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Abstract: Theoretical results in the functional linear regression literature have so

far focused on minimax estimation where smoothness parameters are assumed to

be known and the estimators typically depend on these smoothness parameters.

In this paper we consider adaptive estimation in functional linear regression. The

goal is to construct a single data-driven procedure that achieves optimality results

simultaneously over a collection of parameter spaces. Such an adaptive procedure

automatically adjusts to the smoothness properties of the underlying slope and

covariance functions. The main technical tools for the construction of the adaptive

procedure are functional principal component analysis and block thresholding. The

estimator of the slope function is shown to adaptively attain the optimal rate of

convergence over a large collection of function spaces.
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1. Introduction

Due to advances in technology, functional data now commonly arises in many

different fields of applied sciences including, for example, chemometrics, biomed-

ical studies, and econometrics. There has been extensive recent research on func-

tional data analysis. Much progress has been made on developing methodologies

for analyzing functional data. The two monographs by Ramsay and Silverman

(2002, 2005) provide comprehensive discussions on the methods and applications.

See also Ferraty and Vieu (2006).

Among many problems involving functional data, functional linear regression

has received substantial attention. Consider a functional linear model where one

∗In Memory of Peter G. Hall.
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observes a random sample {(Xi, Yi) : i = 1, . . . , n} with

Yi = a+

∫ 1

0
Xi(t)b(t)dt+ Zi, (1.1)

where the response Yi and the intercept a are scalars, the predictor Xi and

slope function b are functions in L2([0, 1]), and the errors Zi are independent

and identically distributed N(0, σ2) variables. The goal is to estimate the slope

function b(t) and the intercept a based on the sample {(Xi, Yi) : i = 1, . . . , n}.
Note that once an estimator b̂ of b is constructed, the intercept a can be estimated

easily by

â = Ȳ −
∫ 1

0
X̄(t)b̂(t)dt,

where Ȳ and X̄ are the averages of Yi and Xi respectively. We shall thus focus our

discussion in this paper on estimating the slope function b. The slope function

is of significant interest on its own right. For example, knowing where b takes

large or small values provides information about where a future observation x of

X will have greatest leverage on the conditional mean of y given X = x.

The problem of slope-function estimation is intrinsically nonparametric and

the convergence rate under the mean integrated squared error (MISE)

R(b̂, b) = E‖b̂− b‖22 = E
∫ 1

0

{
b̂(t)− b(t)

}2
dt (1.2)

is typically slower than n−1. Rates of convergence of an estimator b̂ to b have been

studied in, e.g., Ferraty and Vieu (2000); Cuevas, Febrero and Fraiman (2002);

Cardot and Sarda (2006); Li and Hsing (2007); Hall and Horowitz (2007). In

particular, Hall and Horowitz (2007) showed that the minimax rate of conver-

gence for estimating b under the MISE (1.2) is determined by the smoothness of

the slope function, and of the covariance function for the distribution of explana-

tory variables. Cai and Hall (2006) considered a related prediction problem and

Müller and Stadtmüller (2005) studied generalized functional linear models.

The theory on slope function estimation has so far focused on the mini-

max estimation where these smoothness parameters are assumed to be known.

The estimators typically depend on the smoothness parameters. Although mini-

max risk provides a useful uniform benchmark for the comparison of estimators,

minimax estimators often require full knowledge of the parameter space which

is unknown in practice. A minimax estimator designed for a specific parame-

ter space typically performs poorly over another parameter space. This makes

adaptation essential for functional linear regression.
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In the present paper we consider adaptive estimation of the slope function

b. The goal is to construct a single data-driven procedure that achieves opti-

mality results simultaneously over a collection of parameter spaces. Such an

adaptive procedure does not require the knowledge of the parameter space and

automatically adjusts to the smoothness properties of the underlying slope and

covariance functions. In Section 2, we construct a procedure for estimating the

slope function b using functional principal component analysis (PCA) and block

thresholding. The estimator is shown to adaptively achieve the optimal rate of

convergence simultaneously over a collection of function classes.

The main technical tools are functional principal component analysis (PCA)

and block thresholding. Functional PCA is a convenient and commonly used

technique in functional data analysis. See, e.g., Ramsay and Silverman (2002,

2005). Block thresholding was first developed in nonparametric function esti-

mation. It increases estimation precision and achieves adaptivity by utilizing

information about neighboring coordinates. The idea of block thresholding can

be traced back to Efromovich (1985) in estimating a density function using the

trigonometric basis. It is further developed in wavelet function estimation. See

Hall, Kerkyacharian and Picard (1998) for density estimation and Cai (1999) for

nonparametric regression. Cai, Low and Zhao (2009) used weakly geometrically

growing block size for sharp adaptation over ellipsoids in the context of the white

noise model. In this paper we shall follow the ideas in Cai, Low and Zhao (2009)

and use weakly geometrically growing block size for adaptive functional linear

regression. Our results show that block thresholding naturally connects shrink-

age rules developed in the classical normal decision theory with functional linear

regression.

