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Abstract

One-sided con&dence intervals in the binomial, negative binomial, and Poisson distributions
are considered. It is shown that the standard Wald interval su4ers from a serious systematic
bias in the coverage and so does the one-sided score interval. Alternative con&dence intervals
with better performance are considered. The coverage and length properties of the con&dence
intervals are compared through numerical and analytical calculations. Implications to hypothesis
testing are also discussed.
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1. Introduction

The problem of interval estimation of a binomial proportion has a long history and
an extensive literature. It had been generally known that the popular two-sided Wald
con&dence interval was de&cient in the coverage probability for p near 0 or 1. See,
for example, Cressie (1980), Blyth and Still (1983), Vollset (1993), Santner (1998),
Agresti and Coull (1998), and Newcombe (1998).
In two recent articles, Brown et al. (2001, 2002) give a comprehensive treatment of

two-sided con&dence intervals for a binomial proportion. The Wald interval is shown
to su4er from a systematic negative bias in its coverage probability far more persistent
than is appreciated. Contrary to common perception, the problems are not just for
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p near 0 or 1, and not just for small n. Alternative intervals with superior coverage
properties are recommended. Among them, the score interval, produced by inversion of
Rao’s score test, always provides major improvements in coverage. Brown et al. (2003)
extended the &ndings on the binomial proportion to the natural exponential family with
a quadratic variance function (NEF–QVF). A coherent analytical description of the
two-sided interval estimation problem was given. It is shown that the problems and
the solutions in the binomial proportion case are common to all the distributions in the
NEF–QVF. In particular, the Wald interval has consistent poor coverage problem and
the score interval has excellent coverage properties across the NEF–QVF.
In this paper we consider the one-sided interval estimation problem. One-sided con-

&dence intervals are useful in many applications. See Duncan (1986) and Montgomery
(2001) for applications in quality control. In the present paper a uni&ed treatment of
the one-sided con&dence intervals is given for the discrete Exponential family with a
quadratic variance function which consists of three most important discrete distribu-
tions—the binomial, negative binomial, and Poisson distributions. Although there are
some common features, the one-sided interval estimation problem di4ers signi&cantly
from the two-sided problem. In particular, despite the good performance of the score
interval in the two-sided problem, the one-sided score interval does not perform well
for each of the three distributions both in terms of coverage probability and expected
length. Examples given in Section 2.1 show that both the one-sided Wald and score
intervals su4er a pronounced systematic bias in the coverage, although the severity and
direction di4er.
The somewhat surprising fact that the score interval performs well in the two-sided

problem but not in the one-sided problem is connected to the issue of probability
matching. See Ghosh (1994, 2001) for general discussions on probability matching and
con&dence sets. In particular, &rst-order probability matching has no obvious bearing on
the coverage for two-sided problem, because all these procedures make compensating
one sided errors. It is, however, crucial for one-sided intervals. The Edgeworth expan-
sion of the coverage probabilities given in Section 3 shows that both the one-sided
Wald and score intervals are not &rst-order probability matching.
The de&ciency of the Wald and score intervals calls for alternative one-sided intervals

with better coverage properties. Two alternative intervals are introduced in Section 2.2
with a brief motivation and background. The one-sided Je4reys prior credible interval is
constructed from a Bayesian perspective. This interval is known to have the &rst-order
probability matching property. See Ghosh (1994). The Je4reys interval is however
not second-order probability matching. A second-order corrected interval is constructed
using the Edgeworth expansion. This method of using the Edgeworth expansion for
the construction of one-sided intervals has been used for example in Hall (1982). The
second-order corrected interval is by construction second-order probability matching.
The properties of the four con&dence intervals are compared analytically. The Edge-

worth expansions given in Section 3 provide an accurate and useful tool in analyzing
the coverage properties. The Edgeworth expansions reveal uniform structure across the
three distributions. It is shown that for all three distributions the one-sided Wald and
score intervals have the &rst-order systematic bias in the coverage with di4erent signs.
This reinforces the phenomenon observed in the numerical examples given in Section
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2.1 that the systematic biases for the two intervals are pronounced and are in the exact
opposite directions of each other. In contrast the two alternative intervals have superior
coverage properties with nearly vanishing systematic bias for all three distributions.
In addition to the coverage, parsimony in length is also an important issue. The

con&dence intervals are also compared in terms of the expected distance from the mean.
The expansions of the expected distance given in Section 5 also reveal a signi&cant
amount of common structure. For instance, up to an error of order O(n−2), there
is a uniform ranking of the four con&dence intervals pointwise for every value of the
parameter in the Poisson and negative binomial cases. The ranking is, from the shortest
to the longest, the Wald, Je4reys, second-order corrected, and score intervals. In the
binomial case the same ranking holds for p¡ 1

2 ; when p¿
1
2 the ranking is the score,

Je4reys, second-order corrected, and Wald intervals, from the shortest to the longest.
Section 6 discusses the implications of the con&dence interval results to hypothesis

testing. The de&ciency of the one-sided score interval implies that the actual size of the
widely used score test can deviate signi&cantly from the nominal level. Inversion of
the Je4reys and second-order corrected intervals yields better testing procedures than
the score test.

2. The one-sided con�dence intervals

Throughout the paper we shall assume to have iid observations X1; X2; : : : ; Xn ∼ F
with F as Bin(1; p) in the binomial case, Poi(�) in the Poisson case, and NBin(1; p),
the number of successes before the &rst failure, in the negative binomial case. The
objective is to construct one-sided con&dence intervals for the mean 	. The focus will
be mainly on the upper limit intervals in this paper. The analysis for the lower limit
intervals is analogous.
The binomial, negative binomial, and Poisson distributions form the discrete natural

exponential family with quadratic variance functions. See Morris (1982) and Brown
(1986). A common feature of these distributions is that the variance 
2 is at most a
quadratic function of the mean 	. Indeed


2 ≡ V (	) = 	 + b∗	2; (1)

where 	 = p and b∗ = −1 in the binomial Bin(1; p) case; 	 = � and b∗ = 0 in the
Poisson Poi(�) case; and 	=p=(1−p) and b∗=1 in the negative binomial NBin(1; p)
case.

2.1. Performance of the Wald and score intervals

The Wald interval is the standard con&dence interval used in practice. Same as in
the two-sided case, the one-sided Wald interval is often the only one-sided con&dence
procedure given in the introductory statistics texts. In addition to the Wald interval,
the score interval is also often used. As mentioned in the introduction the two-sided
score interval has satisfactory coverage properties in all three distributions.



