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Abstract

We study first-order optimization methods obtained by discretizing ordinary differential equations
(ODEs) corresponding to Nesterov’s accelerated gradient methods (NAGs) and Polyak’s heavy-ball
method. We consider three discretization schemes: an explicit Euler scheme, an implicit Euler scheme,
and a symplectic scheme. We show that the optimization algorithm generated by applying the symplectic
scheme to a high-resolution ODE proposed by Shi et al. [2018] achieves an accelerated rate for minimiz-
ing smooth strongly convex functions. On the other hand, the resulting algorithm either fails to achieve
acceleration or is impractical when the scheme is implicit, the ODE is low-resolution, or the scheme is
explicit.

1 Introduction

First-order optimization methods are ubiquitous in machine learning because of their implementational sim-
plicity and low cost-per-iteration complexity. In this paper, we consider unconstrained minimization prob-
lems:

min
x∈Rn

f(x), (1.1)

where f is a smooth convex function. The touchstone method in this setting is gradient descent (GD):

xk+1 = xk − s∇f(xk), (1.2)

where x0 is a given initial point and s > 0 is the step size. Whether there exist methods that improve on GD
while remaining within the framework of first-order optimization is a subtle and important question.

Modern attempts to address this question date to Polyak [1964, 1987], who incorporated a momentum
term into the gradient step, yielding a method that is referred to as the heavy-ball method:

yk+1 = xk − s∇f(xk), xk+1 = yk+1 − α(xk − xk−1), (1.3)
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where α > 0 is a momentum coefficient. While the heavy-ball method provably attains a faster rate of
local convergence than GD near a minimum of f , it generally does not provide a guarantee of acceleration
globally [Polyak, 1964].

The next major development in first-order methodology is due to Nesterov, who introduced first-order
gradient methods that have a faster global convergence rate than GD [Nesterov, 1983, 2013]. For a µ-
strongly convex objective f with L-Lipschitz gradients, Nesterov’s accelerated gradient method (NAG-SC)
involves the following pair of update equations:

yk+1 = xk − s∇f(xk), xk+1 = yk+1 +
1−√µs
1 +
√
µs

(yk+1 − yk) . (1.4)

If one sets s = 1/L, then NAG-SC enjoys a O
(
(1−

√
µ/L)k

)
convergence rate, improving on the

O
(
(1− µ/L)k

)
convergence rate of GD. Nesterov also developed an accelerated algorithm (NAG-C) tar-

geting smooth convex functions that are not strongly convex:

yk+1 = xk − s∇f(xk), xk+1 = yk+1 +
k

k + 3
(yk+1 − yk). (1.5)

This algorithm has a O(L/k2) convergence rate, which is faster than GD’s O(L/k) rate.
While yielding optimal and effective algorithms, the design principle of Nesterov’s accelerated algo-

rithms (NAG) is not transparent. Convergence proofs for NAG often use the estimate sequence technique,
which is inductive in nature and relies on series of algebraic tricks [Bubeck, 2015]. In recent years progress
has been made in the understanding of acceleration by moving to a continuous-time formulation. In partic-
ular, Su et al. [2016] showed that as s → 0, NAG-C converges to an ordinary differential equation (ODE)
(Equation (2.2)); moreover, for this ODE, Su et al. [2016] derived a (continuous-time) convergence rate us-
ing a Lyapunov function, and further transformed this Lyapunov function to a discrete version and thereby
provided a new proof of the fact that NAG-C enjoys a O(L/k2) rate.

Further progress in this vein has involved taking a variational point of view that derives ODEs from an
underlying Lagrangian rather than from a limiting argument [Wibisono et al., 2016]. While this approach
captures many of the variations of Nesterov acceleration presented in the literature, it does not distinguish
between the heavy-ball dynamics and the accelerated dynamics, and thus fails to distinguish between local
and global acceleration. More recently, Shi et al. [2018] have returned to limiting arguments with a more
sophisticated methodology. They have derived high-resolution ODEs for the heavy-ball method (Equa-
tion (2.4)), NAG-SC (Equation (2.5)) and NAG-C (Equation (2.6)). Notably, the high-resolution ODEs for
the heavy-ball dynamics and the accelerated dynamics are different. Shi et al. [2018] also presented Lya-
punov functions for these ODEs and for their discretizations, and showed that these Lyapunov functions can
be used to derive the accelerated rates of NAG-SC and NAG-C.

This emerging literature has thus provided a new level of understanding of design principles for acceler-
ated optimization. The design involves an interplay between continuous-time and discrete-time dynamics.
ODEs are obtained either variationally or via a limiting scheme, and various properties of the ODEs are
studied, including their convergence rate, topological aspects of their flow and their behavior under pertur-
bation. Lyapunov functions play a key role in such analyses, and also allow aspects of the continuous-time
analysis to be transferred to discrete time [see, e.g., Wilson et al., 2016].

And yet the literature has not yet provided a full exploration of the transition from continuous-time
ODEs to discrete-time algorithms. Indeed, this transition is a non-trivial one, as evidenced by the decades
of research on numerical methods for the discretization of ODEs, including most notably the sophisticated
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arsenal of techniques referred to as “geometric numerical integration” that are used for ODEs obtained
from underlying variational principles [Hairer et al., 2006]. Recent work has begun to explore these issues;
examples include the use of symplectic integrators by Betancourt et al. [2018] and the use of Runge-Kutta
integration by Zhang et al. [2018]. However, these methods do not always yield proofs that accelerated
rates are retained in discrete time, and when they do they involve implicit discretization, which is generally
not practical except in the setting of quadratic objectives.

Thus we wish to address the following fundamental question:

Can we systematically and provably obtain new accelerated methods via the numerical discretization of
ordinary differential equations?

Our approach to this question is a dynamical systems framework based on Lyapunov theory. Our main
results are as follows:

1. In Section 3.1, we consider three simple numerical discretization schemes—explicit Euler, implicit
Euler, and symplectic Euler schemes—to discretize the high-resolution ODE of Nesterov’s accelerated
method for strongly convex functions. We show that the optimization method generated by symplectic

discretization achieves aO
(
1−O(1)

√
µ/L

)k
rate, thereby attaining acceleration. In sharp contrast,

the implicit scheme is not practical for implementation, and the explicit scheme, while being simple,
fails to achieve acceleration.

2. Next, we apply the three simple Euler schemes to the high-resolution ODE of Nesterov’s accelerated
method for convex functions. Again, our Lyapunov analysis sheds light on the superiority of the
symplectic scheme over the other two schemes. This is the subject of Section 4.

3. In Section 3.2, we apply these discretization schemes to the ODE for modeling the heavy-ball method,
which can be viewed as a low-resolution ODE that lacks a gradient-correction term [Shi et al., 2018].
In contrast to the previous two cases of high-resolution ODEs, the symplectic scheme does not achieve
acceleration for this low-resolution ODE. More broadly, in Appendix D we present more examples of
low-resolution ODEs where symplectic discretization does not lead to acceleration.

Taken together, the three findings have the implication that high-resolution ODEs and symplectic schemes
are critical to achieving acceleration using numerical discretization. More precisely, in addition to allowing
relatively simple implementations, symplectic schemes allow for a large step size without a loss of stability,
in a manner akin to (but better than) implicit schemes. In stark contrast, in the setting of low-resolution
ODEs, only the implicit schemes remain stable with a large step size, due to the lack of gradient correction.
Moreover, the choice of Lyapunov function is essential to obtaining sharp convergence rates. This fact is
highlighted in Section 2.4, where we analyze GD by considering it as a discretization method for gradient
flow (the ODE counterpart of GD). Using the discrete version of the Lyapunov function proposed in Su et al.
[2016] instead of the classical one, we show that GD in fact minimizes the squared gradient norm (choosing
the best iterate so far) at a rate of O(L2/k2). Although this rate of convergence in the problem of squared
gradient norm minimization is known in the literature [Nesterov, 2012], the Lyapunov function argument
provides a systematic approach to obtaining this rate in this problem and others.

2 Preliminaries

In this section, we introduce necessary notation, and review ODEs derived in previous work and three
classical numerical discretization schemes.
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2.1 Notation

We mostly follow the notation of Nesterov [2013], with slight modifications tailored to the present paper.
Let F1

L(Rn) be the class of L-smooth convex functions defined on Rn; that is, f ∈ F1
L if f(y) ≥ f(x) +

〈∇f(x), y − x〉 for all x, y ∈ Rn and its gradient is L-Lipschitz continuous in the sense that

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ ,

where ‖ · ‖ denotes the standard Euclidean norm and L > 0 is the Lipschitz constant. The function class
F2
L(Rn) is the subclass of F1

L(Rn) such that each f has a Lipschitz-continuous Hessian. For p = 1, 2,
let Spµ,L(Rn) denote the subclass of FpL(Rn) such that each member f is µ-strongly convex for some 0 <

µ ≤ L. That is, f ∈ Spµ,L(Rn) if f ∈ FpL(Rn) and f(y) ≥ f(x) + 〈∇f(x), y − x〉 + µ
2 ‖y − x‖

2 for all
x, y ∈ Rn. Let x? denote (a) minimizer of f(x).

2.2 Approximating ODEs

In this section we list all of the ODEs that we will discretize in this paper. We refer readers to recent papers
by Su et al. [2016], Wibisono et al. [2016] and Shi et al. [2018] for the rigorous derivations of these ODEs.
We begin with the simplest. Taking the step size s → 0 in Equation (1.2), we obtain the following ODE
(gradient flow):

Ẋ = −∇f(X), (2.1)

with any initial X(0) = x0 ∈ Rn.
Next, by taking s→ 0 in Equation (1.5), Su et al. [2016] derived the low-resolution ODE of NAG-C:

Ẍ +
3

t
Ẋ +∇f(X) = 0, (2.2)

with X(0) = x0 and Ẋ(0) = 0. For strongly convex functions, by taking s → 0, one can derive the
following low-resolution ODE (see, for example, Wibisono et al. [2016])

Ẍ + 2
√
µẊ +∇f(X) = 0 (2.3)

that models both the heavy-ball method and NAG-SC. This ODE has the same initial conditions as (2.2).
Recently, Shi et al. [2018] proposed high-resolution ODEs for modeling acceleration methods. The key

ingredient in these ODEs is that the O(
√
s) terms are preserved in the ODEs. As a result, the heavy-ball

method and NAG-SC have different models as ODEs.

(a) If f ∈ S1µ,L(Rn), the high-resolution ODE of the heavy-ball method is

Ẍ + 2
√
µẊ + (1 +

√
µs)∇f(X) = 0, (2.4)

with X(0) = x0 and Ẋ(0) = −2
√
s∇f(x0)
1+
√
µs . This ODE has essentially the same properties as its

low-resolution counterpart (2.3) due to the absence of∇2f(X)Ẋ .

(b) If f ∈ S2µ,L(Rn), the high-resolution ODE of NAG-SC is

Ẍ + 2
√
µẊ +

√
s∇2f(X)Ẋ + (1 +

√
µs)∇f(X) = 0, (2.5)

with X(0) = x0 and Ẋ(0) = −2
√
s∇f(x0)
1+
√
µs .
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(c) If f ∈ F2
L(Rn), the high-resolution ODE for NAG-C is

Ẍ +
3

t
Ẋ +

√
s∇2f(X)Ẋ +

(
1 +

3
√
s

2t

)
∇f(X) = 0 (2.6)

for t ≥ 3
√
s/2, with X(3

√
s/2) = x0 and Ẋ(3

√
s/2) = −

√
s∇f(x0).

2.3 Discretization schemes

To discretize ODEs (2.1)-(2.6), we replace Ẋ by xk+1 − xk, V̇ by vk+1 − vk and replace other terms with
approximations. Different discretization schemes correspond to different approximations.