The proposed block thresholding procedure is easily implementable. A simu-

lation study is carried out to investigate its numerical performance. In particular,

we compare its finite-sample properties with those of the non-adaptive procedure

introduced in Hall and Horowitz (2007). The results demonstrate the advantage

of the proposed procedure.

The paper is organized as follows. In Section 2, after basic notations and facts

on the spectral decomposition of the covariance function are reviewed, the block

thresholding procedure for estimating the slope function b is defined in Section

2.2. Section 3 investigates the theoretical properties of the block thresholding

procedure. It is shown that the estimator enjoys a high degree of adaptivity.

Section 4 discusses the numerical performance of the proposed estimator and

shows the advantage of the adaptive procedure. All the technical proofs are
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given in the supplement (Cai, Zhang and Zhou (2017)).

2. Methodology

Estimating the slope function b in function linear regression involves solving

an ill-posed inverse problem. The main difference with the conventional linear in-

verse problems is that the operator is not given in the functional linear regression.

A major technical step in the construction of the slope function estimator is to

estimate the eigenvalues and eigenfunctions of the unknown linear operator and

to bound the errors between the estimates and the estimands. Necessary techni-

cal tools for slope function estimation include functional analysis and statistical

smoothing. Specifically, our estimator is based on the functional principal com-

ponent analysis and block thresholding techniques. In this section we will begin

with spectral decomposition of the covariance function in terms of eigenvalues

and eigenfunctions. We then introduce in Section 2.2 a blockwise James-Stein

procedure to estimate the slope function b.

2.1. Spectral decomposition

Suppose we observe a random sample {(Xi, Yi) : i = 1, . . . , n} as in (1.1).

Let (X,Y, Z) denote a generic (Xi, Yi, Zi). Define the covariance function and

the empirical covariance function respectively as

K(u, v) = cov(X(u), X(v)),

K̂(u, v) =
1

n

n∑
i=1

{Xi(u)− X̄(u)}{Xi(v)− X̄(v)},

where X̄ = (1/n)
∑
Xi. The covariance function K defines a linear operator

which maps a function f to Kf given by (Kf)(u) =
∫
K(u, v)f(v)dv. We shall

assume that the linear operator with kernel K is positive definite.

Write the spectral decompositions of the covariance functions K and K̂ as

K(u, v) =

∞∑
j=1

θjφj(u)φj(v), K̂(u, v) =

∞∑
j=1

θ̂jφ̂j(u)φ̂j(v), (2.1)

where

θ1 > θ2 > · · · > 0, and θ̂1 ≥ θ̂2 ≥ · · · ≥ θ̂n+1 = · · · = 0 (2.2)

are respectively the ordered eigenvalue sequences of the linear operators with

kernels K and K̂, and {φj} and {φ̂j} are the corresponding orthonormal eigen-

function sequences. The sequences {φj} and {φ̂j} each forms an orthonormal

basis in L2([0, 1]).
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The functional linear model (1.1) can be rewritten as

Yi = µ+

∫
{Xi − E(X)} b+ Zi, i = 1, 2, . . . , n (2.3)

where µ = E(Yi) = a + E
∫
Xb. The Karhunen-Loève expansion of the random

function Xi − EX is given by

Xi − EX =

∞∑
j=1

xi,jφj , (2.4)

where the random variable xi,j =
∫

(Xi − EX)φj has mean zero and variance

Var(xi,j) = θj . In addition, the random variables xi,j are uncorrelated. Expand

the slope function b in the orthonormal basis {φj} as b =
∑∞

j=1 bjφj . Then the

model (2.3) can be written as

Yi = µ+

∞∑
j=1

xi,jbj + Zi, i = 1, 2, . . . , n (2.5)

and the problem of estimating the slope function b is transformed into the one

of estimating the coefficients {bj} as well as the eigenfunctions {φj}. Note that

in (2.5) µ and xi,j are unknown, and thus need to be estimated from the data.

