

(k−1)η
(t− (k − 1)η)

∫ t

(k−1)η
E ‖h(θs)‖2dsdt+ 2η`2

∫ kη

(k−1)η
2β−1p(t− (k − 1)η)dt

≤ 2η`2
∫ kη

(k−1)η
(t− (k − 1)η)2M2dt+ 2`2pβ−1η3 by M -boundedness

≤ 2

3
`2M2η4 + 2`2pβ−1η3.

23



Then going back to the original equation we are trying to bound(
E ‖ξkη − θkη‖2

)1/2 ≤ (2

3
`2M2η4 + 2`2pβ−1η3

)1/2

·
k−1∑
i=0

δi.(8.3)

Proof of Lemma 3.2. The proof follows from calculations as in Dalalyan [2017b], Raginsky
et al. [2017]. The continuous-time interpolation enjoys the same distribution as ξkη for all k. One
can apply Girsanov formula to calculate the relative entropy

DKL (µ(θt, 0 ≤ t ≤ kη)||µ(ξt, 0 ≤ t ≤ kη))

=
β

4

∫ kη

0
E‖h(ξt)− h(ξbt/ηcη)‖2dt

=
β

4

k−1∑
i=0

∫ (i+1)η

iη
E‖h(ξt)− h(ξiη)‖2dt

≤ `2β

4

k−1∑
i=0

∫ (i+1)η

iη
E‖ξt − ξiη‖2dt

=
`2β

4

k−1∑
i=0

∫ (i+1)η

iη
E‖ − (t− iη)h(ξiη) +

√
2β−1(Bt −Biη)‖2dt

≤ `2β

4

k−1∑
i=0

∫ (i+1)η

iη

[
2(t− iη)2 E ‖h(ξiη)‖2 + p · 4β−1(t− iη)

]
dt

=
`2β

4

[
2

3
η3

k−1∑
i=0

E ‖h(ξiη)‖2 + k · 2pβ−1η2

]

=
`2

6
βη3

k−1∑
i=0

E ‖h(ξiη)‖2 +
`2p

2
kη2

Now recall that h is M -bounded, therefore, we know,

DKL (µ(θt, 0 ≤ t ≤ kη)||µ(ξt, 0 ≤ t ≤ kη)) ≤
(
`2M2

6
βη3 +

`2p

2
η2

)
· k.

Proof of Lemma 4.1. First, let us focus on the line segment {cwt + (1 − c)wt+1, 0 ≤ c ≤ 1},
by the mean value theorem, we know there exist a c̃ ∈ [0, 1] such that the following holds

L(wt+1) = L(wt) + 〈b(wt), wt+1 − wt〉+
1

2
(wt+1 − wt)TH (c̃wt + (1− c̃)wt+1) (wt+1 − wt).

Note wt+1 = wt − ηV(wt)
−1b(wt), let’s abbreviate Hc̃ for the Hessian matrix at the middle point,

L(wt+1) = L(wt)− η〈b(wt),V(wt)
−1b(wt)〉+

η2

2

[
V(wt)

−1/2b(wt)
]T

V(wt)
−1/2Hc̃V(wt)

−1/2
[
V(wt)

−1/2b(wt)
]
,

≤ L(wt)− η‖V(wt)
−1/2b(wt)‖2 +

η2γ

2
‖V(wt)

−1/2b(wt)‖2,

= L(wt)−
1

2γ
‖V(wt)

−1/2b(wt)‖2.
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if we choose η = 1
γ .

For any w, on line segment cw + (1− c)wt, we can use mean value theorem again,

L(w)− L(wt)

= 〈V(wt)
−1/2b(wt),V(wt)

1/2(w − wt)〉+
1

2
(w − wt)TH (c̃w + (1− c̃)wt) (w − wt)

= 〈V(w)−1/2b(wt),V(w)1/2(w − wt)〉

+
1

2

[
V(wt)

1/2(w − wt)
]T

V(wt)
−1/2Hc̃V(wt)

−1/2
[
V(wt)

1/2(w − wt)
]

≥ 〈V(wt)
−1/2b(wt),V(wt)

1/2(w − wt)〉+
α

2
‖V(wt)

1/2(w − wt)‖2

≥ − 1

2α
‖V(wt)

−1/2b(wt)‖2.

Therefore, choose w that attains the minimum of L, combine the above two bounds, we know

L(wt+1)− L(wt) ≤
α

γ
(L(w)− L(wt)),

L(wt+1)− L(w) ≤ (1− α

γ
)(L(wt)− L(w)).

Proof of Theorem 4.1. Mimic the proof in Lemma. 4.1, we have

E {L(ξt+1)|ξt}

= E
{
L(ξt) + 〈b(ξt), ξt+1 − ξt〉+

1

2
(ξt+1 − ξt)TH (c̃ξt + (1− c̃)ξt+1) (ξt+1 − ξt)|ξt

}
,

= L(ξt)− η〈b(ξt),V(ξt)
−1b(ξt)〉+ E

{γ
2
‖ηV(ξt)

−1/2b(ξt) + V(ξt)
1/2
√

2β−1ηgt‖2|ξt
}
,

≤ L(ξt)− η‖V(ξt)
−1/2b(ξt)‖2 +

η2γ

2
‖V(ξt)

−1/2b(ξt)‖2 + β−1ηγ E
{
‖V(ξt)

1/2gt‖2|ξt
}
,

= L(ξt)−
1

2γ
‖V(ξt)

−1/2b(ξt)‖2 + β−1〈Ip,V(ξt)〉.