• The most straightforward scheme is the explicit scheme, which uses the following approximation rule:

xk+1 − xk =
√
svk,

√
s∇2f(xk)vk ≈ ∇f(xk+1)−∇f(xk).

• Another discretization scheme is the implicit scheme, which uses the following approximation rule:

xk+1 − xk =
√
svk+1,

√
s∇2f(xk+1)vk+1 ≈ ∇f(xk+1)−∇f(xk).

Note that compared with the explicit scheme, the implicit scheme is not practical because the update
of xk+1 requires knowing vk+1 while the update of vk+1 requires knowing xk+1.

• The last discretization scheme considered in this paper is the symplectic scheme, which uses the
following approximation rule.

xk+1 − xk =
√
svk,

√
s∇2f(xk+1)vk ≈ ∇f(xk+1)−∇f(xk).

Note this scheme is practical because the update of xk+1 only requires knowing vk.

We remark that for low-resolution ODEs, there is no ∇2f(x) term, whereas for high-resolution ODEs, we
have this term and we use the difference of gradients to approximate this term. This additional approximation
term is critical to acceleration.

2.4 Warm-up: Gradient norm minimization via GD

As a warm-up, we revisit gradient descent for smooth convex functions, highlighting the ODE-based ap-
proach and the importance of Lyapunov functions in proofs. Our finding is the following theorem.

Theorem 2.1. Let f ∈ F1
L(Rn). Taking step size s = 1/L, the iterates {xk}∞k=0 generated by gradient

descent (1.2) satisfy
∞∑
i=0

(i+ 1) ‖∇f(xi)‖2 ≤ L2 ‖x0 − x?‖2 . (2.7)

This theorem directly implies that

min
0≤i≤k

‖∇f(xi)‖2 ≤
∑k

i=0(i+ 1)‖∇f(xi)‖2∑k
i=0(i+ 1)

= O

(
L2‖x0 − x?‖2

k2

)
,
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which is known in the literature [Nesterov, 2012]. However, our result is stronger in the sense that the
O(L2/k2) rate does not imply (2.7).

To obtain this result, we use a Lyapunov function that is different from the standard analysis of gradient
descent, which uses the Lyapunov function E(k) , f(xk) − f(x?). This Lyapunov function yields the
O(L/k) convergence rate for the function value. For the squared gradient norm, however, this Lyapunov
function can only exploit the L-smoothness property that transforms the function value to the gradient norm,
giving the sub-optimal O(L2/k) rate, due to the absence of gradient information in this function. Our proof
below uses a different Lyapunov function.

Proof. We consider the following Lyapunov function

E(k) = ks (f(xk)− f(x?)) +
1

2
‖xk − x?‖2 .

We remark that this is just the discrete version of the Lyapunov function constructed by Su et al. [2016].
The difference of this Lyapunov function satisfies

E(k + 1)− E(k)

= s (f(xk)− f(x?)) + (k + 1)s (f(xk+1)− f(xk)) +
1

2
〈xk+1 − xk, xk+1 + xk − 2x?〉

≤ s (f(xk)− f(x?)− 〈∇f(xk), xk − x?〉) + (k + 1)s 〈∇f(xk), xk+1 − xk〉

+

[
(k + 1)sL

2
+

1

2

]
‖xk+1 − xk‖2

≤ s2
[
− 1

2Ls
− (k + 1) +

(k + 1)sL

2
+

1

2

]
‖∇f(xk)‖2

≤ −s
2

2
(k + 1) ‖∇f(xk)‖2 .

Summing over k and plugging in s = 1/L, we complete the proof.

3 High-Resolution ODEs for Strongly Convex Functions

This section considers numerical discretization of the high-resolution ODEs of NAG-SC and the heavy-ball
method using the symplectic Euler scheme, explicit Euler scheme, and implicit Euler scheme. In particular,
we compare rates of convergence towards the objective minimum of the three simple Euler schemes and
the two methods (NAG-SC and the heavy-ball method) in Section 3.1 and Section 3.2, respectively. For
both cases, the associated symplectic scheme is shown to exhibit surprisingly close similarity with the
corresponding classical method.

3.1 NAG-SC

The high-resolution ODE (2.5) of NAG-SC can be equivalently written in the phase space as

Ẋ = V, V̇ = −2√µV −
√
s∇2f(X)V − (1 +

√
µs)∇f(X), (3.1)

with the initial conditions X(0) = x0 and V (0) = −2
√
s∇f(x0)
1+
√
µs . For any f ∈ S2µ,L(Rn), Theorem 1 of Shi

et al. [2018] shows that the solution X = X(t) of the ODE (2.5) satisfies

f(X)− f(x?) ≤ 2 ‖x0 − x?‖2

s
e−
√
µt

4 ,
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for any step size 0 < s ≤ 1/L. In particular, setting the step size to s = 1/L, we get

f(X(t))− f(x?) ≤ 2L ‖x0 − x?‖2 e−
√
µt

4 .

In the phase space representation, NAG-SC is formulated as
xk+1 − xk =

√
svk

vk+1 − vk = −
2
√
µs

1−√µs
vk+1 −

√
s(∇f(xk+1)−∇f(xk))−

1 +
√
µs

1−√µs
·
√
s∇f(xk+1),

(3.2)

with the initial condition v0 = −2
√
s∇f(x0)
1+
√
µs for any x0. This method maintains the accelerated rate of the

ODE by recognizing

f(xk)− f(x?) ≤
5L ‖x0 − x?‖2

(1 +
√
µ/L/12)k

;

(see Theorem 3 in Shi et al. [2018]) and the identification t ≈ k
√
s.

Viewing NAG-SC as a numerical discretization of (2.5), one might wonder if any of the three simple
Euler schemes—symplectic Euler scheme, explicit Euler scheme, and implicit Euler scheme—maintain the
accelerated rate in discretizing the high-resolution ODE. For clarity, the update rules of the three schemes
are given as follows, each with the initial points x0 and v0 = −2

√
s∇f(x0)
1+
√
µs .

Symplectic scheme:{
xk+1 − xk =

√
svk

vk+1 − vk = −2
√
µsvk+1 −

√
s (∇f(xk+1)−∇f(xk))−

√
s(1 +

√
µs)∇f(xk+1).

Explicit scheme:{
xk+1 − xk =

√
svk

vk+1 − vk = −2
√
µsvk −

√
s (∇f(xk+1)−∇f(xk))−

√
s(1 +

√
µs)∇f(xk).

Implicit scheme:{
xk+1 − xk =

√
svk+1

vk+1 − vk = −2
√
µsvk+1 −

√
s (∇f(xk+1)−∇f(xk))−

√
s(1 +

√
µs)∇f(xk+1).

Among the three Euler schemes, the symplectic scheme is the closest to NAG-SC (3.2). More precisely,
NAG-SC differs from the symplectic scheme only in an additional factor of 1

1−√µs in the second line of
(3.2). When the step size s is small, NAG-SC is, roughly speaking, a symplectic method if we make use of

1
1−√µs ≈ 1. In relating to the literature, the connection between accelerated methods and the symplectic
schemes has been explored in Betancourt et al. [2018], which mainly considers the leapfrog integrator,
a second-order symplectic integrator. In contrast, the symplectic Euler scheme studied in this paper is a
first-order symplectic integrator.

Interestingly, the close resemblance between the two algorithms is found not only in their formulations,
but also in their convergence rates, which are both accelerated as shown by Theorem 3.1 and Corollary 3.2.
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Theorem 3.1 (Discretization of NAG-SC ODE). For any f ∈ S1µ,L(Rn), the following conclusions hold:

(a) Taking 0 < s ≤ 4/(9L), the symplectic Euler scheme satisfies

f(xk)− f(x?) ≤

(
sL
(
2 + (1 + 3

√
µs)2

)
(1 +

√
µs)2

+
2µ

L
+

1 +
√
µs

2
−
sL(1 +

√
µs)2

2(1 + 2
√
µs)

)
L ‖x0 − x?‖2(
1 +

√
µs
6

)k .
(3.3)

(b) Taking 0 < s ≤ µ/(100L2), the explicit Euler scheme satisfies

f(xk)− f(x?) ≤
(

3− 2
√
µs+ µs

2 + 4
√
µs+ 2µs

· sL+
2µ

L
+

1 +
√
µs

2

)
L ‖x0 − x?‖2

(
1−
√
µs

8

)k
. (3.4)

(c) Taking 0 < s ≤ 1/L, the implicit Euler scheme satisfies

f(xk)− f(x?) ≤
(

3− 2
√
µs+ µs

2 + 4
√
µs+ 2µs

· sL+
2µ

L
+

1 +
√
µs

2

)
L ‖x0 − x?‖2(
1 +

√
µs
4

)k . (3.5)

Note that the Lyapunov function for the symplectic scheme used in the proof of (3.3) is

E(k) =1

4
‖vk‖2 +

1

4

∥∥2√µ(xk+1 − x?) + vk +
√
s∇f(xk)

∥∥2
+ (1 +

√
µs) (f(xk)− f(x?))−

(1 +
√
µs)2

1 + 2
√
µs
· s
2
‖∇f(xk)‖2 . (3.6)

The proof of Theorem 3.1 is deferred to Appendix B.1. The following result is a useful consequence of
this theorem.

Corollary 3.2 (Discretization of NAG-SC ODE). For any f ∈ S1µ,L(Rn), the following conclusions hold:

(a) Taking step size s = 4/(9L), the symplectic Euler scheme satisfies

f(xk)− f(x?) ≤
5L ‖x0 − x?‖2(
1 + 1

9

√
µ
L

)k . (3.7)

(b) Taking step size s = µ/(100L2), the explicit Euler scheme satisfies

f(xk)− f(x?) ≤ 3L ‖x0 − x?‖2
(
1− µ

80L

)k
. (3.8)

(c) Taking step size s = 1/L, the implicit Euler scheme satisfies

f(xk)− f(x?) ≤
13 ‖x0 − x?‖2

4
(
1 + 1

4

√
µ
L

)k . (3.9)

In addition, Corollary 3.2 shows that the implicit scheme also achieves acceleration. However, unlike
NAG-SC, the symplectic scheme, and the explicit scheme, the implicit scheme is generally not easy to use in
practice because it requires solving a nonlinear fixed-point equation when the objective is not quadratic. On
the other hand, the explicit scheme can only take a smaller step size O(µ/L2), which prevents this scheme
from achieving acceleration.
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3.2 The heavy-ball method

We turn to the heavy-ball method ODE (2.4), whose phase space representation reads

Ẋ = V, V̇ = −2√µV − (1 +
√
µs)∇f(X), (3.10)

with the initial conditions X(0) = x0 and V (0) = −2
√
s∇f(x0)
1+
√
µs . Theorem 2 in Shi et al. [2018] shows that

the solution X = X(t) to this ODE satisfies

f(X(t))− f(x?) ≤ 7 ‖x0 − x?‖2

2s
e−
√
µt

4 ,

for f ∈ S1µ,L(Rn) and any step size 0 < s ≤ 1/L. In particular, taking s = 1/L gives

f(X(t))− f(x?) ≤ 7L ‖x0 − x?‖2

2
e−
√
µt

4 .

Returning to the discrete regime, Polyak’s heavy-ball method uses the following update rule:
xk+1 − xk =

√
svk

vk+1 − vk = −
2
√
µs

1−√µs
vk+1 −

1 +
√
µs

1−√µs
·
√
s∇f(xk+1),

which attains a non-accelerated rate (see Theorem 4 of Shi et al. [2018]):

f(xk)− f(x?) ≤
5L ‖x0 − x?‖2(

1 + µ
16L

)k . (3.11)

The three simple Euler schemes for numerically solving the ODE (2.4) are given as follows. Every
scheme starts with any arbitrary x0 and v0 = −2

√
s∇f(x0)
1+
√
µs . As in the case of NAG-SC, the symplectic

scheme is the closest to the heavy-ball method.