The mean µ of Y can be estimated easily by the sample mean µ̂ = Ȳ . To

estimate the xi,j , we expand Xi − X̄ in the orthonormal basis {φ̂j} as

Xi − X̄ =

n∑
j=1

x̂i,jφ̂j for i = 1, 2, . . . , n, (2.6)

where the random variables x̂i,j =
∫

(Xi − X̄)φ̂j . Note that

n∑
i=1

x̂i,j =

n∑
i=1

∫
(Xi − X̄)φ̂j =

∫ { n∑
i=1

(Xi − X̄)

}
φ̂j = 0

and
1

n

n∑
i=1

x̂i,j x̂i,k =

∫∫
K̂(u, v)φ̂j(u)φ̂k(v) = θ̂jδj,k (2.7)

for all j and k, where δj,k is the Kronecker delta with δj,k = 1 if j = k and 0

otherwise. Since Ȳ = a+
∫ 1
0 X̄(t)b(t)dt+ Z̄, we have

Yi − Ȳ =

∫ (
Xi − X̄

)
b+ Zi − Z̄, i = 1, 2, . . . , n.

Hence

Yi − Ȳ =

n∑
j=1

x̂i,j b̌j + Zi − Z̄, i = 1, 2, . . . , n, (2.8)
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where b̌j =
∫
bφ̂j , and consequently b =

∑∞
j=1 b̌jφ̂j . Since the slope function b

is unknown, the coefficients b̌j are also unknown and need to be estimated. A

typical principal components regression approach is to replace “n” in (2.8) by a

constant m < n and estimate b̌j by ordinary least squares.

Since the “predictors” {x̂i,j}1≤j≤n in (2.8) are orthogonal to each other and∑n
i=1 x̂

2
i,j = θ̂jn from (2.7), for θ̂j 6= 0 we may estimate b̌j (or bj) by

b̃j = θ̂−1j n−1
n∑
i=1

(Yi − Ȳ )x̂i,j

= θ̂−1j n−1
n∑
i=1

(Yi − Ȳ )

∫ {
Xi (u)− X̄ (u)

}
φ̂j (u)

= θ̂−1j

∫
ĝ(u)φ̂j (u) = θ̂−1j ĝj , (2.9)

where

ĝ(u) = n−1
n∑
i=1

(Yi − Ȳ )
{
Xi(u)− X̄(u)

}
and ĝj =

∫
ĝφ̂j . (2.10)

It is expected that ĝ is approximately

g(u) = E ((Y − µ) [X(u)− E{X(u)}]) =

∫
K (u, v) b (v) dv.

Write g =
∑∞

j=1 gjφj . It is easy to check that bj = θ−1j gj . So the estimator b̃j =

θ̂−1j ĝj in (2.9) can be regarded as an empirical version of the true coefficient bj .

We shall construct an adaptive estimator of bj based on the empirical coefficients

b̃j by using a block thresholding technique.

2.2. A block thresholding procedure

Block thresholding techniques have been well developed in nonparametric

function estimation literature. See, e.g., Efromovich (1985), Hall, Kerkyacharian

and Picard (1998) and Cai (1999). In this paper we shall use a block thresholding

method with weakly geometrically growing block size for adaptive functional

linear regression. This method was used in Cai, Low and Zhao (2009) for sharp

adaptive estimation over ellipsoids in the classical white noise model.

The block thresholding procedures work especially well with homoscedastic

Gaussian data. However, in the current setting the empirical coefficients b̃j are

heteroscedastic with growing variances. We will see in Lemma 3 in Section S1

that the variance of b̃j is approximately σ2θ−1j n−1, getting large as j increases.

We shall thus rescale the b̃j to stabilize the variances.
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With this notation the block thresholding procedure can then be described

in detail as follows. Let

m̂∗ = arg min

(
m :

θ̂m

θ̂1
≤ n−1/3

)
. (2.11)

It will be shown in Section S1 that there is no need ever to go beyond the m̂∗-th

term under certain regularity conditions. We define

g̃j =

{
ĝj j < m̂∗,

0 otherwise,

and set

d̃j = θ̂
−1/2
j g̃j and dj = θ

−1/2
j gj . (2.12)

Lemma 4 in Section S1 shows that the variance Var(d̃j) = σ2/n{1 + o(1)} and

so the d̃j are nearly homoscedastic. We shall apply a blockwise James-Stein

procedure to d̃j to construct an estimator d̂j of dj and then estimate the bj by

b̂j = θ̂
−1/2
j d̂j .

The block thresholding procedure for estimating the slope function b has

three steps.

1. Divide the indices {1, 2, . . . , m̂∗} into nonoverlapping blocks B1, B2, . . . , BN

with Card(Bi) =
⌊
(1 + 1/ log n)i+1

⌋
.