66 T. Tony Cai / Journal of Statistical Planning and Inference 131 (2005) 63–88

Despite the good performance of the score interval in the two-sided problem, we shall
show that the score interval does not perform well in the one-sided problem. In this
case both the Wald and score intervals su4er a serious systematic bias in the coverage
probability. The empirical &ndings in this section will be reinforced by the theoretical
calculations given in Sections 3 and 4. Furthermore, due to the duality between the
score interval and the score test, the de&ciency in the coverage of the one-sided score
interval also has direct implications to the popular one-sided score test. See Section 6
for discussions on hypothesis testing.
Throughout the paper set X =

∑n
i=1 Xi and 	̂ = KX =

∑n
i=1 Xi=n. Denote by � the

100(1− �)th percentile of the standard normal distribution.
The Wald interval: The Wald interval is constructed based on the normal approxi-

mation

Wn =
√
n(	̂ − 	)
V 1=2(	̂)

L→N(0; 1): (2)

The 100(1− �)% upper limit Wald interval is de&ned as

CIuW = [0; 	̂ + �V
1=2(	̂)n−1=2] = [0; 	̂ + �(	̂ + b∗	̂2)1=2n−1=2] (3)

and the 100(1− �)% lower limit Wald interval is given by

CIlW = [	̂ − �V 1=2(	̂)n−1=2; 1]
in the binomial case and

CIlW = [	̂ − �V 1=2(	̂)n−1=2;∞)
in the Poisson and negative binomial cases. As mentioned earlier, our analysis will be
focused on the upper limit intervals. For reason of space we shall combine the three
cases and simply write hereafter the upper limit of the lower limit intervals as ∞ for
all three distributions with the understanding that it is actually 1 in the binomial case.

The score interval: The score interval is constructed using the normal approximation

Zn =
√
n(	̂ − 	)
V 1=2(	)

L→N(0; 1) (4)

and the inversion of the score test. In testing the one-sided hypotheses H0: 	¿ 	0
against Ha: 	¡	0 at the signi&cance level �, the score test rejects the null hypothesis
whenever n1=2( KX − 	0)=V 1=2(	0)¡− �. Solving a simple quadratic equation yield the
100(1− �)% upper limit score interval

CIuS =

[
0;
X + �2=2
n− b∗�2 +

�n1=2

n− b∗�2
(
V (	̂) +

�2

4n

)1=2]
: (5)

The 100(1− �)% lower limit score interval is constructed similarly and has the form

CIlS =

[
X + �2=2
n− b∗�2 − �n1=2

n− b∗�2
(
V (	̂) +

�2

4n

)1=2
;∞)

]
:

Example 1. Consider &rst the binomial problem. Fig. 1 plots the coverage of the 99%
upper limit Wald interval and the upper limit score interval for p with n= 30. There
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Fig. 1. Coverage probability of the upper limit Wald interval (solid) and the upper limit score interval
(dashed) for a binomial proportion p with n = 30 and � = 0:01.
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Fig. 2. Coverage probability of the upper limit Wald interval (solid) and the upper limit score interval
(dashed) for a negative binomial mean and Poisson mean with n = 30.

is a pronounced systematic bias in the coverage for both intervals. It is interesting to
note that the systematic biases for the two intervals are in the exact opposite directions
of each other. We shall see that this phenomenon is common to all three distributions.

Example 2. Consider the negative binomial and Poisson cases. Fig. 2 plots the cover-
age probabilities of the 99% Wald and score intervals for a negative binomial mean
and Poisson mean with n=30. In the Poisson case the coverage is in fact a function of
n�. The most striking aspect of the plot is that for both distributions the coverage of the
Wald interval never reaches 0.99 while the coverage of the score interval always stays
above 0.99. In both cases there are serious systematic negative bias in the coverage
of the Wald interval and persistent positive bias in the coverage of the score interval.
Especially in the negative binomial case the coverage of the Wald interval is far below
the nominal level of 0.99 and the coverage of the score interval is close. What was
observed in the previous example in the binomial proportion problem resurfaces in a
slightly di4erent way in the negative binomial mean and Poisson mean problems.
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Fig. 3. Coverage probability of the upper limit Wald interval (solid) and the upper limit score interval
(dashed) for a binomial proportion p with p = 0:9, n = 10–100 and � = 0:01.

Example 3. Consider again the binomial case and the coverage of the one-sided Wald
interval and score interval as a function of the sample size n, for a &xed p, say,
p=0:9. Fig. 3 shows that in this case the coverage of the Wald interval is consistently
above the nominal level and the coverage of the score interval is nearly always below
the nominal level. Once again we see the serious systematic bias in the coverage
probabilities of the Wald and score intervals.

2.2. The alternative con2dence intervals

The examples in Section 2.1 clearly demonstrate that both the Wald and score in-
tervals perform poorly and erratically and better alternative intervals are needed. In
this section we introduce two alternative intervals—the Je4reys prior interval and the
second-order corrected interval. A common feature is that both have good probability
matching properties which are particularly important for one-sided intervals.

The Je3reys interval: The non-informative Je4reys prior plays a special role in the
Bayesian analysis. See e.g. Berger (1985). In particular, the Je4reys prior is the unique
&rst-order probability matching prior for a real-valued parameter (with no nuisance
parameter). See Ghosh (1994). In our setting, simple calculation shows that the Fisher
information about 	 is I(	)=n(	+b∗	2)−1 and thus the Je4reys prior is proportional to
I 1=2(	)=n1=2(	+b∗	2)−1=2. Denote the posterior distribution by J . Then the 100(1−�)%
upper limit and lower limit Je3reys intervals for 	 are respectively de&ned as

CIuJ = [0; J1−�]; and CIlJ = [J�;∞); (6)

where J1−� and J� are respectively the 1 − � and � quantiles of the posterior distri-
bution based on n observations. The construction of the one-sided Je4reys intervals is
analogous to that of the two-sided Je4reys interval given in Brown et al. (2003). Now
consider the three distributions separately.

• Binomial: The Je4reys prior is Beta( 12 ;
1
2 ) and the posterior is Beta(X +

1
2 ; n −

X + 1
2). Thus the 100(1 − �)% upper limit and lower limit Je4reys intervals for

p are, respectively,

CIuJ = [0; B1−�;X+1=2; n−X+1=2] and CIlJ = [B�;X+1=2; n−X+1=2; 1]: (7)
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• Negative binomial: The Je4reys interval is transformation-invariant. The Je4reys
prior for p is proportional to p−1=2(1−p)−1 and the posterior is Beta(X + 1

2 ; n).
Thus the 100(1 − �)% upper limit and lower limit Je4reys intervals for p are,
respectively,

CIuJ (p) = [0; pl] = [0; B1−�;X+1=2; n] and CIlJ(p) = [pu ; 1] = [B�;X+1=2; n; 1]:

Therefore, the upper limit and lower limit Je4reys intervals for 	=p=(1−p) are,
respectively,

CIuJ =
[
0;
pl

1− pl

]
and CIlJ =

[
pu

1− pu ;∞
)

(8)

• Poisson: The Je4reys prior for � is proportional to �−1=2 which is improper and
the posterior is Gamma (X + 1=2; 1=n). Hence the 100(1 − �)% upper limit and
lower limit Je4reys intervals for � are, respectively,

CIuJ = [0; G1−�;X+1=2;1=n] and CIlJ = [G�;X+1=2;1=n;∞): (9)

The second-order corrected interval: Asymptotic theory has a long history of provid-
ing motivation and guidance for the construction of procedures with good &nite-sample
performance. For the one-sided interval estimation problem the Edgeworth expansion
has been used in Hall (1982) for the construction of &rst-order corrected con&dence
intervals for a binomial proportion and Poisson mean.
The second-order corrected intervals given below are constructed based on the

Edgeworth expansion to explicitly eliminate both the &rst and second-order system-
atic bias in the coverage. Although the Edgeworth expansions are mainly regarded as
asymptotic approximations, two-term Edgeworth expansions are very accurate for the
two-sided problem even for relatively small and moderate n. See Brown et al. (2002,
2003). We will see that this is also true for the one-sided problem and the second-order
corrected intervals perform well for small and moderate sample sizes.
Let �= 1

3�
2 + 1

6 , �1 = b∗(
13
18�

2 + 17
18 ) and �2 =

1
18�

2 + 7
36 . Let 	̃=(X + �)=(n− 2�b∗).