Symplectic:

{
xk+1 − xk =

√
svk,

vk+1 − vk = −2
√
µsvk+1 −

√
s(1 +

√
µs)∇f(xk+1).

Explicit:

{
xk+1 − xk =

√
svk

vk+1 − vk = −2
√
µsvk −

√
s(1 +

√
µs)∇f(xk).

Implicit:

{
xk+1 − xk =

√
svk+1

vk+1 − vk = −2
√
µsvk+1 −

√
s(1 +

√
µs)∇f(xk+1).

The theorem below characterizes the convergence rates of the three schemes. This theorem is extended
to general step sizes by Theorem B.1 in Appendix B.2.

Theorem 3.3 (Discretization of heavy-ball ODE). For any f ∈ S1µ,L(Rn), the following conclusions hold:
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(a) Taking step size s = µ/(16L2), the symplectic Euler scheme satisfies

f(xk)− f(x?) ≤
3L ‖x0 − x?‖2(

1 + µ
16L

)k . (3.12)

(b) Taking step size s = µ/(36L2), the explicit Euler scheme satisfies

f(xk)− f(x?) ≤ 3L ‖x0 − x?‖2
(
1− µ

48L

)k
. (3.13)

(c) Taking step size s = 1/L, the implicit Euler scheme satisfies

f(xk)− f(x?) ≤
15L ‖x0 − x?‖2

4
(
1 + 1

4

√
µ
L

)k . (3.14)

Taken together, (3.11) and Theorem 3.3 imply that neither the heavy-ball method nor the symplectic
scheme attains an accelerated rate. In contrast, the implicit scheme achieves acceleration as in the NAG-SC
case, but it is impractical except for quadratic objectives.

4 High-Resolution ODEs for Convex Functions

In this section, we turn to numerical discretization of the high-resolution ODE (2.6) related to NAG-C. All
proofs are deferred to Appendix C. This ODE in the phase space representation reads [Shi et al., 2018] as
follows:

Ẋ = V, V̇ = −3

t
· V −

√
s∇2f(X)V −

(
1 +

3
√
s

2t

)
∇f(X), (4.1)

with X(3
√
s/2) = x0 and V (3

√
s/2) = −

√
s∇f(x0). Theorem 5 of Shi et al. [2018] shows that Let

f ∈ F1
L(Rn). For any step size 0 < s ≤ 1/L, the solution X = X(t) of the high-resolution ODE (2.6)

satisfies 
f(X)− f(x?) ≤ (4 + 3sL) ‖x0 − x?‖2

t (2t+
√
s)

inf
t0≤u≤t

‖∇f(X(u))‖2 ≤ (12 + 9sL) ‖x0 − x?‖2

2
√
s
(
t3 − t30

) , (4.2)

for any t > t0 = 1.5
√
s. A caveat here is that it is unclear how to use a Lyapunov function to prove

convergence of the (simple) explicit, symplectic or implicit Euler scheme by direct numerical discretization
of the ODE (2.2). See Appendix C.2 for more discussion on this point. Therefore, we slightly modify the
ODE to the following one:

Ẋ = V, V̇ = −3

t
· V −

√
s∇2f(X)V −

(
1 +

3
√
s

t

)
∇f(X). (4.3)

The only difference is in the third term on the right-hand side of the second equation, where we replace(
1 + 3

√
s

2t

)
∇f(X) by

(
1 + 3

√
s
t

)
∇f(X). Now, we apply the three schemes on this (modified) ODE in the

phase space, including the original NAG-C, which all start with x0 and v0 = −
√
s∇f(x0).
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Symplectic phase-space scheme (the original NAG-C):
xk+1 − xk =

√
svk

vk+1 − vk = −
3

k + 1
vk+1 −

√
s (∇f(xk+1)−∇f(xk))−

√
s

(
1 +

3

k + 1

)
∇f(xk+1).

(4.4)

Explicit phase-space scheme:
xk+1 − xk =

√
svk

vk+1 − vk = −
3

k
vk −

√
s (∇f(xk+1)−∇f(xk))−

√
s

(
1 +

3

k

)
∇f(xk).

(4.5)

Implicit phase-space scheme:
xk+1 − xk =

√
svk+1

vk+1 − vk = −
3

k + 1
vk+1 −

√
s (∇f(xk+1)−∇f(xk))−

√
s

(
1 +

3

k + 1

)
∇f(xk+1).

(4.6)

Theorem 4.1. Let f ∈ F1
L (Rn). The following statements are true:

(a) For any step size 0 < s ≤ 1/(3L), the symplectic (original) NAG-C (4.4) satisfies

f(xk)− f(x?) ≤
119 ‖x0 − x?‖2

s(k + 1)2
, min

0≤i≤k
‖∇f(xi)‖2 ≤

8568 ‖x0 − x?‖2

s2(k + 1)3
; (4.7)

(b) Taking any step size 0 < s ≤ 1/L, the implicit NAG-C (4.6) satisfies

f(xk)− f(x?) ≤
(3sL+ 2) ‖x0 − x?‖2

s(k + 2)(k + 3)
, min

0≤i≤k
‖∇f(xi)‖2 ≤

(3sL+ 2) ‖x0 − x?‖2

s2(k + 1)3
. (4.8)

Note that Theorem 4.1 (a) is the same as Theorem 6 of Shi et al. [2018]. The explicit Euler scheme (4.5)
does not guarantee convergence; see the analysis in Appendix C.1.

5 Discussion

In this paper, we have analyzed the convergence rates of three numerical discretization schemes—the sym-
plectic Euler scheme, explicit Euler scheme, and implicit Euler scheme—applied to ODEs that are used
for modeling Nesterov’s accelerated methods and Polyak’s heavy-ball method. The symplectic scheme is
shown to achieve accelerated rates for the high-resolution ODEs of NAG-SC and (slightly modified) NAG-C
[Shi et al., 2018], whereas no acceleration rates are observed when the same scheme is used to discretize the
low-resolution counterparts [Su et al., 2016]. For comparison, the explicit scheme only allows for a small
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step size in discretizing these ODEs in order to ensure stability, thereby failing to achieve acceleration.
Although the explicit scheme is proved to yield accelerated methods no matter whether high-resolution or
low-resolution ODEs are discretized, this scheme is generally not practical except for a limited number of
cases (for example, quadratic objectives).

We conclude this paper by presenting several directions for future work. This work suggests that both
symplectic schemes and high-resolution ODEs are crucial for numerical discretization to achieve acceler-
ation. It would be of interest to formalize and prove this assertion. For example, does any higher-order
symplectic scheme maintain acceleration for the high-resolution ODEs of NAGs? What is the fundamen-
tal mechanism of the gradient correction in high-resolution ODE in stabilizing symplectic discretization?
Moreover, since the discretizations are applied to the modified high-resolution ODE of NAG-C, it is tempt-
ing to perform a comparison study between the two high-resolution ODEs in terms of discretization prop-
erties. Finally, recognizing Nesterov’s method (NAG-SC) is very similar to, but still different from, the
corresponding symplectic scheme, one can design new algorithms as interpolations of the two methods; it
would be interesting to investigate the convergence properties of these new algorithms.
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Appendix A: Gradient Flow

A.1 Convergence rate of gradient flow

The following theorem is the continuous-time version of Theorem 2.1.15 in Nesterov [2013].

Theorem A.1. Let f ∈ S1µ,L(Rn). The solution X = X(t) to the gradient flow (2.1) satisfies

‖X − x?‖ ≤ e−µt ‖x0 − x?‖ .

Proof. Taking the following Lyapunov function

E = ‖X − x?‖2 ,

we calculate its time derivative as
dE
dt

= 2
〈
Ẋ,X − x?

〉
= −2 〈∇f(X), X − x?〉
≤ −2µ ‖X − x?‖2 .

Thus, we complete the proof.

The theorem below is a continuous version of Theorem 2.1.14 in Nesterov [2013].

Theorem A.2. Let f ∈ F1
L(Rn). The solution X = X(t) to the gradient flow (2.1) satisfies

f(X)− f(x?) ≤ (f(x0)− f(x?)) ‖x0 − x?‖2

t (f(x0)− f(x?)) + ‖x0 − x?‖2
.

Proof. The time derivative of the distance function is

d

dt
‖X − x?‖2 = 2

〈
Ẋ,X − x?

〉
= −2 〈∇f(X), X − x?〉
≤ 0.

We define a Lyapunov function as
E = f(X)− f(x?).

With the basic convex inequality for f ∈ F1
L(Rn), we have

f(X)− f(x?) ≤ 〈∇f(X), X − x?〉 ≤ ‖∇f(X)‖ ‖x0 − x?‖ .

Furthermore, we obtain that the time derivative is

dE
dt

=
〈
∇f(X), Ẋ

〉
= −‖∇f(X)‖2 ≤ −(f(X)− f(x?))2

‖x0 − x?‖2
= − E2

‖x0 − x?‖2
.

Hence, the convergence rate is

f(X)− f(x?) ≤ (f(x0)− f(x?)) ‖x0 − x?‖2

t (f(x0)− f(x?)) + ‖x0 − x?‖2
.
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The following theorem is based on the Lyapunov function for gradient flow (2.1) in Su et al. [2016].

Theorem A.3. Let f ∈ F1
L(Rn). The solution X = X(t) to the gradient flow (2.1) satisfies

f(X)− f(x?) ≤ ‖x0 − x
?‖2

2t

min
0≤u≤t

‖∇f(X(u))‖2 ≤ ‖x0 − x
?‖2

t2
.

Proof. The Lyapunov function is

E = t (f(X)− f(x?)) + 1

2
‖X − x?‖2 .

We calculate its time derivative as

dE
dt

= f(X)− f(x?) + t
〈
∇f(X), Ẋ

〉
+
〈
X − x?, Ẋ

〉
= f(X)− f(x?)− 〈∇f(X), X − x?〉 − t ‖∇f(X)‖22
≤ −t ‖∇f(X)‖2 .

Thus, we complete the proof.

A.2 Explicit Euler scheme

The corresponding explicit-scheme version of Theorem A.1 is just Theorem 2.1.15 in Nesterov [2013]. We
state it below.

Theorem A.4 (Theorem 2.1.15, Nesterov [2013]). Let f ∈ S1µ,L(Rn). Taking any step size 0 < s ≤
2/ (µ+ L), the iterates {xk}∞k=0 generated by GD satisfy

‖xk − x?‖2 ≤
(
1− 2µLs

µ+ L

)
‖x0 − x?‖2 .

In addition, if the step size is set to s = 2/(µ+ L), we get

‖xk − x?‖2 ≤
(
L− µ
L+ µ

)2

‖x0 − x?‖2 .

This proof is from Nesterov [2013]. The only conceptual difference is that we use the Lyapunov function

E(k) = ‖xk − x?‖2 ,

instead of the distance function rk in Nesterov [2013].
The corresponding explicit version of Theorem A.2 is Theorem 2.1.14 in Nesterov [2013]. We also state

it as follows.

Theorem A.5 (Theorem 2.1.14, Nesterov [2013]). Let f ∈ F1
L(Rn). Taking any step size 0 < s < 2/L,

the iterates {xk}∞k=0 generated by GD satisfy

f(xk)− f(x?) ≤
2 (f(x0)− f(x?)) ‖x0 − x?‖2

2 ‖x0 − x?‖2 + ks(2− Ls) (f(x0)− f(x?))
. (A.1)
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In addition, if the step size is set to s = 1/L, we get

f(xk)− f(x?) ≤
2L ‖x0 − x?‖2

k + 4
. (A.2)

Again, the from Nesterov [2013] is the use of the Lyapunov function E(k) instead of rk. Finally, we
show the corresponding discrete version of Theorem A.3, which completes Theorem 2.1. Note that the proof
is shown in Section 2.4.

