STAT 915: Nonparametric Inference

MW 9-10:30am @ F38 JMHH Office hour: Wednesday 1-2pm @469 JMHH

This course aims to give a modern treatment of nonparametric function estimation. The focus is on wavelet methodologies and the Gaussian sequence model. We will discuss minimaxity, adaptive minimaxity, rate-optimal procedures, and lower bound techniques. Estimation of various functionals and nonparametric inference will also be covered. Here is an outline of the topics.

- Overview of nonparametric function estimation
 - Problems, models, and criteria.
 - Conventional methods for density estimation and nonparametric regression
 - Rates of convergence
- Lower bound techniques
 - Measures of distance: Affinity, L_1 distance, Chi-square distance, total variation
 - Le Cam's method
 - Brown-Low's constrained risk inequality
 - Other lower bound arguments
- Wavelet thresholding
 - Term-by-term thresholding
 - Block thresholding & information pooling
 - Oracle Inequality
 - Adaptive estimation
- Estimation of functionals
 - Linear functionals
 - Quadratic functionals
 - Nonsmooth functionals
- Robust nonparametric estimation & regression in exponential families
- Nonparametric inference
 - Hypothesis testing
 - Confidence intervals and confidence balls: Construction & lower bounds

Course Materials:

- Johnstone, I. M. (2013). Gaussian Estimation: Sequence And Wavelet Models. Available at www-stat.stanford.edu/~imj.
- 2. Härdle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A. (1998). *Wavelets, Approximation, and Statistical Applications*, Springer.
- 3. Daubechies, I. (1992). Ten Lectures on Wavelets, SIAM.
- 4. Wasserman, L. (2006). All of Nonparametric Statistics, Springer.
- 5. Lecture Notes.
- **Computing:** You can use R or MATLAB in the course for simulation and implementation of the wavelet procedures. If you prefer, you may also use other software packages.
- Homework: There will be occasional homework assignments.

Exam: There will be no exam.

Presentation: Students are expected to give a presentation near the end of the semester.