Therefore we have

EL(ξt+1)−min
ξ
L(ξ) ≤ (1− α

γ
)(EL(ξt)−min

ξ
L(ξ)) + β−1〈Ip,EV(ξt)〉

EL(ξt+1)−min
ξ
L(ξ) ≤ (1− α

γ
)(EL(ξt)−min

ξ
L(ξ)) + β−1p ·max

ξ
‖V(ξ)‖

EL(ξk)−min
ξ
L(ξ) ≤ (1− α

γ
)k(EL(ξ0)−min

ξ
L(ξ)) +

β−1p ·maxξ ‖V(ξ)‖
1− (1− α

γ )
.

We know ξ0 = θ0. It is easily seen that the same argument holds with θt as the conditional second
moment of the Gaussian approximation using ξt+1 matches θt+1.

Proof of Theorem 4.2. Clearly, we know that Cov[β(x, w)x] � E[β(x, w)2xxT ]. Recall that,

V(w) =
(
E[ξ(x)2xxT ] + Cov[β(x, w)x]

)1/2
, H(w) = E

[
c′′(xTw)xxT

]
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Therefore, the following matrix inequalities hold

E[ξ(x)2xxT ] � V(w)2 � E[(ξ(x)2 + β(x, w)2)xxT ]

where A � B denotes that B −A being a positive semi-definite matrix.
Under the condition that there exists C > 1 such that

C−1/3 <
c′′(xT v)

ξ(x)2 + β(x,w)2
≤ c′′(xT v)

ξ(x)2
< C1/3,

then we have

H(v) = E
[
c′′(xT v)xxT

]
= E

[
c′′(xT v)

ξ(x)2
ξ(x)2xxT

]
≺ C1/3V(w)2,

H(v) = E
[
c′′(xT v)xxT

]
= E

[
c′′(xT v)

ξ(x)2 + β(x, w)2

(
ξ(x)2 + β(x, w)2

)
xxT

]
� C−1/3V(w)2.

Let’s recall the following facts that if A ≺ B, then λmax(A) < λmax(B) because take v to be the
top unit eigenvector of A,

λmax(A) = vTAv < vTBv ≤ λmax(B).

Similarly, we have λmin(A) < λmin(B). Also, if A ≺ B, then for any symmetric matrix C, CAC ≺
CBC.

Now because H(v) ≺ C1/3V(w)2, take w, v that maximize the LHS of the following

λmax

(
[V(w)]−1/2H(v)[V(w)]−1/2

)
< C1/3λmax

(
[V(w)]−1/2V(w)2[V(w)]−1/2

)
≤ C1/3 max

w
λmax(V(w)).

Similarly, because C−1/3V(w)2 ≺ H(v),

λmin

(
[V(w)]−1/2H(v)[V(w)]−1/2

)
> C−1/3λmin

(
[V(w)]−1/2V(w)2[V(w)]−1/2

)
≥ C−1/3 min

w
λmin(V(w))

Recall the definition of κMasGrad, we know

κMasGrad =
maxw,v λmax

(
[V(w)]−1/2H(v)[V(w)]−1/2

)
minw,v λmin

(
[V(w)]−1/2H(v)[V(w)]−1/2

) ,
≤ C1/3 maxw λmax(V(w))

C−1/3 minw λmin(V(w))

≤ C2/3

√
maxw λmax(V(w)2)

minw λmin(V(w)2)
≤ C

√
maxv λmax(H(v))

minv λmin(H(v))
= C
√
κGD

where the last step also uses the fact that

C−1/3V(w)2 ≺ H(v) ≺ C1/3V(w)2.
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Proof of Theorem 4.3. Now let’s analyze Moment Adjusted Proximal Gradient Descent in
Eq. (4.6). For any w, and any z ∈ ∂h(wt+1)

L(wt+1) = g(wt+1) + h(wt+1)

≤
[
g(wt) + 〈∇g(wt), wt+1 − wt〉+

1

2
‖wt+1 − wt‖2H(c̃)

]
+ [h(w) + 〈z, wt+1 − w〉]

≤
[
g(w) + 〈∇g(wt), wt − w〉 −

1

2
‖wt − w‖2H(c′)

]
+

[
〈∇g(wt), wt+1 − wt〉+

1

2
‖wt+1 − wt‖2H(c̃)

]
+ [h(w) + 〈z, wt+1 − w〉]

=

[
g(w) + 〈∇g(wt), wt+1 − w〉+

1

2
‖wt+1 − wt‖2H(c̃) −

1

2
‖wt − w‖2H(c′)

]
+ [h(w) + 〈z, wt+1 − w〉]

= L(w) + 〈∇g(wt) + z, wt+1 − w〉+
1

2
‖wt+1 − wt‖2H(c̃) −

1

2
‖wt − w‖2H(c′).