Theorem A.6. Let f ∈ F1
L(Rn). Taking any step size 0 < s ≤ 1/L, the iterates {xk}∞k=0 generated by

GD satisfy 
f(xk)− f(x?) ≤

‖x0 − x?‖2

2ks

min
0≤i≤k

‖∇f(xi)‖2 ≤
2 ‖x0 − x?‖2

s2(k + 1)(k + 2)
.

(A.3)

In addition, if the step size is set s = 1/L, we have
f(xk)− f(x?) ≤

L ‖x0 − x?‖2

2k

min
0≤i≤k

‖∇f(xi)‖2 ≤
2L2 ‖x0 − x?‖2

(k + 1)(k + 2)
.

(A.4)

A.3 Implicit Euler scheme

Next, we consider the implicit Euler scheme of the gradient flow (2.1) as

xk+1 = xk − s∇f(xk+1), (A.5)

with any initial x0 ∈ Rn. The corresponding implicit version of Theorem A.1 is shown as below.

Theorem A.7. Let f ∈ S1µ,L(Rn), the iterates {xk}∞k=0 generated by implicit gradient descent (A.5) satisfy

‖xk − x?‖ ≤
1

(1 + µs)k
· ‖x0 − x?‖ . (A.6)

In addition, if the step size s = θ/µ, where θ > 0, we have

‖xk − x?‖ ≤
1

(1 + θ)k
‖x0 − x?‖ . (A.7)

Proof. The Lyapunov function is
E(k) = ‖xk − x?‖2 .

Then, we calculate the iterate difference as

E(k + 1)− E(k) = ‖xk+1 − x?‖2 − ‖xk − x?‖2

= 〈xk+1 − xk, xk+1 + xk − 2x?〉
= −2s 〈∇f(xk+1), xk+1 − x?〉 − s2 ‖∇f(xk+1)‖2

≤ −
(
2µs+ µ2s2

)
E(k + 1).

Hence, the proof is complete.
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Next, we show the implicit version of Theorem A.2 as follows.

Theorem A.8. Let f ∈ F1
L(Rn). The iterates {xk}∞k=0 generated by implicit gradient descent (A.5) satisfy

f(xk)− f(x?) ≤
(1 + Ls)2 (f(x0)− f(x?)) ‖x0 − x?‖2

(1 + Ls)2 ‖x0 − x?‖2 + ks (f(x0)− f(x?))
. (A.8)

In addition, if the step size is set to s = θ/L, we have

f(xk)− f(x?) ≤
L ‖x0 − x?‖2

2 + k · 1
θ+ 1

θ
+2

. (A.9)

Proof. Note that the distance function ‖xk − x?‖2 decreases with the iteration number k as

‖xk+1 − x?‖2 − ‖xk − x?‖2 = −2s 〈∇f(xk+1), xk+1 − x?〉 − s2 ‖∇f(xk+1)‖2

≤ −s
(
2

L
+ s

)
‖∇f(xk+1)‖2

≤ 0.

With the basic convex inequality for f ∈ F1
L(Rn), we have

f(xk+1)− f(x?) ≤ 〈∇f(xk+1), xk+1 − x?〉 ≤ ‖∇f(xk+1)‖ · ‖x0 − x?‖ .

Now, the Lyapunov function is defined as

E(k) = f(xk)− f(x?).

Then we calculate the difference at the kth-iteration as

E(k + 1)− E(k) = (f(xk+1)− f(x?))− (f(xk)− f(x?))

≥ 〈∇f(xk+1), xk+1 − xk〉 −
L

2
‖xk+1 − xk‖2

≥ −s
(
1 +

Ls

2

)
‖∇f(xk+1)‖2

≥ −2Ls
(
1 +

Ls

2

)
E(k + 1)

and

E(k + 1)− E(k) = (f(xk+1)− f(x?))− (f(xk)− f(x?))
≤ 〈∇f(xk+1), xk+1 − xk〉
= −s · ‖∇f(xk+1)‖2

≤ −s · E(k + 1)2

‖x0 − x?‖22

≤ −s · E(k + 1)

E(k)
· E(k)E(k + 1)

‖x0 − x?‖2
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≤ − s

(1 + Ls)2
· E(k)E(k + 1)

‖x0 − x?‖2
.

Hence, the convergence rate is given as

f(xk)− f(x?) ≤
(1 + Ls)2 (f(x0)− f(x?)) ‖x0 − x?‖2

(1 + Ls)2 ‖x0 − x?‖2 + ks (f(x0)− f(x?))
.

Finally, we present the implicit version of Theorem A.3.

Theorem A.9. Let f ∈ F1
L(Rn). The iterates {xk}∞k=0 generated by implicit gradient descent (A.5) satisfy

f(xk)− f(x?) ≤
‖x0 − x?‖2

2ks

min
0≤i≤k

‖∇f(xi)‖2 ≤
2 ‖x0 − x?‖2

s2(k + 1)(k + 2)
.

(A.10)

In addition, if the step size is set to s = 1/L, we have
f(xk)− f(x?) ≤

L ‖x0 − x?‖2

2k

min
0≤i≤k

‖∇f(xi)‖2 ≤
2L2 ‖x0 − x?‖2

(k + 1)(k + 2)
.

(A.11)

Proof. The Lyapunov function is

E(k) = ks (f(xk)− f(x?)) +
1

2
‖xk − x?‖2 .

Then, we calculate the iterate difference as

E(k + 1)− E(k)

= s (f(xk+1)− f(x?)) + ks (f(xk+1)− f(xk)) +
1

2
〈xk+1 − xk, xk+1 + xk − 2x?〉

≤ s (f(xk+1)− f(x?)− 〈∇f(xk+1), xk+1 − x?〉)

+ ks 〈∇f(xk+1), xk+1 − xk〉 −
1

2
‖xk+1 − xk‖2

≤ −s2
(

1

2Ls
+ k +

1

2

)
‖∇f(xk+1)‖2

≤ −s
2

2
(k + 1) ‖∇f(xk+1)‖2 .

Hence, the proof is complete.
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Appendix B: Proofs for Section 3

B.1 Proof of Theorem 3.1

(a) The Lyapunov function is

E(k) =1

4
‖vk‖2 +

1

4

∥∥2√µ(xk+1 − x?) + vk +
√
s∇f(xk)

∥∥2
+ (1 +

√
µs) (f(xk)− f(x?))−

(1 +
√
µs)2

1 + 2
√
µs
· s
2
‖∇f(xk)‖2 .

With the basic inequality for f ∈ S1µ,L(Rn)

f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −
1

2L
‖∇f(xk+1)−∇f(xk)‖2 ,

then the iterate difference can be calculated as

E(k + 1)− E(k)

=
1

4
〈vk+1 − vk, vk+1 + vk〉+ (1 +

√
µs) (f(xk+1)− f(xk))

+
1

4

〈
2
√
µ(xk+2 − xk+1) + vk+1 − vk +

√
s (∇f(xk+1)−∇f(xk))

2
√
µ (xk+2 + xk+1 − 2x?) + vk+1 + vk +

√
s (∇f(xk+1) +∇f(xk))

〉
−

(1 +
√
µs)2

1 + 2
√
µs
· s
2

(
‖∇f(xk+1)‖2 − ‖∇f(xk)‖2

)
≤ −√µs ‖vk+1‖2 −

√
s

2(1 +
√
µs)
〈∇f(xk+1)−∇f(xk), vk〉

+
s

2
(
1 + 2

√
µs
) ‖∇f(xk+1)−∇f(xk)‖2 +

s

2
·
1 +
√
µs

1 + 2
√
µs
〈∇f(xk+1)−∇f(xk),∇f(xk+1)〉

−
√
s
(
1 +
√
µs
)

2
〈∇f(xk+1), vk+1〉 −

1

4
‖vk+1 − vk‖2

+ (1 +
√
µs)
√
s 〈∇f(xk+1), vk〉 −

1 +
√
µs

2L
‖∇f(xk+1)−∇f(xk)‖2

+
1

2

〈
−(1 +√µs)

√
s∇f(xk+1), (1 + 2

√
µs) vk+1 + 2

√
µ(xk+1 − x?) +

√
s∇f(xk+1)

〉
− 1

4
(1 +

√
µs)2 s ‖∇f(xk+1)‖2 −

s

2

(
‖∇f(xk+1)‖2 − ‖∇f(xk)‖2

)
≤ −√µs

(
‖vk+1‖2 + (1 +

√
µs) 〈∇f(xk+1), xk+1 − x?〉

)
− 1

2
(1 +

√
µs)

[√
s 〈∇f(xk+1), (1 + 2

√
µs) vk+1 − vk〉+ s ‖∇f(xk+1)‖2

]
−

√
s

2(1 +
√
µs)
〈∇f(xk+1)−∇f(xk), vk〉+

s

2
·
1 +
√
µs

1 + 2
√
µs
〈∇f(xk+1)−∇f(xk),∇f(xk+1)〉

− 1

4

[
‖vk+1 − vk‖2 + 2(1 +

√
µs)
√
s 〈∇f(xk+1), vk+1 − vk〉+ (1 +

√
µs)2 s ‖∇f(xk+1)‖2

]
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− 1

2

(
1 +
√
µs

L
− s

1 + 2
√
µs

)
‖∇f(xk+1)−∇f(xk)‖2

−
(1 +

√
µs)2

1 + 2
√
µs
· s
2

(
‖∇f(xk+1)‖2 − ‖∇f(xk)‖2

)
.

Noting the following two inequalities

− 1

4

[
‖vk+1 − vk‖2 + 2(1 +

√
µs)
√
s 〈∇f(xk+1), vk+1 − vk〉+ (1 +

√
µs)2 s ‖∇f(xk+1)‖2

]
= −1

4

∥∥vk+1 − vk + (1 +
√
µs)
√
s∇f(xk)

∥∥2 ≤ 0,

and

−1

2
(1 +

√
µs)

[√
s 〈∇f(xk+1), (1 + 2

√
µs) vk+1 − vk〉+ s ‖∇f(xk+1)‖2

]
= −1

2
(1 +

√
µs)

[√
s
〈
∇f(xk+1),−

√
s (∇f(xk+1)−∇f(xk))−

√
s(1 +

√
µs)∇f(xk+1)

∥∥
+s ‖∇f(xk+1)‖2

]
=

1

2
(1 +

√
µs) s 〈∇f(xk+1)−∇f(xk),∇f(xk+1)〉+

1

2

√
µs (1 +

√
µs) s ‖∇f(xk+1)‖2 ,

we see that the iterate difference is

E(k + 1)− E(k) ≤ −√µs
[
‖vk+1‖2 + (1 +

√
µs)

(
〈∇f(xk+1), xk+1 − x?〉 −

s

2
‖∇f(xk+1)‖2

)]
− 1

2(1 +
√
µs)
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉

+
(1 +

√
µs)2

1 + 2
√
µs
· s 〈∇f(xk+1),∇f(xk+1)−∇f(xk)〉

− 1

2

(
1 +
√
µs

L
− s

1 + 2
√
µs

)
‖∇f(xk+1)−∇f(xk)‖2

−
(1 +

√
µs)2

1 + 2
√
µs
· s
2

(
‖∇f(xk+1)‖2 − ‖∇f(xk)‖2

)
≤ −√µs

[
‖vk+1‖2 + (1 +

√
µs)

(
〈∇f(xk+1), xk+1 − x?〉 −

s

2
‖∇f(xk+1)‖2

)]
− 1

2(1 +
√
µs)
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉

+
1

2

(
1

1 + 2
√
µs

+
(1 +

√
µs)2

1 + 2
√
µs
−

1 +
√
µs

Ls

)
s ‖∇f(xk+1)−∇f(xk)‖2 .