The 100(1− �)% upper limit second-order corrected interval is de&ned as

CIu2 = [0; 	̃ + �(V (	̂) + (�1V (	̂) + �2)n
−1)1=2n−1=2] (10)

and the 100(1− �)% lower limit second-order corrected interval is de&ned as

CIl2 = [	̃ − �(V (	̂) + (�1V (	̂) + �2)n−1)1=2n−1=2;∞):

Remark. Comparing the second-order corrected interval CIu2 with the Wald interval
CIuW, 	̃ in CI

u
2 can be viewed as a (&rst-order) correction to 	̂ in the Wald interval

CIuW and (V (	̂)+(�1V (	̂)+�2)n
−1)1=2 in CIu2 as a (second-order) correction to V

1=2(	̂)
in CIuW. Indeed, Hall (1982) showed that the interval [0; 	̃+�V

1=2(	̂)n−1=2] eliminate the
&rst-order systematic bias in the binomial and Poisson cases. The reasons for choosing
the speci&c values of 	̃, �1 and �2 are given in the proof of Theorem 4.

Fig. 4 plots the coverage probabilities of the four upper limit con&dence intervals
for a binomial proportion with n = 30 and � = 0:01. It shows that the Je4reys and
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Fig. 4. Coverage of the four intervals for a binomial proportion with n = 30 and � = 0:01.

second-order corrected intervals have superior performance relative to both the Wald
and score intervals. The two alternative intervals nearly eliminate the systematic bias in
the coverage probability. In addition, although oscillation in the coverage is unavoid-
able for non-randomized con&dence intervals in these lattice problems, the amount of
oscillation in the coverage of the Je4reys and second-order corrected intervals is smaller
than that of the Wald and score intervals.

3. Edgeworth expansions

The Edgeworth expansions provide an accurate and useful tool in analyzing the
coverage properties of con&dence intervals. See for example Brown et al. (2002). The
Edgeworth expansion is particularly useful in understanding analytically why the score
interval performs better in the two-sided problem than in the one-sided problem.
De&ne

g(	; z) = g(	; z; n) = n	 + n1=2
z − (n	 + n1=2
z)−; (11)

where (x)− denotes the largest integer less than or equal to x. So g(	; z) is the fractional
part of n	+n1=2
z. We suppress in (11) and later the dependence of g on n and denote

Q1(	; z) = g(	; z)− 1
2 ; and Q2(	; z) =− 1

2 g
2(	; z) + 1

2 g(	; z)− 1
12 : (12)
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Note that the functions Q1(	; z) and Q2(	; z) are oscillatory functions. They appear in
the Edgeworth expansions to precisely capture the oscillation in the coverage proba-
bility.
A two-term Edgeworth expansion of the coverage probability has a general form of

P(	∈CI) = 1− �+ S1 · n−1=2 + Osc1 · n−1=2 + S2 · n−1

+Osc2 · n−1 + O(n−32); (13)

where the &rst O(n−1=2) term, S1n−1=2, and the &rst O(n−1) term, S2n−1, are respec-
tively the &rst- and second-order smooth terms, and Osc1 · n−1=2 and Osc2 · n−1 are the
oscillatory terms. The smooth terms capture the systematic bias in the coverage as seen
in the examples in Section 2.1. A one-sided con&dence interval is called 2rst-order
probability matching if the &rst-order smooth term S1n−1=2 is vanishing and is called
second-order probability matching if both the &rst- and second-order smooth terms are
zero. See Ghosh (1994, 2001) for further details on probability matching and con&-
dence sets. See also the discussions in Brown et al. (2001).
We now give the two-term Edgeworth expansions for the four upper limit con&dence

intervals. Let 0¡�¡ 1 and assume that 	 is a &xed point in the interior of the
parameter spaces. That is, 0¡p¡ 1 in the binomial and negative binomial cases and
�¿ 0 in the Poisson case. Denote by ! and " respectively the density function and
the cumulative density function of a standard Normal distribution.

Theorem 1. Let zW be de2ned as in (38) in the appendix. Suppose n	 + n1=2
zW is
not an integer. Then the coverage probability of the Wald interval CIuW de2ned in
(3) satis2es

PW = P(	∈CIuW) = (1− �)− 1
6
(2�2 + 1)(1 + 2b∗	)
−1!(�)n−1=2

+Q1(	; zW)
−1!(�)n−1=2

+
{

− b∗
36
(8�5 − 11�3 + 3�)− 1

36
2
(2�5 + �3 + 3�)

}
!(�)n−1

+
{
1
6
(2�2 + 3)(1 + 2b∗	)Q1(	; zW) + Q2(	; zW)

}

×
−2�!(�)n−1 + O(n−3=2): (14)

Theorem 2. Suppose n	 − n1=2
� is not an integer. The coverage probability of the
score interval CIuS de2ned in (5) satis2es

PS = P(	∈CIuS) = (1− �) + 1
6
(�2 − 1)(1 + 2b∗	)
−1!(�)n−1=2

+Q1(	; �)
−1!(�)n−1=2

+
{

− b∗
36
(2�5 − 11�3 + 3�)− 1

72
2
(�5 − 7�3 + 6�)

}
!(�)n−1
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Fig. 5. Two-term Edgeworth expansion for the upper limit Wald interval for a binomial proportion with n=40
and � = 0:05. Left panel: The solid line is the true coverage, the dotted line is the two-term Edgeworth
expansion and the smooth curve is the non-oscillatory terms in the expansion. Right panel: oscillatory terms
in the Edgeworth expansion.

+
{
1
6
(3− �2)(1 + 2b∗	)Q1(	; �) + Q2(	;−�)

}

×
−2�!(�)n−1 + O(n−3=2): (15)

Remark. It is clear from (14) and (15) that both the Wald and score intervals are
not &rst-order probability matching. The &rst-order smooth terms − 1

6 (2�
2 + 1)(1 +

2b∗	)
−1!(�)n−1=2 in (14) and 1
6 (�

2 − 1)(1 + 2b∗	)
−1!(�)n−1=2 in (15) are the
main contributor of the systematic bias seen in the examples of Section 2.1. See
Fig. 5 in Section 4. On the other hand, two-sided intervals make compensating one
sided errors and the &rst-order smooth term is canceled. Thus &rst-order probability
matching has no obvious bearing on the coverage for the two-sided problem. This is
why the score interval has much better coverage performance in the two-sided case
than in the one-sided case.
The following gives a general expression for the two-term Edgeworth expansion of

the coverage probability of the Je4reys interval in all three cases.