(8.4)

Due to the optimality of the proximal updates in Eq. (4.6), we know

0 ∈ 1

η
V(wt+1 − wt + ηV−1∇g(wt)) + ∂h(wt+1),

there exists z ∈ ∂h(wt+1) such that

∇g(wt) + z =
1

η
V(wt − wt+1).

Continue with Eq. (8.4), and recall the definition of α, γ, one has

L(wt+1) ≤ L(w) + 〈1
η

V(wt − wt+1), wt+1 − w〉+
1

2
‖wt+1 − wt‖2H(c̃) −

1

2
‖wt − w‖2H(c′)

≤ L(w) + 〈1
η

V(wt − wt+1), wt+1 − w〉+
γ

2
‖wt+1 − wt‖2V −

α

2
‖wt − w‖2V.

Plug in w = wt, we know if η = 1
γ

L(wt+1) ≤ L(wt)− (
1

η
− γ

2
)‖wt+1 − wt‖2V = L(wt)−

γ

2
‖wt+1 − wt‖2V ≤ L(wt).

Plug in w∗ = arg minL(w), one has

L(wt+1)− L(w∗) ≤ γ〈wt − wt+1, wt+1 − w∗〉V +
γ

2
‖wt+1 − wt‖2V −

α

2
‖wt − w∗‖2V

≤ γ − α
2
‖wt − w∗‖2V −

γ

2
‖wt+1 − w∗‖2V,

2

γ − α
[L(wt+1)− L(w∗)] ≤ ‖wt − w∗‖2V −

γ

γ − α
‖wt+1 − w∗‖2V.

Sum the above equations for t = 0, . . . T − 1, one has

2

α

[(
γ

γ − α

)T
− 1

]
(L(wT )− L(w∗)) ≤

2

γ − α

T−1∑
t=0

(
γ

γ − α

)t
(L(wt+1)− L(w∗)) ≤ ‖w0 − w∗‖2V.
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Therefore we know if

T ≥ γ

α
log
( α

2ε
‖w0 − w∗‖2V + 1

)
,

we have
L(wT )− L(w∗) ≤ ε.

Proof of Theorem 5.1. Denote C , maxθ ‖V(θ)‖. Let’s start with the the mean value the-
orem on the line segment between ξt+1 and ξt,

E {L(ξt+1)|ξt}

= E
{
L(ξt) + 〈b(ξt), ξt+1 − ξt〉+

1

2
(ξt+1 − ξt)TH (c̃ξt + (1− c̃)ξt+1) (ξt+1 − ξt)|ξt

}
= L(ξt)− η〈b(ξt),V(ξt)

−1b(ξt)〉+ E
{γ

2
‖ηV(ξt)

−1/2b(ξt) +
√

2β−1ηV(ξt)
1/2gt‖2|ξt

}
= L(ξt)−

(
η − η2γ

2

)
‖V(ξt)

−1/2b(ξt)‖2 + β−1ηγ E ‖V(ξt)
1/2gt‖2

≤ L(ξt)−
(
η − η2γ

2

)
‖V(ξt)

−1/2b(ξt)‖2 + C1/2 · pβ−1ηγ

Therefore, summing over t ∈ [T ], we have

L(ξ0)−minL(θ) + C1/2 · pβ−1ηγT ≥
T−1∑
t=0

(
η − η2γ

2

)
E‖V(ξt)

−1/2b(ξt)‖2,

Emin
t≤T
‖V(ξt)

−1/2b(ξt)‖2 ≤
L(θ0)−minL(θ) + C1/2 · pβ−1ηγT

T
(
η − η2γ

2

) .

Therefore we the choice η = 1
γ , we have

Emin
t≤T
‖V(ξt)

−1/2b(ξt)‖2 ≤
2γ(L(θ0)−minL(θ))

T
+ C1/2 · p

n
.

To obtain an ε-stationary point in the sense that Emint≤T ‖b(wt)‖ ≤ ε, we need to

1

C1/2
Emin
t≤T
‖b(ξt)‖2 ≤ Emin

t≤T
‖V(ξt)

−1/2b(ξt)‖2 ≤
2γ(L(θ0)−minL(θ))

T
+ C1/2 · p

n
≤ ε2

C1/2
.

Hence, one can choose

T =
C1/2

[
2γ(L(w0)−minL(w)) + C1/2 · pδ2

]
ε2

,

n =
T

δ2
,

to ensure (
Emin
t≤T
‖b(wt)‖

)2

≤ Emin
t≤T
‖b(wt)‖2 ≤ ε2.
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And due to Thm. 3.1, we know at the same time

DTV (µ(θt, t ∈ [T ]), µ(ξt, t ∈ [T ])) ≤ O(

√
T

n
) = C

√
T

n
= Oδ(δ).

The total number of samples needed is N = nT = O(ε−4δ−2). Again, it is easy to see that the same
argument holds with θt as the conditional second moment of ξt+1 matches that of θt+1.
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