Furthermore, taking the basic inequality for f ∈ S1µ,L(Rn)

〈∇f(xk+1)−∇f(xk), xk+1 − xk〉 ≥
1

L
‖∇f(xk+1)−∇f(xk)‖2 ,

the iterate difference can be calculated as

E(k + 1)− E(k) ≤ −√µs
[
‖vk+1‖2 + (1 +

√
µs)

(
〈∇f(xk+1), xk+1 − x?〉 −

s

2
‖∇f(xk+1)‖2

)]
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−
2 + 2

√
µs+ µs

2
(
1 + 2

√
µs
) ( 1

L
− s
)
‖∇f(xk+1)−∇f(xk)‖2 .

Next, we consider how to set the step size s. First, when the step size satisfies s ≤ 1/L, we have

E(k + 1)− E(k) ≤ −√µs
[
‖vk+1‖2 + (1 +

√
µs)

(
〈∇f(xk+1), xk+1 − x?〉 −

s

2
‖∇f(xk+1)‖2

)]
.

Noting the basic inequality for f ∈ S1µ,L(Rn)

f(xk+1)− f(x?) ≤ 〈∇f(xk+1), xk+1 − x?〉 −
1

2L
‖∇f(xk+1)‖2 ,

the iterate difference can be obtained as

E(k + 1)− E(k) ≤ −√µs
[
(f(xk+1)− f(x?)) + ‖vk+1‖2 +

µ

2
‖xk − x?‖2

+
√
µs
(
f(xk+1)− f(x?)−

s

2
‖∇f(xk+1)‖2

)]
.

Furthermore, using the Cauchy-Schwarz inequality∥∥2√µ (xk+1 − x?) + vk +
√
s∇f(xk)

∥∥2 = ∥∥2√µ(xk − x?) + (1 + 2
√
µs)vk +

√
s∇f(xk)

∥∥2
≤ 3

(
4µ ‖xk − x?‖2 + (1 + 2

√
µs)2 ‖vk‖2 + s ‖∇f(xk)‖2

)
,

and the following basic inequality for f ∈ S1µ,L(Rn)

3s

4
‖∇f(xk)‖2 −

(1 +
√
µs)2

1 + 2
√
µs
· s
2
‖∇f(xk)‖2 ≤

Ls

2
(f(xk)− f(x?))−

µs2

2
(
1 + 2

√
µs
) ‖∇f(xk)‖2 ,

the Lyapunov function satisfies

E(k) ≤
(
1 +
√
µs+

Ls

2

)
(f(xk)− f(x?)) + (1 + 3

√
µs+ 3µs) ‖vk‖2

+ 3µ ‖xk − x?‖2 +
µs

1 + 2
√
µs

(
f(xk)− f(x?)−

s

2
‖∇f(xk)‖2

)
.

Therefore, when s ≤ 4/(9L), the iterate difference for the Lyapunov function satisfies

E(k + 1)− E(k) ≤ −
√
µs

6
E(k + 1).

Hence, the proof is complete.

(b) The Lyapunov function is

E(k) = 1

4
‖vk‖2 +

1

4

∥∥2√µ(xk − x?) + vk +
√
s∇f(xk)

∥∥2 + (1 +
√
µs) (f(xk)− f(x?)) .

With the basic inequality for f ∈ S1µ,L(Rn)

f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2 ,
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we can calculate the iterate difference

E(k + 1)− E(k) = 1

4
〈vk+1 − vk, vk+1 + vk〉+ (1 +

√
µs) (f(xk+1)− f(xk))

+
1

4

〈
2
√
µ(xk+1 − xk) + vk+1 − vk +

√
s (∇f(xk+1)−∇f(xk))

2
√
µ (xk+1 + xk − 2x?) + vk+1 + vk +

√
s (∇f(xk+1) +∇f(xk))

〉
≤ 1

2
〈vk+1 − vk, vk〉+

1

4
‖vk+1 − vk‖2

+ (1 +
√
µs)

(
〈∇f(xk), xk+1 − xk〉+

L

2
‖xk+1 − xk‖2

)
+

1

2

〈
−(1 +√µs)

√
s∇f(xk), 2

√
µ(xk − x?) + vk +

√
s∇f(xk)

〉
+

1

4

∥∥(1 +√µs)√s∇f(xk)∥∥2
= −√µs ‖vk‖2 −

1

2
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉

+
1

4

∥∥2√µsvk +√s (∇f(xk+1)−∇f(xk)) +
√
s (1 +

√
µs)∇f(xk)

∥∥2
+

(1 +
√
µs)sL

2
‖vk‖2 −

√
µs (1 +

√
µs) 〈∇f(xk), xk − x?〉

−
(
1 +
√
µs
)
s

2
‖∇f(xk)‖2 +

1

4
(1 +

√
µs)2 s ‖∇f(xk)‖2 .

Using the Cauchy-Schwartz inequality∥∥2√µsvk +√s (∇f(xk+1)−∇f(xk)) +
√
s (1 +

√
µs)∇f(xk)

∥∥2
≤ 12µs ‖vk‖2 + 3s ‖∇f(xk+1)−∇f(xk)‖2 + 3s (1 +

√
µs)2 ‖∇f(x0)‖2 ,

the iterate difference for the Lyapunov function can be calculated as

E(k + 1)− E(k) ≤ −√µs
(
‖vk‖2 + (1 +

√
µs) 〈∇f(xk), xk − x?〉+

s

2
‖∇f(xk)‖2

)
− 1

2
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉+

3s

4
‖∇f(xk+1)−∇f(xk)‖2

+

(
3µs+

(1 +
√
µs)sL

2

)
‖vk‖2 +

[
(1 +

√
µs)2 − 1

2

]
s ‖∇f(xk)‖2 .

Furthermore, combined with the basic inequality for f ∈ S1µ,L(Rn),{
‖∇f(xk+1)−∇f(xk)‖2 ≤ L 〈∇f(xk+1)−∇f(xk), xk+1 − xk〉
‖∇f(xk)‖2 ≤ L 〈∇f(xk), xk − x?〉 ,

the iterate difference for the Lyapunov function can be calculated as

E(k + 1)− E(k) ≤ −
√
µs

2

(
‖vk‖2 + (1 +

√
µs) 〈∇f(xk), xk − x?〉+

s

2
‖∇f(xk)‖2

)
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−
(

1

2L
− 3s

4

)
‖∇f(xk+1)−∇f(xk)‖2

−
(√

µs

2
− 3µs−

(1 +
√
µs)sL

2

)
‖vk‖2

−

[√
µs
(
1 +
√
µs
)

2L
−
(
1

2
+
√
µs

)
(1 +

√
µs) s

]
‖∇f(xk)‖2 .

Simple calculation tells us when the step size satisfies s ≤ µ/(100L2), we have

E(k + 1)− E(k) ≤ −
√
µs

2

(
‖vk‖2 + (1 +

√
µs) 〈∇f(xk), xk − x?〉+

s

2
‖∇f(xk)‖2

)
.

Furthermore, taking the Cauchy-Schwartz inequality∥∥2√µ (xk+1 − x?) + vk +
√
s∇f(xk)

∥∥2 ≤ 3
(
4µ ‖xk − x?‖2 + ‖vk‖2 + s ‖∇f(xk)‖2

)
,

we can obtain the final estimate for the iterate difference

E(k + 1)− E(k) ≤ −
√
µs

8
E(k).

Hence, the proof is complete.

(c) The Lyapunov function is

E(k) = 1

4
‖vk‖2 +

1

4

∥∥2√µ(xk − x?) + vk +
√
s∇f(xk)

∥∥2 + (1 +
√
µs) (f(xk)− f(x?)) .

With the Cauchy-Schwartz inequality∥∥2√µ (xk − x?) + vk +
√
s∇f(xk)

∥∥2 ≤ 3
(
4µ ‖xk − x?‖2 + ‖vk‖2 + s ‖∇f(xk)‖2

)
,

and the basic inequality for f ∈ S1µ,L(Rn)
f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

µ

2
‖xk+1 − x?‖2

〈∇f(xk+1)−∇f(xk), xk+1 − xk〉 ≥ µ ‖xk+1 − xk‖2 ≥ 0,

we can calculate the iterate difference

E(k + 1)− E(k) = 1

4
〈vk+1 − vk, vk+1 + vk〉+ (1 +

√
µs) (f(xk+1)− f(xk))

+
1

4

〈
2
√
µ(xk+1 − xk) + vk+1 − vk +

√
s (∇f(xk+1)−∇f(xk))

2
√
µ (xk+1 + xk − 2x?) + vk+1 + vk +

√
s (∇f(xk+1) +∇f(xk))

〉
≤ 1

2
〈vk+1 − vk, vk+1〉+ (1 +

√
µs) 〈∇f(xk+1), xk+1 − xk〉

− 1

2

〈
(1 +

√
µs)
√
s∇f(xk+1), 2

√
µ(xk+1 − x?) + vk+1 +

√
s∇f(xk+1)

〉
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− 1

4
‖vk+1 − vk‖2 −

1

4

∥∥(1 +√µs)√s∇f(xk+1)
∥∥2

≤ −√µs
(
‖vk+1‖2 + (1 +

√
µs) 〈∇f(xk+1), xk+1 − x?〉+

s

2
‖∇f(xk+1)‖2

)
− 1

2
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉 −

s

2
‖∇f(xk+1)‖2

≤ −
√
µs

4
E(k + 1).

Hence, the proof is complete.

B.2 Proof of Theorem 3.3

Here, we first describe and prove Theorem B.1 below. Then we complete the proof of Theorem 3.3 by
viewing it as a special case of Theorem B.1.

Theorem B.1 (Discretization of heavy-ball ODE). For any f ∈ S1µ,L(Rn), the following conclusions hold:

(a) Taking 0 < s ≤ µ/(16L2), the symplectic Euler scheme satisfies

f(xk)− f(x?) ≤

((
3 + 8

√
µs+ 8µs

)
sL

(1 +
√
µs)2

+
2µ

L
+

1 +
√
µs

2

)
L ‖x0 − x?‖2(
1 +

√
µs
4

)k . (B.1)

(b) Taking 0 < s ≤ µ/(36L2), the explicit Euler scheme satisfies

f(xk)− f(x?) ≤
(

3sL

(1 +
√
µs)2

+
2µ

L
+

1 +
√
µs

2

)
L ‖x0 − x?‖2

(
1−
√
µs

8

)k
. (B.2)

(c) Taking 0 < s ≤ 1/L, the implicit Euler scheme satisfies

f(xk)− f(x?) ≤
(

3sL

(1 +
√
µs)2

+
2µ

L
+

1 +
√
µs

2

)
L ‖x0 − x?‖2(
1 +

√
µs
4

)k . (B.3)

Proof of Theorem B.1

(a) The Lyapunov function is

E(k) = 1

4
‖vk‖2 +

1

4
‖2√µ(xk − x?) + vk‖2 + (1 +

√
µs) (f(xk)− f(x?)) .