Theorem 3. Denote by CIuJ the upper limit Je3reys prior interval as de2ned in (7)
in the binomial case, (8) in the negative binomial case, and (9) in the Poisson case.
Let zJ be de2ned as in (42) in the appendix. Suppose n	+ n1=2
zJ is not an integer.
Then the coverage probability of CIuJ satis2es

PJ = P(	∈CIuJ ) = (1− �) + Q1(	; zJ)
−1!(�)n−1=2 − 1
24
2

�!(�)n−1

+
[
1
3
(1 + 2b∗	)Q1(	; zJ) + Q2(	; zJ)

]

−2�!(�)n−1 + O(n−3=2): (16)

Theorem 4. Let z2 be de2ned as in (38) in the appendix. Suppose n	+ n1=2
z2 is not
an integer. Then the coverage probability of the second-order corrected interval CIu2
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de2ned in (10) satis2es

P2 = P(	∈CIu2) = (1− �) + Q1(	; z2)
−1!(�)n−1=2

+
{
1
3 (1 + 2b∗	)Q1(	; z2) + Q2(	; z2)

}

−2�!(�)n−1 + O(n−3=2): (17)

Recall that for the binomial case b∗ =−1, 	= p, and 
= (pq)1=2; for the negative
binomial case b∗=1, 	=p=q, and 
=p1=2q; and for the Poisson case b∗=0, 	=�, and

=�1=2. The Edgeworth expansions for the three speci&c distributions can be obtained
easily from Theorems 1–4 by plugging in corresponding b∗, 	, and 
.

Remark. The expansions for the lower limit intervals can be obtained by &rst replacing
� by 1−� and � by −� in the expansion for the coverage of the upper limit intervals,
and then subtracting it from 1.

Remark. Inversion of the likelihood ratio test is another common method for the con-
struction of con&dence procedures. Brown et al. (2002, 2003) show that the likeli-
hood interval performs very well in the two-sided problem. However, the one-sided
likelihood ratio interval is not &rst-order probability matching. The coverage contains
non-negligible &rst-order systematic bias. In addition, the likelihood ratio interval is
relatively diQcult to compute. On the other hand, by construction, the con&dence in-
terval given in Hall (1982) is &rst-order probability matching. However, it still contains
non-negligible second-order systematic bias in the coverage and does not perform well
for parameter values near the boundaries. Since these two con&dence intervals do not
perform as well as either the Je4reys interval or the second-order corrected interval, for
reason of space they are not discussed in detail in the present paper. See Cai (2003)
for more analysis on these two intervals.

4. Comparison of coverage probability

In this section, using the two-term Edgeworth expansions derived in Section 3, we
compare the coverage properties of the standard Wald interval CIuW, the score interval
CIuS, the Je4reys interval CI

u
J and the second-order corrected interval CI

u
2.

The Edgeworth expansions decompose the coverage probability into an oscillatory
component and a smooth component which captures the main regularity in the cov-
erage. Two-term Edgeworth expansions of the coverage are very accurate even for
relatively small and moderate n. The left panel of Fig. 5 plots the two-term Edgeworth
expansion and the exact coverage probability of the upper limit Wald interval for a
binomial proportion with n=40 and �=0:05. The two-term approximation is virtually
indistinguishable from the exact coverage probability when p is not too close to 0 or
1. The smooth curve in the plot is the non-oscillatory component in the Edgeworth
expansion which can be viewed as a smooth approximation to the coverage probabil-
ity. The right panel plots the oscillation terms in the Edgeworth expansion which vary
almost symmetrically around 0.
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The smooth terms in the Edgeworth expansion measure the systematic bias in the
coverage. They shall be used as the basis for comparison of coverage properties of the
four intervals. Denote the sum of the O(n−1=2) and O(n−1) smooth terms in the two
term expansions of the coverage probabilities PS, P2, PJ, and PW by BS, B2, BJ, and
BW, respectively. Then directly from (14) to (17), we have

B2 = 0; (18)

BS =
1
6
(�2 − 1)(1 + 2b∗	)
−1!(�)n−1=2

−
{
b∗
36
(2�5 − 11�3 + 3�) + 1

72
2
(�5 − 7�3 + 6�)

}
!(�)n−1; (19)

BJ =− 1
24
2

�!(�)n−1; (20)

BW =− 1
6
(2�2 + 1)(1 + 2b∗	)
−1!(�)n−1=2

−
{
b∗
36
(8�5 − 11�3 + 3�) + 1

36
2
(2�5 + �3 + 3�)

}
!(�)n−1: (21)

Comparison of the coeQcients of the n−1=2 and n−1 terms in (18)–(21) yields some
interesting conclusions. The coeQcients of the n−1=2 and/or the n−1 term in the ex-
pressions (18)–(21) determine the direction and the magnitude of the systematic bias
in the coverage probability of a speci&c interval.
First note that the signs of the &rst-order smooth term in (21) and (19) are di4erent.

This shows that the phenomenon observed in Figs. 1 and 2 that the systematic biases
for the Wald and score intervals are in the exact opposite directions is true in general
so long as �¿ 1. Note also that the coeQcient of the O(n−1=2) term in BW always
has a larger magnitude than the corresponding term in BS and hence CIuW has more
serious systematic bias than CIuS.
Now consider the three distributions separately. First the binomial case. In this case

the coeQcient b∗=−1. The O(n−1=2) bias term in the coverage of both the Wald and
score intervals changes sign at p = 1

2 . For p¡
1
2 , the score interval has systematic

O(n−1=2) positive bias and the Wald interval has serious O(n−1=2) negative bias; and
for p¿ 1

2 , the O(n
−1=2) bias term for the score interval becomes negative and that

for the Wald interval turns positive. The O(n−1) bias for the Je4reys interval is not
signi&cant. And by construction the interval CIu2 has both vanishing O(n

−1=2) and
O(n−1) bias terms.
Fig. 6 displays the systematic bias in coverage of each interval for the binomial

case with n = 40 and � = 0:05. It is clear that the coverage of the upper limit Wald
interval is seriously negatively biased for p¡ 1

2 and seriously positively biased for
p¿ 1

2 . The score interval CI
u
S does not perform well either. It behaves in the exact

opposite direction as the Wald interval; the coverage has a consistent positive bias for
p¡ 1

2 and a systematic negative bias for p¿
1
2 .



T. Tony Cai / Journal of Statistical Planning and Inference 131 (2005) 63–88 75

p

0.2 0.4 0.6 0.8

-0.04

-0.02

0.0

0.02
+

+
+
+
+
+
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Wald
+ Score

Jeffreys
2nd-Order Corrected

Fig. 6. Comparison of the non-oscillatory terms in the binomial case with n = 40 and � = 0:05.
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Fig. 7. Comparison of the non-oscillatory terms in the negative binomial and Poisson cases with n=40 and
� = 0:05. From top to bottom: BS, B2, BJ , and BW. Note that B2 is identically 0.