With the Cauchy-Schwartz inequality

‖2√µ(xk − x?) + vk‖2 ≤ 2
(
4µ ‖xk − x?‖2 + ‖vk‖2

)
,

and the basic inequality for f ∈ S1µ,L(Rn) f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

µ

2
‖xk+1 − x?‖2 ,
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then we can calculate the iterative difference

E(k + 1)− E(k) = 1

4
〈vk+1 − vk, vk+1 + vk〉+ (1 +

√
µs) (f(xk+1)− f(xk))

+
1

4
〈2√µ(xk+1 − xk) + vk+1 − vk, 2

√
µ(xk+1 + xk − 2x?) + vk+1 + vk〉

≤ 1

2
〈vk+1 − vk, vk+1〉+ (1 +

√
µs) 〈∇f(xk+1), xk+1 − xk〉

+
1

2
〈2√µ(xk+1 − xk) + vk+1 − vk, 2

√
µ(xk+1 − x?) + vk+1〉

− 1

4
‖vk+1 − vk‖2 −

1

4
‖2√µ(xk+1 − xk) + vk+1 − vk‖2

≤ −√µs
[
‖vk+1‖2 + (1 +

√
µs) 〈∇f(xk+1), xk+1 − x?〉

]
≤ −√µs

[
‖vk+1‖2 + (1 +

√
µs) (f(x)− f(x?)) + µ

2
‖xk+1 − x?‖2

]
≤ −
√
µs

4
E(k + 1).

Hence, the proof is complete.

(b) The Lyapunov function is

E(k) = 1

4
‖vk‖2 +

1

4
‖2√µ(xk − x?) + vk‖2 + (1 +

√
µs) (f(xk)− f(x?)) .

With the Cauchy-Schwartz inequality

‖2√µ(xk − x?) + vk‖2 ≤ 2
(
4µ ‖xk − x?‖2 + ‖vk‖2

)
,

and the basic inequality for f ∈ S1µ,L(Rn)
f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 − xk〉+

L

2
‖xk+1 − xk‖2

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

µ

2
‖x? − xk+1‖2 ,

then we calculate the iterative difference

E(k + 1)− E(k) = 1

4
〈vk+1 − vk, vk+1 + vk〉+ (1 +

√
µs) (f(xk+1)− f(xk))

+
1

4
〈2√µ(xk+1 − xk) + vk+1 − vk, 2

√
µ(xk+1 + xk − 2x?) + vk+1 + vk〉

≤ 1

2
〈vk+1 − vk, vk〉+ (1 +

√
µs) 〈∇f(xk), xk+1 − xk〉+

(
1 +
√
µs
)
L

2
‖xk+1 − xk‖2

+
1

2
〈2√µ(xk+1 − xk) + vk+1 − vk, 2

√
µ(xk − x?) + vk〉

+
1

4
‖vk+1 − vk‖2 +

1

4
‖2√µ(xk+1 − xk) + vk+1 − vk‖2

≤ −√µs
(
‖vk‖2 + (1 +

√
µs) 〈∇f(xk), xk − x?〉

)
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+

(
1 +
√
µs
)
Ls

2
‖vk‖2 +

s

4
‖2√µvk +∇f(xk)‖2 +

s

4
‖∇f(xk)‖2

≤ −
√
µs

2

(
‖vk‖2 + f(xk)− f(x?) +

µ

2
‖xk − x?‖2

)
−
√
µs

2

(
‖vk‖2 +

(
1 +
√
µs
)

L
‖∇f(xk)‖2

)

+ s

(
2µ+

L
(
1 +
√
µs
)

2

)
‖vk‖2 +

3s

4
‖∇f(xk)‖2 .

Since µ ≤ L, then the step size s ≤ µ/(36L2) satisfies it. Hence, the proof is complete.

(c) The Lyapunov function is constructed as

E(k) = 1

4
‖vk‖2 +

1

4
‖2√µ(xk+1 − x?) + vk‖2 + (1 +

√
µs) (f(xk)− f(x?)) .

With Cauchy-Schwartz inequality

‖2√µ(xk+1 − x?) + vk‖2 = ‖2
√
µ(xk − x?) + (1 + 2

√
µs)vk‖2

≤ 2
(
4µ ‖xk − x?‖2 + (1 + 2

√
µs)2 ‖vk‖2

)
,

and the basic inequality for f ∈ S1µ,L(Rn)
f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

µ

2
‖x? − xk+1‖2 ,

then we calculate the iterative difference

E(k + 1)− E(k) = 1

4
〈vk+1 − vk, vk+1 + vk〉+ (1 +

√
µs) (f(xk+1)− f(xk))

+
1

4
〈2√µ(xk+2 − xk+1) + vk+1 − vk, 2

√
µ(xk+2 + xk+1 − 2x?) + vk+1 + vk〉

≤ 1

2
〈vk+1 − vk, vk+1〉 −

1

4
‖vk+1 − vk‖2

+ (1 +
√
µs) 〈∇f(xk+1), xk+1 − xk〉 −

(
1 +
√
µs
)

2L
‖∇f(xk+1)−∇f(xk)‖2

+
1

2

〈
−
√
s (1 +

√
µs)∇f(xk+1), 2

√
µ(xk+2 − x?) + vk+1

〉
− 1

4

∥∥√s (1 +√µs)∇f(xk+1)
∥∥2

≤ −√µs
(
‖vk+1‖2 + (1 +

√
µs) 〈∇f(xk+1), xk+1 − x?〉

)
−
√
s
(
1 +
√
µs
)

2
〈∇f(xk+1), (1 + 2

√
µs)vk+1 − vk〉

−
(
1 +
√
µs
)

2L
‖∇f(xk+1)−∇f(xk)‖2 −

1

4

∥∥vk+1 − vk +
√
s∇f(xk+1)

∥∥2
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≤ −√µs
[
‖vk+1‖2 +

1

4
(1 +

√
µs) (f(xk+1)− f(x?)) +

µ

2
‖xk+1 − x?‖2

]
−
(
1 +
√
µs
)

4

[
3
√
µs (f(xk+1)− f(x?))− 2s ‖∇f(xk+1)‖2

]
Since µ ≤ L, then the step size s ≤ µ/(16L2) satisfies it. Hence, the proof is complete with some
basic calculations.

Appendix C: Technical Analysis and Proofs for Section 4

C.1 Technical details for numerical scheme of phase-space representation

Proof of Theorem 4.1 (b) The Lyapunov function is constructed as

E(k) = s (k + 2) (k + 3) (f(xk)− f(x?)) +
1

2

∥∥2(xk − x?) + (k + 1)
√
s
(
vk +

√
s∇f(xk)

)∥∥2 .
With the basic inequality for f ∈ F1

L(Rn){
f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉
f(xk+1)− f(x?) ≤ 〈∇f(xk+1), xk+1 − x?〉 ,

we can calculate the iterative difference as

E(k + 1)− E(k)
= s (k + 2) (k + 3) (f(xk+1)− f(xk)) + s (2k + 6) (f(xk+1)− f(x?))

+
1

2

〈
2(xk+1 − xk) +

√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)
−
√
s(k + 1)

(
vk +

√
s∇f(xk)

)
2(xk+1 + xk − 2x?) +

√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)
+
√
s(k + 1)

(
vk +

√
s∇f(xk)

)〉
= s (k + 2) (k + 3) (f(xk+1)− f(xk)) + s (2k + 6) (f(xk+1)− f(x?))
−
〈
s (k + 3)∇f(xk+1), 2(xk+1 − x?) +

√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)〉
− s2

2
(k + 3)2 ‖∇f(xk+1)‖2

≤ −s
2

2
(k + 3) (3k + 7) ‖∇f(xk+1)‖2 .

Hence, the proof is complete with some basic calculations.

Technical analysis of explicit phase-representation of NAG-C (4.5) The Lyapunov function is

E(k) = s (k − 2) (k + 1) (f(xk)− f(x?)) +
1

2

∥∥2(xk − x?) + (k − 1)
√
s
(
vk +

√
s∇f(xk)

)∥∥2 .
Then we calculate the iterative difference as

E(k + 1)− E(k)
= s (k − 1) (k + 2) (f(xk+1)− f(xk)) + 2sk (f(xk)− f(x?))
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+
1

2

〈
2(xk+1 − xk) +

√
sk
(
vk+1 +

√
s∇f(xk+1)

)
−
√
s(k − 1)

(
vk +

√
s∇f(xk)

)
2(xk+1 + xk − 2x?) +

√
sk
(
vk+1 +

√
s∇f(xk+1)

)
+
√
s(k − 1)

(
vk +

√
s∇f(xk)

)〉
= s (k − 1) (k + 2) (f(xk+1)− f(xk)) + 2sk (f(xk)− f(x?))
−
〈
s (k + 2)∇f(xk), 2(xk − x?) +

√
s(k − 1)

(
vk +

√
s∇f(xk)

)〉
+
s2

2
(k + 2)2 ‖∇f(xk)‖2 .

• If we take the following basic inequality for f ∈ F1
L(Rn) f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 − xk〉+

L

2
‖xk+1 − xk‖2

f(xk)− f(x?) ≤ 〈∇f(xk), xk − x?〉 ,

we can obtain the following estimate

E(k+1)−E(k) ≤ Ls2

2
(k − 1) (k + 2) ‖vk‖2−4s (f(xk)− f(x?))−

s2

2
(k + 2) (k − 4) ‖∇f(xk)‖2 ,

which cannot guarantee the right-hand side of the inequality non-positive.

• If we take the following basic inequality for f ∈ F1
L(Rn) f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(xk)− f(x?) ≤ 〈∇f(xk), xk − x?〉 ,

we can obtain the following estimate

E(k + 1)− E(k)

≤ Ls

2
(k − 1) (k + 2)

(
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

)
− 4s (f(xk)− f(x?))−

s2

2
(k + 2) (k − 4) ‖∇f(xk)‖2 ,

which cannot guarantee the right-hand side of the inequality non-positive.

C.2 Technical details for standard numerical schemes

Standard Euler discretization of ODE (4.1), with initial x0 and v0 = −
√
s∇f(x0), are shown as below.

Standard Symplectic Euler Scheme:
xk+1 − xk =

√
svk

vk+1 − vk = −
3vk+1

k + 1
−
√
s (∇f(xk+1)−∇f(xk))−

√
s

(
1 +

3

2(k + 1)

)
∇f(xk+1).

(C.1)
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Standard Explicit Euler Scheme:
xk+1 − xk =

√
svk

vk+1 − vk = −
3vk
k
−
√
s (∇f(xk+1)−∇f(xk))−

√
s

(
1 +

3

2k

)
∇f(xk).

(C.2)

Standard Implicit Euler Scheme:
xk+1 − xk =

√
svk+1

vk+1 − vk = −
3vk+1

k + 1
−
√
s (∇f(xk+1)−∇f(xk))−

√
s

(
1 +

3

2(k + 1)

)
∇f(xk+1).

(C.3)

Technical analysis of symplectic scheme (C.1) The Lyapunov function is

E(k) = s (k + 1)

(
k +

3

2

)
(f(xk)− f(x?)) +

1

2

∥∥2(xk+1 − x?) + (k + 1)
√
s
(
vk +

√
s∇f(xk)

)∥∥2 .
Then we calculate the iterative difference as

E(k + 1)− E(k)

= s (k + 1)

(
k +

3

2

)
(f(xk+1)− f(xk)) + s

(
2k +

7

2

)
(f(xk+1)− f(x?))

+
1

2

〈
2(xk+2 − xk+1) +

√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)
−
√
s(k + 1)

(
vk +

√
s∇f(xk)

)
2(xk+2 + xk+1 − 2x?) +

√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)
+
√
s(k + 1)

(
vk +

√
s∇f(xk)

)〉
= s (k + 1)

(
k +

3

2

)
(f(xk+1)− f(xk)) + s

(
2k +

7

2

)
(f(xk+1)− f(x?))

−
〈
s

(
k +

3

2

)
∇f(xk+1), 2(xk+2 − x?) +

√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)〉
− s2

2

(
k +

3

2

)2

‖∇f(xk+1)‖2 .