In the negative binomial case the coeQcient b∗ = 1 and in the Poisson case b∗ = 0.
Comparison of Eqs. (18)–(21) immediately gives the strict ordering of the systematic
bias of the coverage, from largest to smallest, of CIuS, CI

u
2, CI

u
J , and CI

u
W; the score in-

terval has systematic O(n−1=2) positive bias and the Wald interval has serious O(n−1=2)
negative bias. The alternative intervals CIu2 and CI

u
J both have vanishing O(n

−1=2) bias
term in the coverage and therefore a much less serious systematic bias problem. In
particular, by construction, the interval CIu2 has vanishing O(n

−1) bias term as well.
So P2 is centered at the correct nominal level (1−�), up to O(n−1) term. The O(n−1)
bias term of PJ is not zero, but is nearly vanishing. See Fig. 7 below.
Fig. 7 displays the systematic bias for the negative binomial and Poisson cases with

n=40 and �=0:05. It is transparent that there is a consistent serious negative bias in
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the coverage of the Wald interval in both cases. On the other hand, the coverage of
the score interval has a non-negligible positive systematic bias in these two cases.
These comparisons clearly demonstrate that for all three distributions the Je4reys and

second-order corrected intervals have superior coverage performance relative to both
the Wald and score intervals.

5. Expansions and comparisons for expected distance from the mean

In addition to the coverage probability, parsimony in length is also important. In
this section we provide an expansion for the expected distance from the mean of the
four upper limit intervals correct up to the order O(n−3=2). Similar to the Edgeworth
expansions for the coverage probability, the expansions for the expected distance reveal
interesting common structure.
The expansion for the expected distance includes terms of the order n−1=2, n−1

and n−3=2. The coeQcient of the n−1=2 term is the same for all the intervals, but the
coeQcients for the n−1 and n−3=2 terms di4er. So, naturally, the coeQcients of the n−1

and n−3=2 terms will be used as a basis for comparison of their expected length.

Theorem 5. Let U be a generic notation for the upper limit of any of the four
intervals, CIuW, CI

u
J , CI

u
2, and CIuS for estimating the mean 	. Then the expected

distance from the mean

E(U − 	) = �(	 + b∗	2)1=2n−1=2 + &1(�; 	)n−1 + &2(�; 	)n−3=2 + O(n−2); (22)

where

&1(�; 	) = 0 for CIuW (23)

=
(
1
3 �

2 + 1
6

) · (1 + 2b∗	) for CIuJ and CIu2 (24)

= 1
2 �

2 · (1 + 2b∗	) for CIuS (25)

and

&2(�; 	) =− 1
8�(	 + b∗	

2)−1=2 for CIuW (26)

= 1
72 [(2�

3 − 5�)(	 + b∗	2)−1=2

+(26�3 + 34�)b∗(	 + b∗	2)1=2] for CIuJ (27)

= 1
72 [(2�

3 − 2�)(	 + b∗	2)−1=2

+(26�3 + 34�)b∗(	 + b∗	2)1=2] for CIu2 (28)

= 1
72 [(9�

3 − 9�)(	 + b∗	2)−1=2 + 72�3b∗(	 + b∗	2)1=2] for CIuS: (29)
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It is interesting to note that between the two alternative intervals, up to an error of
order O(n−2), CIuJ is always slightly shorter than CI

u
2 across all three distributions.

First consider the binomial case. In this case there are two di4erent rankings of the
four con&dence intervals in terms of the expected length for p¡ 1

2 and p¿
1
2 . Denote

the expected distance from 	 of the upper limit of CIuW, CI
u
J , CI

u
2, and CI

u
S by LW, LJ,

L2 and LS, respectively.

Corollary 1. Consider the special binomial case. Then the expected distance of the
upper limit of CIuW, CI

u
J , CI

u
2, and CIuS from the mean 	 admit the expansions:

E(LW) = �(pq)1=2n−1=2 − 1
8�(pq)

−1=2n−3=2 + O(n−2);

E(LJ) = �(pq)1=2n−1=2 +
(
1
3�
2 + 1

6

)
(1− 2p)n−1 + 1

72 [(2�
3 − 5�)(pq)−1=2

−(26�3 + 34�)(pq)1=2]n−3=2 + O(n−2);

E(L2) = �(pq)1=2n−1=2 +
(
1
3�
2 + 1

6

)
(1− 2p)n−1 + 1

72 [(2�
3 − 2�)(pq)−1=2

−(26�3 + 34�)(pq)1=2]n−3=2 + O(n−2);

E(LS) = �(pq)1=2n−1=2+1
2�
2(1− 2p)n−1+1

8 [(�
3−�)(pq)−1=2−8�3(pq)1=2]n−3=2

+O(n−2):

The ranking of the expected distances depends on the value of p. Assume that
�¿ 1. For every p¡ 1

2 comparing the coeQcients in the O(n
−1) term in Corollary

1 immediately yields that the ranking is CIuW, CI
u
J , CI

u
2, and CI

u
S, from the shortest to

the longest. For p¿ 1
2 the ranking is CI

u
S, CI

u
J , CI

u
2, and CI

u
W, from the shortest to the

longest. For all 0¡p¡ 1, CIu2 is always slightly longer than the Je4reys interval and
the expected distances of these two intervals are always between those of the Wald
and score intervals.
Now consider the cases of Poisson and negative binomial distributions. In these two

cases there is an even stronger uniform ranking of the con&dence intervals in terms of
the expected distance from the mean pointwise for every value of the parameter.

Corollary 2. Consider the special Poisson case. Then the expected distance of the
upper limit of CIuW, CI

u
J , CI

u
2, and CIuS from the mean 	 admit the expansions:

E(LW) = ��1=2n−1=2 − 1
8��

− 1
2 n−

3
2 + O(n−2);

E(LJ) = ��1=2n−1=2 +
(
1
3�
2 + 1

6

)
n−1 + 1

72 (2�
3 − 5�)�−1=2n−3=2 + O(n−2);

E(L2) = ��1=2n−1=2 +
(
1
3�
2 + 1

6

)
n−1 + 1

36 (�
3 − �)�−1=2n−3=2 + O(n−2);

E(LS) = ��1=2n−1=2 + 1
2�
2n−1 + 1

8 (�
3 − �)�−1=2n−3=2 + O(n−2):
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Fig. 8. Expected distance of the upper limit of the four con&dence intervals from the mean 	 for n=30 and
� = 0:01. For all three distributions, from bottom to top, the expected distance of the upper limit of CIW,
CIuJ , CI

u
2, and CI

u
S. The expected distances of the upper limits of CI

u
J and CI

u
2 (dark lines in the middle) are

almost indistinguishable in the binomial and Poisson cases.

Hence, up to the error n−2, very interestingly, for every �¿ 0, the ranking of the
intervals is CIuW, CI

u
J , CI

u
2, and CI

u
S, from the shortest to the longest, as long as �¿ 1.