Now we hope to utilize the basic inequality for f ∈ F1
L(Rn) to make the right side of equality no more

than zero. Taking the following inequalities f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −
1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(xk+1)− f(x?) ≤ 〈∇f(xk+1), xk+1 − x?〉 ,

we can obtain the iterative difference is

E(k + 1)− E(k) ≤ s

2
(f(xk+1)− f(x?))−

s2

2

(
k +

3

2

)(
3k +

7

2

)
‖∇f(xk+1)‖2
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− s

2L
(k + 1)

(
k +

3

2

)
‖∇f(xk+1)−∇f(xk)‖2

+ s2 (k + 1)

(
k +

3

2

)
〈∇f(xk+1),∇f(xk+1)−∇f(xk)〉

+ s2
(
k +

3

2

)(
k +

5

2

)
‖∇f(xk+1)‖2

≤ s

2
(f(xk+1)− f(x?))−

s2

2

(
k +

3

2

)(
k − 3

2
− Ls(k + 1)

)
‖∇f(xk+1)‖2 .

Since there exists a non-negative term, s2 (f(xk+1)− f(x?)), we cannot guarantee the right-hand side
of inequality is non-positive. Hence, the convergence cannot be proved by the above description.

Technical analysis of explicit scheme (C.2) The Lyapunov function is

E(k) = s (k − 2)

(
k − 1

2

)
(f(xk)− f(x?)) +

1

2

∥∥2(xk − x?) + (k − 1)
√
s
(
vk +

√
s∇f(xk)

)∥∥2 .
Then we calculate the iterative difference as

E(k + 1)− E(k)

= s (k − 1)

(
k +

1

2

)
(f(xk+1)− f(xk)) + s

(
2k − 3

2

)
(f(xk)− f(x?))

+
1

2

〈
2(xk+1 − xk) +

√
sk
(
vk+1 +

√
s∇f(xk+1)

)
−
√
s(k − 1)

(
vk +

√
s∇f(xk)

)
2(xk+1 + xk − 2x?) +

√
sk
(
vk+1 +

√
s∇f(xk+1)

)
+
√
s(k − 1)

(
vk +

√
s∇f(xk)

)〉
= s (k − 1)

(
k +

1

2

)
(f(xk+1)− f(xk)) + s

(
2k − 3

2

)
(f(xk)− f(x?))

−
〈
s

(
k +

1

2

)
∇f(xk), 2(xk − x?) +

√
s(k − 1)

(
vk +

√
s∇f(xk)

)〉
+
s2

2

(
k +

1

2

)2

‖∇f(xk)‖2 .

• If we take the following basic inequality for f ∈ F1
L(Rn) f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 − xk〉+

L

2
‖xk+1 − xk‖2

f(xk)− f(x?) ≤ 〈∇f(xk), xk − x?〉 ,

we can obtain the following estimate

E(k+1)−E(k) ≤ Ls2

2
(k − 1)

(
k +

1

2

)
‖vk‖2−

5s

2
(f(xk)− f(x?))−

s2

2

(
k +

1

2

)(
k − 5

2

)
‖∇f(xk)‖2 ,

which cannot guarantee the right-hand side of the inequality non-positive.
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• If we take the following basic inequality for f ∈ F1
L(Rn) f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(xk)− f(x?) ≤ 〈∇f(xk), xk − x?〉 ,

we can obtain the following estimate

E(k + 1)− E(k)

≤ Ls

2
(k − 1)

(
k +

1

2

)(
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

)
− 5s

2
(f(xk)− f(x?))−

s2

2

(
k +

1

2

)(
k − 5

2

)
‖∇f(xk)‖2 ,

which cannot guarantee the right-hand side of the inequality non-positive.

Technical analysis of implicit scheme (C.3) The Lyapunov function is

E(k) = s (k + 2)

(
k +

3

2

)
(f(xk)− f(x?)) +

1

2

∥∥2(xk − x?) + (k + 1)
√
s
(
vk +

√
s∇f(xk)

)∥∥2 .
Then we can calculate the iterative difference as

E(k + 1)− E(k)

= s (k + 2)

(
k +

3

2

)
(f(xk+1)− f(xk)) + s

(
2k +

9

2

)
(f(xk+1)− f(x?))

+
1

2

〈
2(xk+1 − xk) +

√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)
−
√
s(k + 1)

(
vk +

√
s∇f(xk)

)
2(xk+1 + xk − 2x?) +

√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)
+
√
s(k + 1)

(
vk +

√
s∇f(xk)

)〉
= s (k + 2)

(
k +

3

2

)
(f(xk+1)− f(xk)) + s

(
2k +

9

2

)
(f(xk+1)− f(x?))

−
〈
s

(
k +

3

2

)
∇f(xk+1), 2(xk+1 − x?) +

√
s(k + 2)

(
vk+1 +

√
s∇f(xk+1)

)〉
− s2

2

(
k +

3

2

)2

‖∇f(xk+1)‖2 .

Now we hope to utlize the basic inequality for f ∈ F1
L(Rn) to make the right side of equality no more

than zero. Taking the following inequalities{
f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉
f(xk+1)− f(x?) ≤ 〈∇f(xk+1), xk+1 − x?〉 ,

we can obtain

E(k + 1)− E(k) ≤ 3s

2
(f(xk+1)− f(x?))−

s2

2

(
k +

3

2

)(
3k +

7

2

)
‖∇f(xk+1)‖2 .

Although the negative term concludes the multiplier k2, we cannot guarantee the right-hand side non-
positive
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Appendix D: Low-Resolution ODEs

D.1 Low-resolution ODE for strongly convex functions

In this subsection, we discuss the numerical discretization of (2.3). We rewrite this ODE in a phase-space
representation {

Ẋ = V

V̇ = −2√µV −∇f(X)
, (D.1)

with X(0) = x0 and V (0) = 0. We have the following theorem:

Theorem D.1. Let f ∈ S1µ,L(Rn). The solution X = X(t) to low-resolution ODE (2.3) satisfies

f(X)− f(x?) ≤ 3L ‖x0 − x?‖2

2
e−
√
µt

4 . (D.2)

Proof. The Lyapunov function is

E =
1

4
‖Ẋ‖2 + 1

4
‖2√µ(X − x?) + Ẋ‖2 + f(X)− f(x?).

Using the Cauchy-Schwartz inequality

‖2√µ(X − x?) + Ẋ‖2 ≤ 2
(
4µ‖X − x?‖2 + ‖Ẋ‖2

)
,

and the basic inequality for f ∈ S1µ,L(Rn)

f(x?) ≥ f(X) + 〈∇f(X), x? − x〉+ µ

2
‖X − x?‖2 ,

we calculate the time derivative

dE
dt

=
1

2

〈
Ẋ,−2√µẊ −∇f(X)

〉
+

1

2

〈
2
√
µ (X − x?) + Ẋ,−∇f(X)

〉
+
〈
∇f(X), Ẋ

〉
= −√µ

(
‖Ẋ‖2 + 〈∇f(X), X − x?〉

)
≤ −√µ

(
‖Ẋ‖2 + f(X)− f(x?) + µ

2
‖X − x?‖2

)
≤ −
√
µ

4
E .

Hence, the proof is complete.

We now analyze the standard Euler discretization of the low-resolution ODE (2.3). All of the following
three Euler schemes take the same initial x0 and v0 = 0.

Symplectic Euler Scheme:{
xk+1 − xk =

√
svk

vk+1 − vk = −2
√
µsvk+1 −

√
s∇f(xk+1).

(D.3)
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Explicit Euler Scheme: {
xk+1 − xk =

√
svk

vk+1 − vk = −2
√
µsvk −

√
s∇f(xk).

(D.4)

Implicit Euler Scheme: {
xk+1 − xk =

√
svk+1

vk+1 − vk = −2
√
µsvk+1 −

√
s∇f(xk+1).

(D.5)

Theorem D.2 (Discretization of Low-Resolution ODE). For any f ∈ S1µ,L(Rn), the following conclusions
hold:

(a) Taking 0 < s ≤ µ/(16L2), the symplectic Euler scheme satisfies

f(xk)− f(x?) ≤
3L ‖x0 − x?‖2

2
(
1 +

√
µs
4

)k . (D.6)

(b) Taking0 < s ≤ µ/(25L2), the explicit Euler scheme satisfies

f(xk)− f(x?) ≤
3L ‖x0 − x?‖2

2

(
1−
√
µs

8

)k
. (D.7)

(c) Taking 0 < s ≤ 1/L, the implicit Euler scheme satisfies

f(xk)− f(x?) ≤
3L ‖x0 − x?‖2

2
(
1 +

√
µs
4

)k . (D.8)

Proof. (a) The Lyapunov function is

E(k) = 1

4
‖vk‖2 +

1

4
‖2√µ(xk − x?) + vk‖2 + f(xk)− f(x?).

With the Cauchy-Schwartz inequality

‖2√µ(xk − x?) + vk‖2 ≤ 2
(
4µ ‖xk − x?‖2 + ‖vk‖2

)
,

and the basic inequality for f ∈ S1µ,L(Rn) f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

µ

2
‖xk+1 − x?‖2 ,
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we calculate the iterave difference

E(k + 1)− E(k) = 1

4
〈vk+1 − vk, vk+1 + vk〉+ f(xk+1)− f(xk)

+
1

4
〈2√µ(xk+1 − xk) + vk+1 − vk, 2

√
µ(xk+1 + xk − 2x?) + vk+1 + vk〉

≤ 1

2
〈vk+1 − vk, vk+1〉+ 〈∇f(xk+1), xk+1 − xk〉

+
1

2
〈2√µ(xk+1 − xk) + vk+1 − vk, 2

√
µ(xk+1 − x?) + vk+1〉

− 1

4
‖vk+1 − vk‖2 −

1

4
‖2√µ(xk+1 − xk) + vk+1 − vk‖2

≤ −√µs
(
‖vk+1‖2 + 〈∇f(xk+1), xk+1 − x?〉

)
≤ −√µs

(
‖vk+1‖2 + f(xk+1)− f(x?) +

µ

2
‖xk+1 − x?‖2

)
≤ −
√
µs

4
E(k + 1).

Hence, the proof is complete.

(b) The Lyapunov function is

E(k) = 1

4
‖vk‖2 +

1

4
‖2√µ(xk − x?) + vk‖2 + f(xk)− f(x?).

With the Cauchy-Schwartz inequality

‖2√µ(xk − x?) + vk‖2 ≤ 2
(
4µ ‖xk − x?‖2 + ‖vk‖2

)
,

and the basic inequality for f ∈ S1µ,L(Rn)
f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 − xk〉+

L

2
‖xk+1 − xk‖2

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

µ

2
‖x? − xk+1‖2 ,

we calculate the iterave difference

E(k + 1)− E(k) = 1

4
〈vk+1 − vk, vk+1 + vk〉+ f(xk+1)− f(xk)

+
1

4
〈2√µ(xk+1 − xk) + vk+1 − vk, 2

√
µ(xk+1 + xk − 2x?) + vk+1 + vk〉

≤ 1

2
〈vk+1 − vk, vk〉+ 〈∇f(xk), xk+1 − xk〉+

L

2
‖xk+1 − xk‖2

+
1

2
〈2√µ(xk+1 − xk) + vk+1 − vk, 2

√
µ(xk − x?) + vk〉

+
1

4
‖vk+1 − vk‖2 +

1

4
‖2√µ(xk+1 − xk) + vk+1 − vk‖2

≤ −√µs
(
‖vk‖2 + 〈∇f(xk), xk − x?〉

)
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+
Ls

2
‖vk‖2 +

s

4
‖2√µvk +∇f(xk)‖2 +

s

4
‖∇f(xk)‖2

≤ −
√
µs

2

(
‖vk‖2 + f(xk)− f(x?) +

µ

2
‖xk − x?‖2

)
−
√
µs

2

(
‖vk‖2 +

1

L
‖∇f(xk)‖2

)
+ s

(
2µ+

L

2

)
‖vk‖2 +

3s

4
‖∇f(xk)‖2 .

Since µ ≤ L, the step size s ≤ µ/(25L2) satisfies it. Hence, the proof is complete after some basic
calculations.

(c) The Lyapunov function is

E(k) = 1

4
‖vk‖2 +

1

4
‖2√µ(xk+1 − x?) + vk‖2 + f(xk)− f(x?).

With the Cauchy-Schwartz inequality

‖2√µ(xk+1 − x?) + vk‖2 = ‖2
√
µ(xk − x?) + (1 + 2

√
µs)vk‖2

≤ 2
(
4µ ‖xk − x?‖2 + (1 + 2

√
µs)2 ‖vk‖2

)
,

and the basic inequality for f ∈ S1µ,L(Rn)
f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x
? − xk+1〉+

µ

2
‖x? − xk+1‖2 ,

we calculate the iterave difference

E(k + 1)− E(k) = 1

4
〈vk+1 − vk, vk+1 + vk〉+ f(xk+1)− f(xk)

+
1

4
〈2√µ(xk+2 − xk+1) + vk+1 − vk, 2

√
µ(xk+2 + xk+1 − 2x?) + vk+1 + vk〉

≤ 1

2
〈vk+1 − vk, vk+1〉 −

1

4
‖vk+1 − vk‖2

+ 〈∇f(xk+1), xk+1 − xk〉 −
1

2L
‖∇f(xk+1)−∇f(xk)‖2

+
1

2

〈
−
√
s∇f(xk+1), 2

√
µ(xk+2 − x?) + vk+1

〉
− 1

4

∥∥√s∇f(xk+1)
∥∥2

≤ −√µs
(
‖vk+1‖2 + 〈∇f(xk+1), xk+1 − x?〉

)
−
√
s

2
〈∇f(xk+1), (1 + 2

√
µs)vk+1 − vk〉

− 1

2L
‖∇f(xk+1)−∇f(xk)‖2 −

1

4

∥∥vk+1 − vk +
√
s∇f(xk+1)

∥∥2
≤ −√µs

[
‖vk+1‖2 +

1

4
(f(xk+1)− f(x?)) +

µ

2
‖xk+1 − x?‖2

]
− 1

4

[
3
√
µs (f(xk+1)− f(x?))− 2s ‖∇f(xk+1)‖2

]
.
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Since µ ≤ L, the step size s ≤ µ/(16L2) satisfies it. Hence, the proof is complete after some basic
calculations.

Corollary D.3 (Discretization of NAG-SC low-resolution ODE). For any f ∈ S1µ,L(Rn), the following
conclusions hold:

(a) Taking step size 0s = µ/(16L2) , the symplectic Euler scheme satisfies

f(xk)− f(x?) ≤
3L ‖x0 − x?‖2

2
(
1 + µ

16L

)k . (D.9)

(b) Taking step size s = µ/(16L2), the explicit Euler scheme satisfies

f(xk)− f(x?) ≤
3L ‖x0 − x?‖2

2

(
1− µ

40L

)k
. (D.10)

(c) Taking step size s = 1/L, the implicit Euler scheme satisfies

f(xk)− f(x?) ≤
3L ‖x0 − x?‖2

2
(
1 + 1

4

√
µ
L

)k . (D.11)

Remark D.1. Compared with Theorem D.2 (a) – (c), just the Euler scheme of the low-resolution ODE (2.3),
both the explicit scheme and the symplectic scheme can retain the convergence rate from the continuous
version of Theorem D.1, when the step size s is of the order O(µ/L2). Although the explicit scheme is
weaker than the symplectic scheme, it can preserve the rate to the same order as the symplectic scheme.
However, if the step size satisfies s = O(µ/L2), the algorithm cannot provide acceleration. There is no
limitation on the step size s for the implicit Euler scheme, but in general it is not practical for non-quadratic
objective functions.

D.2 Low-resolution ODE for convex functions

In this subsection, we discuss the numerical discretization of (2.2). We rewrite it in a phase-space represen-
tation:  Ẋ = V

V̇ = −3

t
V −∇f(X),

, (D.12)

with X(0) = x0 and V (0) = 0.

Theorem D.4. Let f ∈ F1
L(Rn). The solution X = X(t) to the low-resolution ODE (2.2) satisfies

f(X)− f(x?) ≤ 2 ‖x0 − x?‖2

t2

min
0≤u≤t

‖∇f(X(u))‖2 ≤ 4L ‖x0 − x?‖2

t2
.

(D.13)

Theorem D.4 is combined with Theorem 3 Su et al. [2016] and a further analysis about gradient norm
minimization in Shi et al. [2018]. The Lyapunov function is constructed in Su et al. [2016] as

E = t2 (f(X)− f(x?)) + 1

2
‖2(X − x?) + tẊ‖2. (D.14)
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D.2.1 Symplectic Euler scheme

First, we utilize the symplectic Euler scheme with the initial x0 and v0 = 0, as shown as following:
xk+1 − xk =

√
svk

vk+1 − vk = −
3

k + 1
vk+1 −

√
s∇f(xk+1).

(D.15)

Technical analysis of symplectic scheme (D.15) The Lyapunov function is

E(k) = (k + 1)2s (f(xk)− f(x?)) +
1

2

∥∥2(xk+1 − x?) + (k + 1)
√
svk
∥∥2 .

Then we can calculate the iterate difference as

E(k + 1)− E(k) = (k + 1)2s (f(xk+1)− f(xk)) + (2k + 3)s (f(xk+1)− f(x?))

+
1

2

〈
2(xk+1 − xk) + (k + 2)

√
svk+1 − (k + 1)

√
svk,

2(xk+1 + xk − 2x?) + (k + 2)
√
svk+1 + (k + 1)

√
svk
〉

= (k + 1)2s (f(xk+1)− f(xk)) + (2k + 3)s (f(xk+1)− f(x?))
−
〈
(k + 1)s∇f(xk+1), 2(xk+2 − x?) + (k + 2)

√
svk+1

〉
− 1

2
(k + 1)2s2 ‖∇f(xk+1)‖2 .

We hope to utilize the basic inequality for f ∈ F1
L(Rn) to make the right-hand-side of the equality no more

than zero. Based on the following inequalities:
f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(xk+1)− f(x?) ≤ 〈∇f(xk+1), xk+1 − x?〉 −
1

2L
‖∇f(xk+1)‖2 ,

we obtain the following estimate:

E(k + 1)− E(k) ≤ 1

2
(k + 1)2s2 ‖∇f(xk+1)‖2 + s (f(xk+1)− f(x?))−

(k + 1)s

L
‖∇f(xk+1)‖2 ,

from which we cannot guarantee that the right-hand-side of the inequality is nonpositive.

D.2.2 Explicit Euler scheme

Now, we turn to the explicit Euler scheme with the initial x0 and v0 = 0, asxk+1 − xk =
√
svk

vk+1 − vk = −
3

k
vk −

√
s∇f(xk).

(D.16)
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Technical analysis of explicit scheme (D.16) Now, the Lyapunov function is

E(k) = (k − 2)(k − 1)s (f(xk)− f(x?)) +
1

2

∥∥2(xk − x?) + (k − 1)
√
svk
∥∥2 .

Then we can calculate the iterate difference as

E(k + 1)− E(k) = (k − 1)ks (f(xk+1)− f(xk)) + 2(k − 1)s (f(xk)− f(x?))

+
1

2

〈
2(xk+1 − xk) + k

√
svk+1 − (k − 1)

√
svk,

2(xk+1 + xk − 2x?) + k
√
svk+1 + (k − 1)

√
svk
〉

= (k − 1)ks (f(xk+1)− f(xk)) + 2(k − 1)s (f(xk)− f(x?))

+
〈
−ks∇f(xk), 2(xk − x?) + (k − 1)

√
svk
〉
+

1

2
k2s2 ‖∇f(xk)‖2 .

• If we take the following basic inequality for f ∈ F1
L(Rn)

f(xk+1)− f(xk) ≤ 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

f(xk)− f(x?) ≤ 〈∇f(xk), xk − x?〉 −
1

2L
‖∇f(xk)‖2 ,

we obtain the following estimate:

E(k+1)−E(k) ≤ k(k − 1)Ls

2
‖xk+1 − xk‖2−2s (f(xk)− f(x?))−

ks

L
‖∇f(xk)‖2+

k2s2

2
‖∇f(xk)‖2 ,

from which we cannot guarantee that the right-hand-side of the inequality is nonpositive.

• If we take the following basic inequality for f ∈ F1
L(Rn)

f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉 −
1

2L
‖∇f(xk+1)−∇f(xk)‖2

f(xk)− f(x?) ≤ 〈∇f(xk), xk − x?〉 −
1

2L
‖∇f(xk)‖2 ,

we obtain the following estimate:

E(k + 1)− E(k) ≤ (k − 1)ks

(
〈∇f(xk+1)−∇f(xk), xk+1 − xk〉 −

1

2L
‖∇f(xk+1)−∇f(xk)‖2

)
2s (f(xk)− f(x?))−

ks

L
‖∇f(xk)‖2 +

k2s2

2
‖∇f(xk)‖2 ,

from which we still cannot guarantee that the right-hand-side of the inequality is nonpositive.

D.2.3 Implicit scheme

Finally, we analyze the implicit Euler scheme with the initial x0 and v0 = 0:
xk+1 − xk =

√
svk+1

vk+1 − vk = −
3

k + 1
vk+1 −

√
s∇f(xk+1)

(D.17)
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Technical analysis of implicit scheme (D.17) We construct the Lyapunov function as

E(k) = (k + 1)(k + 2)s (f(xk)− f(x?)) +
1

2

∥∥2(xk − x?) + (k + 1)
√
svk
∥∥2 .

Then we can calculate the iterate difference as

E(k + 1)− E(k) = (k + 1)(k + 2)s (f(xk+1)− f(xk)) + 2(k + 2)s (f(xk+1)− f(x?))

+
1

2

〈
2(xk+1 − xk) + (k + 2)

√
svk+1 − (k + 1)

√
svk,

2(xk+1 + xk − 2x?) + (k + 2)
√
svk+1 + (k + 1)

√
svk
〉

= (k + 1)(k + 2)s (f(xk+1)− f(xk)) + 2(k + 2)s (f(xk+1)− f(x?))
−
〈
(k + 1)s∇f(xk+1), 2(xk+1 − x?) + (k + 2)

√
svk+1

〉
− 1

2
(k + 1)2s2 ‖∇f(xk+1)‖2 .

Now, we hope to utilize the basic inequality for f ∈ F1
L(Rn) to make the right side of equality no more than

zero. Based on the following inequalities: f(xk+1)− f(xk) ≤ 〈∇f(xk+1), xk+1 − xk〉

f(xk+1)− f(x?) ≤ 〈∇f(xk+1), xk+1 − x?〉 −
1

2L
‖∇f(xk+1)‖2 ,

we obtain:

E(k + 1)− E(k) ≤ 2s (f(xk+1)− f(x?))−
(k + 1)s

L
‖∇f(xk+1)‖2 −

1

2
(k + 1)s2 ‖∇f(xk+1)‖2 .

Although the negative term includes the multiplier k and k2, we cannot guarantee that the right-hand-side
of the inequality is nonpositive.

Here, in contrast to the subtle discrete construction in Su et al. [2016], we point out that the stan-
dard numerical discretization of low-resolution ODE (2.2) cannot maintain the convergence rate from the
continuous-time ODE, due the presence of numerical error.
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