So we have a uniform ranking of the intervals for all �¿ 0.
The exact same ranking holds in the negative binomial case.

Corollary 3. Consider the upper limit con2dence intervals for 	=p=q in the negative
binomial case. Then the expected distance of the upper limit of CIuW, CI

u
J , CI

u
2, and

CIuS from the mean 	 admit the expansions:

E(LW) = �p1=2q−1n−1=2 − 1
8�p

−1=2qn−3=2 + O(n−2);

E(LJ) = �p1=2q−1n−1=2 +
(
1
3�
2 + 1

6

)
(1 + p)q−1n−1 + 1

72 [(2�
3 − 5�)p−1=2q

−(26�3 + 34�)p1=2q−1]n−3=2 + O(n−2);

E(L2) = �p1=2q−1n−1=2 +
(
1
3�
2 + 1

6

)
(1 + p)q−1n−1 + 1

72 [(2�
3 − 2�)p−1=2q

−(26�3 + 34�)p1=2q−1]n−3=2 + O(n−2);

E(LS) = �p1=2q−1n−1=2 + 1
2�
2(1 + p)q−1n−1

+
[
1
8 (�

3 − �)p−1=2q+ �3p1=2q−1
]
n−3=2 + O(n−2):

Fig. 8 plots the expected distance of the upper limit of the four con&dence intervals
from the mean 	 for n=30 and �=0:01. The values of p (for the binomial and negative
binomial cases) and � (for the Poisson case) vary from 1

6 to
1
3 . For these values of p

and � the ranking of the intervals from the shortest to the longest is CIuW, CI
u
J , CI

u
2,
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and CIuS for all three distributions. In the cases of binomial and Poisson distributions
the expected distances of CIuJ and CI

u
2 are almost indistinguishable.

Considering together with the coverage properties discussed in the earlier sections,
we can conclude that for all three distributions the expected distances of the upper limit
of the Wald and score intervals are either too short or too long, which is not desirable
in either case. The Je4reys and second-order corrected intervals are better alternatives.

6. One-sided hypothesis testing

The results on one-sided con&dence intervals discussed in the earlier sections have
direction implications on testing one-sided hypotheses. In the cases of the binomial,
negative binomial and Poisson distributions the score test occupies a particularly impor-
tant position in hypothesis testing. It is often the only test given in many introductory
textbooks. Due to the duality between the one-sided score interval and the one-sided
score test, the fact that the one-sided score interval contains signi&cant systematic bias
in the coverage probability implies that the actual size of the one-sided score test may
be far from the nominal level.
Recall that in testing the one-sided hypotheses:

H0: 	¿ 	0 versus Ha: 	¡	0 (30)

at the signi&cance level �, the score test rejects the null hypothesis whenever

n1=2( KX − 	0)
V 1=2(	0)

¡− �: (31)

The true size of the score test equals type I error probability under 	 = 	0, which is
the same as the non-coverage of the upper limit score interval 1− P	0 (	0 ∈CIuS).
Fig. 9 plots the size of the upper limit score test at the nominal � = 0:01 level for

a binomial proportion, negative binomial mean, and Poisson mean with n = 30. It is
clear that in all three cases the actual size not only oscillates as a function of 	, but
contains a serious systematic bias as well. In the binomial case, oscillations aside, the
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Fig. 9. The size of the upper limit score test at nominal � = 0:01 level with n = 30. From left to right,
binomial, negative binomial, and Poisson.
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Fig. 10. Actual sizes of the upper limit score, Je4reys, and second-order corrected tests (from left to right)
with nominal level � = 0:01 and n = 30. From top to bottom: binomial, negative binomial, and Poisson.

size is biased below the nominal level for p¡ 1
2 and biased above the nominal level

for p¿ 1
2 . In the cases of negative binomial and Poisson distributions, the score test is

very conservative. The size is consistently below the nominal level and the di4erence
is especially signi&cant in the negative binomial case. For small to moderate sample
size n, the actual size of the one-sided score interval can be far from the nominal
signi&cance level.
Just as inversion of hypothesis tests yields con&dence intervals, inversion of the

con&dence intervals also yields tests. In testing the one-sided hypotheses (30) a nominal
level � test can be obtained by rejecting H0 whenever the null value 	0 is not in a level
100(1 − �)% upper limit con&dence interval. We shall called the tests inverted from
the upper limit Je4reys interval and the second-order corrected interval the Je3reys
test and the second-order corrected test respectively.
Since all three distributions have monotone likelihood ratio, it follows from the

Karlin–Rubin Theorem (see, e.g., Casella and Berger, 1990, p. 370) that for testing
H0: 	¿ 	0 versus Ha: 	¡	0 a test that rejects H0 if and only if KX ¡c is a UMP
level / test, where / = P	0 ( KX ¡c).
The score, Je4reys, and second-order corrected tests can all be expressed in the form

of I( KX ¡c), thus all three are UMP tests at the level of their actual size. Therefore
the accuracy and performance of these tests can simply be measured by the size of the
test. One would prefer the test which has actual level closest to the nominal level.
Fig. 10 plots the sizes, as a function of the null value 	0, of the upper limit score,

Je4reys, and second-order corrected tests at the nominal �= 0:01 level for a binomial
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proportion, negative binomial mean, and Poisson mean with n= 30. In comparison to
the score test, it is clear that overall the Je4reys and second-order corrected tests have
actual sizes much closer to the nominal signi&cance level.

7. Discussion and conclusions

7.1. The Clopper–Pearson interval

In the previous sections we give a uni&ed treatment of the one-sided con&dence
intervals for the discrete Exponential family with a quadratic variance function which
consists of the binomial, negative binomial, and Poisson distributions. In the case of
binomial proportion, there is a well known “exact” interval, the Clopper–Pearson in-
terval, which has received special attention.
The one-sided Clopper–Pearson interval is the inversion of the one-sided binomial

test rather than its normal approximation. If X ∼ Bin(n; p) and X = x is observed,
then the upper limit Clopper–Pearson interval (Clopper and Pearson, 1934) is de-
&ned by CIuCP = [0; UCP(x)], where UCP(x), which is the solution in p to the equation
Pp(X 6 x) = �, equals the 1 − � quantile of a beta distribution Beta(x + 1; n − x).
Similarly, the lower limit Clopper–Pearson interval is de&ned by CIlCP = [LCP(x); 1],
where LCP(x), which is the solution in p to the equation Pp(X ¿ x) = �, equals the �
quantile of a beta distribution Beta(x; n− x + 1).
By construction, the Clopper–Pearson interval has guaranteed coverage probability

of at least 1−�. However, the actual coverage probability can be far above the nominal
level and the expected distance of the upper/lower limit from p is much larger than
those of Je4reys or the second-order corrected intervals unless n is very large. Therefore
the Clopper–Pearson interval is too conservative and is not a good choice for practical
use, unless strict adherence to the prescription that the coverage is at least 1 − � is
required. Fig. 11 compares the coverage probability and the expected distance from p
of the upper limit Clopper–Pearson and Je4reys intervals. The expected distance from
p of the upper limit of the Clopper–Pearson interval is about 12–18% larger than that
of the Je4reys interval.

7.2. Conclusions

We show through numerical and analytical calculations that the standard one-sided
Wald interval and to a slightly lesser degree the one-sided score interval are uniformly
poor in the binomial, negative binomial, and Poisson distributions. The results show that
the Je4reys and second-order corrected intervals provide signi&cant improvements over
both the Wald and score intervals. These two alternative intervals nearly completely
eliminate the systematic bias in the coverage probability. The one-sided Je4reys and
second-order corrected intervals can be resolutely recommended. In testing one-sided
hypotheses, the actual size of the score test deviate systematically from the nominal
signi&cance level. The inversion of the Je4reys and second-order corrected intervals
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Fig. 11. Coverage probability of the upper limit Clopper–Pearson interval (left panel) and the upper limit
Je4reys interval (middle panel); expected distance from p of the upper limit Clopper–Pearson interval (right
panel, dotted line) and the upper limit Je4reys interval (right, solid line) for a binomial proportion p with
n = 30 and � = 0:05.

yields UMP tests which have actual sizes much closer to the nominal level. The Je4reys
and second-order corrected tests are preferable to the one-sided score test.

Appendix A. Proofs

Except for the second-order corrected interval, most of the essential algebraic deriva-
tion is similar to that given in Brown et al. (2002, 2003) for the two-sided con&dence
intervals.
All three distributions under consideration are lattice distributions with the maximal

span of one. Formulas of Edgeworth expansion for lattice distributions can be found,
for example, in Esseen (1945) and Bhattacharya and Rao (1976). The following result
is from Brown et al. (2003).

Proposition 1. Let X1; X2; : : : ; Xn
iid∼F with F as one of the Bin(1; p), NBin(1; p), and

Poi(�) distributions. Denote Zn = n1=2(	̂ − 	)=
 and Fn(z) = P(Zn6 z). Then the
two-term Edgeworth expansion of Fn(z) is given as

Fn(z) ="(z) + p1(z)!(z)n−1=2 − Q1(	; z)
−1!(z)n−1=2 + p2(z)!(z)n−1

+{Q1(	; z)
p3(z) + Q2(	; z)}
−2z!(z)n−1 + O(n−3=2); (A.1)

where Q1 and Q2 are given as in (12) and

p1(z) = 1
6 (1− z2)(1 + 2b∗	)
−1;

p2(z) =− 1
36 (2z

5 − 11z3 + 3z)b∗ − 1
72 (z

5 − 7z3 + 6z)
−2;

p3(z) =− 1
6 (z

2 − 3)(1 + 2b∗	)
−1:
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If z = z(n) depends on n and can be written as

z = z0 + c1n−1=2 + c2n−1 + O(n−3=2);

where z0; c1 and c2 are constants, then

Fn(z) ="(z0) + p̃1(z)!(z0)n−1=2 − Q1(	; z)
−1!(z)n−1=2 + p̃2(z)!(z0)n−1

+{Q1(	; z)
p̃3(z0) + Q2(	; z)}
−2z0!(z0)n−1 + O(n−3=2); (A.2)

where

p̃1(z) = c1 + 1
6 (1− z20)(1 + 2b∗	)
−1; (A.3)

p̃2(z) = c2 − 1
2 z0c

2
1 +

1
6 c1(z

3
0 − 3z0)(1 + 2b∗	)
−1 + p2(z0); (A.4)

p̃3(z) = c1 − 1
6 (z

2
0 − 3)(1 + 2b∗	)
−1: (A.5)

Remark. In (A.2), the second O(n−1=2) and the second O(n−1) terms are oscillation
terms.

Proof of Theorems 1 and 4. We consider the coverage of a general upper limit interval
of the form:

CI∗ =
[
0;
X + s1
n− b∗s2 + �{V (	̂) + (r1V (	̂) + r2)n

−1}1=2n−1=2
]
; (A.6)

where s1, s2, r1 and r2 are constants. The con&dence intervals CIuW and CI
u
2 are special

cases of CI∗. Denote

A= n− b∗�2(1 + r1n−1)(1− b∗s2n−1)2;

B= 2n	 − 2(s1 + b∗s2	) + �2(1 + r1n−1)(1− b∗s2n−1)2;

C = n(	 − (s1 + b∗s2	)n−1)2 − r2�2n−1(1− b∗s2n−1)2:

By solving a quadratic equation, after some algebra, we have

P(	∈CI∗) = P
(
n1=2(	̂ − 	)



¿ z∗

)
;

where

z∗ =

(
B− √

B2 − 4AC
2A

− 	
)

−1n1=2: (A.7)
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Expanding z∗, one has

z∗ =−� − (s1 + b∗s2	 − 1
2�
2(1 + 2b∗	))
−1n−1=2 − {( 12 r1 + b∗�2 − b∗s2

)
�

− 1
2�(s1 + b∗s2	)(1 + 2b∗	)


−2 +
(
1
2 r2� +

1
8�
3) 
−2} n−1 + O(n−3=2):

(A.8)

Denote

c∗1 =−(s1 + b∗s2	 − 1
2�
2(1 + 2b∗	))
−1;

c∗2 =−{( 12 r1+b∗�2−b∗s2) �− 1
2�(s1+b∗s2	)(1 + 2b∗	)


−2+
(
1
2 r2�+

1
8�
3) 
−2} :

Then z∗ = −� + c∗1n−1=2 + c∗2n−1 + O(n−3=2). It follows from (A.2) that the coeQ-
cient of the O(n−1=2) non-oscillatory term in the Edgeworth expansion of the coverage
P(	∈CI∗) = 1− Fn(z∗) is

p∗
1 (z∗) =−p̃1(z∗) =−c∗1 + 1

6 (�
2 − 1)(1 + 2b∗	)
−1

=
{(
s1 − ( 13�2 + 1

6

))
+
(
s2 − 2 ( 13�2 + 1

6

))
b∗	
}

−1:

Thus, to make p∗
1 (z∗) vanishing for all 	, one needs

s1 = 1
6 (2�

2 + 1) and s2 = 1
3 (2�

2 + 1) (A.9)

With s1 and s2 given as in (A.9), one has

c∗2 =− 1
2�r1 +

1
3 (�

3 + 2�)b∗ − 1
2�


−2r2 + 1
24 (�

3 + 2)
−2:

It follows from (A.4) that the coeQcient of the O(n−1) non-oscillatory term in the
Edgeworth expansion of P(	∈CI∗) is

p∗
2 (z∗) =−p̃2(z∗) =−c∗2 − 1

36 (�
3 − 7�)b∗ + 1

72 (�
3 − �)
−2

= 1
2�
{
r1 − 1

18 (13�
2 + 17)b∗

}
+ 1

2�

−2 {r2 − 1

36 (2�
2 + 7)

}
:

Therefore we choose

r1 = 1
18 (13�

2 + 17)b∗ and r2 = 1
36 (2�

2 + 7) (A.10)

to make the O(n−1) non-oscillatory term vanishing.

• For the standard interval, we have zW de&ned as in (A.7) with s1=s2=r1=r2=0.
From (A.8) we have

zW =−� + 1
2�
2(1 + 2b∗	)
−1n−1=2 − (b∗ + 1

8

−2)�3n−1 + O(n−3=2):

Now, P(	∈CIuW) = 1− Fn(zW) and (14) follows from (A.2).
• For the second-order corrected interval, we have z2 de&ned as in (A.7) with
s1 = 1

6 (2�
2 + 1), s2 = 2s1, r1 = 1

18 (13�
2 + 17)b∗, and r2 = 1

36 (2�
2 + 7). It follows
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from (A.8) that

z2 =−� + 1
6(�

2 − 1)(1 + 2b∗	)
−1n−1=2

−{ 118 (7�3 + 5�)b∗ − 1
72 (�

3 − �)
−2)
}
n−1 + O(n−3=2):

Now (17) follows from (A.2).

Proof of Theorem 2. The Edgeworth expansion for P(	∈CIuS) is simple because

PS = P(	∈CIuS) = P
(
n1=2(	̂ − 	)



¿− �

)
:

And now (15) follows from (A.1).

A.1. Expansion for Je3reys prior intervals

We now prove Theorem 3. Denote the cdf of the posterior distribution of 3 (3= p
in the binomial and negative binomial case and 3=� in the Poisson case) given X = x
by F(·; x; n) and denote by B(�; x; n) the inverse of the cdf. Then

P(3∈CIuJ ) = P(36B(1− �;X; n)) = P(F(3;X; n)6 1− �):

Holding other parameters &xed, the function F(3; x; n) is strictly decreasing in x in all
three cases. So there exist a unique Zl = 4(1− �; 3) satisfying

F(3;Zl; n)6 1− � and F(3;Zl − 1; n)¿ 1− �:

Therefore

P(3∈CIuJ ) = P
(
n1=2( KX − 	)



¿ zJ

)

with

zJ = (4(1− �; 3)− n	)
−1n−1=2 (A.11)

Here zJ is de&ned implicitly in (A.11) through 4. The proof of (16) requires an asymp-
totic expansion for zJ. Using (A.29) in Brown et al. (2002) for the binomial case, and
(56) and (65) in Brown et al. (2003) respectively for the negative binomial and the
Poisson case, we have a uni&ed expression for the approximation of zJ:

zJ =−� + 1
6(�

2 − 1)(1 + 2b∗	)
−1n−1=2

− 1
72{(2�3 − 14�)b∗ − (�3 + 2�)
−2}n−1 + O(n−3=2): (A.12)

Now we can obtain expansion (16) by plugging in (A.12) into (A.2).
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A.2. Expansions for expected distance from the mean

We now prove Theorem 5. Denote below Zn = ( KX − 	)(	 + b∗	2)−1=2n1=2. Then
E(Zn) = 0 and E(Z2n ) = 1.

The interval CIuW: The expected distance of the upper limit of the Wald interval
CIuW from the mean 	 is

LW = KX + �( KX + b∗ KX 2)1=2n−1=2 − 	 = Zn(	 + b∗	2)1=2n1=2

+�(	 + b∗	2)1=2n−1=2(1 + Zn(1 + 2b∗	)(	 + b∗	2)−1=2n−1=2 + b∗Z2nn
−1)1=2;

on some algebra by using the de&nition of Zn. Hence,

LW = Zn(	+b∗	2)1=2n1=2+�(	+b∗	2)1=2n−1=2+1
2�Zn(1 + 2b∗	)n

−1

− 1
8Z

2
n (	+b∗	

2)−1=2�n−3=2+RW(Zn); (A.13)

where E(|RW(Zn)|)=O(n−2). see Brown et al. (2002) for more details. Now expansion
(22) follows from (A.13) on some algebra.

The interval CIuS: For the Rao score interval CI
u
S, the distance is

LS = ( KX+1
2�
2)(1−b∗�2n−1)−1+�(1−b∗�2n−1)−1( KX+b∗ KX 2+1

4�
2n−1)1=2n−1=2−	

= 1
2(1+2b∗	)�

2n−1+Zn(	+b∗	2)1=2n−1=2+�(	 + b∗	2)1=2(1 + b∗�2n−1)n−1=2

+ 1
2�Zn(1 + 2b∗	)n

−1 + 1
8 (�

3 − �)(	 + b∗	2)−1=2Z2nn−3=2 + RS(Zn);
where exactly as in (A.13) above, E(|RS(Zn)|) = O(n−2). Thus

E(LS) = 1
2 (1 + 2b∗	)�

2n−1 + �(	 + b∗	2)1=2(1 + b∗�2n−1)n−1=2

+1
8 (�

3 − �)(	 + b∗	2)−1=2n−3=2 + O(n−2)
which yields expressions (25) and (29).

The interval CIu2: Using the de&nition of Zn,

	̃ = (	 + Zn(	 + b∗	2)1=2n−1=2 + �n−1)(1− 2�b∗n−1)−1

and hence, after some algebra,

L2 = (1 + 2b∗	)�n−1 + Zn(1 + 2�b∗n−1)(	 + b∗	2)1=2n−1=2

+�(1 + 1
2�1n

−1)(	 + b∗	2)1=2n−1=2 + 1
2�Zn(1 + 2b∗	)n

−1

− 1
8�Z

2
n (	 + b∗	

2)−1=2n−3=2 + 1
2��2(	 + b∗	

2)−1=2n−3=2 + R2(Zn); (A.14)

where E(|R2(Zn)|) = O(n−2). Thus, &nally, from (A.14),

E(L2) = (1 + 2b∗	)�n−1 + �(1 + 1
2�1n

−1)(	 + b∗	2)1=2n−1=2

− 1
8�(	 + b∗	

2)−1=2n−3=2 + 1
2��2(	 + b∗	

2)−1=2n−3=2 + O(n−2)

which simpli&es to Eq. (28) on a few steps of algebra.
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The interval CIuJ : The upper limit of CI
u
J admit the general representation

KX + w1( KX )n−1 + {�( KX + b∗ KX 2)1=2n−1=2 + w2( KX )n−3=2}+ RJ(n);
where the remainder RJ(n) satis&es E(|RJ(n)|) = O(n−2), and

w1(	) = 1
6 (2�

2 + 1)(1 + 2b∗	);

w2(	) = 1
36 (	 + b∗	

2)−1=2{(�3 + 3�) + b∗(	 + b∗	2)(13�3 + 17�)}:
Thus, directly, the distance LJ of CIuJ satis&es

E(LJ) = 1
6 (2�

2 + 1)(1 + 2b∗	)n−1

+E[�( KX + b∗ KX 2)1=2n−1=2 + w2( KX )n−3=2] + O(n−2)

= �(	 + b∗	2)1=2n−1=2 + 1
6 (1 + 2b∗	)(2�

2 + 1)n−1

− 1
8�(	 + b∗	

2)−1=2n−3=2 + w2(	)n−3=2 + O(n−2)

which yields expressions (24) and (27) after some algebra.
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