2. Apply a blockwise James-Stein rule to each block. For all j ∈ Bi, set

d̂j =

(
1− 2Liσ

2

nS2
i

)
+

· d̃j , (2.13)

where S2
i =

∑
j∈Bi

d̃2j and Li = Card(Bi).

3. Set b̂j = θ̂
−1/2
j d̂j . The estimator of b is then given by

b̂(u) =

m̂∗∑
j=1

b̂jφ̂j(u) =

m̂∗∑
j=1

ρj b̃jφ̂j(u), (2.14)

where ρj = (1− 2Ljσ
2/nS2

i )+ for all j ∈ Bi is the shrinkage factor.

The block thresholding procedure given above is purely data-driven and is

easy to implement. In particular it does not require the knowledge of the rate

of decay of the eigenvalues θj or the coefficients bj of the slope function b. In

contrast, the minimax rate optimal estimator given in Hall and Horowitz (2007)

critically depends on the rates of decay of θj and bj .
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Remark 1. We have used the blockwise James-Stein procedure in (2.13) because

of its simplicity. In addition to the James-Stein rule, other shrinkage rules such

as the blockwise hard thresholding rule

d̂j = d̃j · I
(
S2
i ≥

λLiσ
2

n

)
can be used as well.

Remark 2. In the procedure we assume σ is known, since it can be estimated

easily. In (2.8), we may apply principal components regression by replacing “n”

in (2.8) with a constant m = log2 n. Let b̂j be the ordinary least squares estimate

of b̌j . It can be shown easily that
∑m

j=1 b̂jφ̂j is a consistent estimate of b. Then

we obtain a consistent estimate of σ2 with

σ̂2 =
1

n

n∑
i=1

Yi − Ȳ − m∑
j=1

x̂i,j b̂j

2

.

3. Theoretical Properties

We now turn to the asymptotic properties of the block thresholding proce-

dure for the functional linear regression under the mean integrated squared error

(1.2). The theoretical results show that the block thresholding estimator given in

(2.14) adaptively attains the exact minimax rate of convergence simultaneously

over a large collection of function spaces.

In this section we shall begin by considering adaptivity of the block thresh-

olding estimator over the following function spaces which have been considered

by Cai and Hall (2006) and Hall and Horowitz (2007) in the contexts of pre-

diction and slope function estimation. These function classes arise naturally in

functional linear regression based on functional principal component analysis.

For more details, see Cai and Hall (2006) and Hall and Horowitz (2007). See also

Hall and Hosseini-Nasab (2006).

Let β > 0 and M∗ > 0 be constants. Define the function class for b by

Bβ(M∗) =

b =

∞∑
j=1

bj φj , with |bj | ≤M∗ j−β for j = 1, 2, . . .

 . (3.1)

We can interpret this as a “smoothness class” of functions, where the functions

become “smoother” (measured in the sense of generalized Fourier expansions in

the basis {φj}) as β increases. We shall also assume the eigenvalues satisfy

M−10 j−α ≤ θj ≤M0 j
−α, θj − θj+1 ≥M−10 j−α−1 for j = 1, 2, . . . . (3.2)
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This condition is assumed such that we can possibly obtain a reasonable estimate

of the corresponding eigenfunction of θj . Our adaptivity result also requires

a condition on X. The process X is assumed to be left continuous (or right-

continuous) at each point and that, for each k > 0 and some ε > 0,

sup
t

E
{
|X (t)|k

}
< Mk and sup

s,t
E
{
|s− t|−ε |X (t)−X (s)|k

}
< Mk,ε (3.3)

and for each r ≥ 1,

sup
j≥1

θ−rj E
{∫

(X − EX)φj

}2r

≤M ′r (3.4)

for some constant M ′r > 0.

Let F (α, β,M) denote the set of distributions F of (X,Y ) that satisfies (3.1)

– (3.4) with M = {M∗,M0,Mk,Mk,ε,M
′
r}. The minimax rate of convergence for

estimating the slope function b over these smoothness classes has been derived

by Hall and Horowitz (2007). It is shown that the minimax risk satisfies

inf
b̂

sup
F(α,β,M)

E‖b̂− b‖22 � n−(2β−1)/(α+2β). (3.5)

The rate-optimal procedure given in Hall and Horowitz (2007) is based on fre-

quency cut-off. Their estimator is not adaptive; it requires the knowledge of α

and β. The following result shows that the block thresholding estimator b̂ given

in (2.14) is rate optimally adaptive over the collection of parameter spaces.

Theorem 1. Under the conditions (3.1) – (3.4) the block thresholding estimator

b̂ given in (2.14) satisfies, for all 2 < α < β,

sup
F(α,β,M)

E‖b̂− b‖22 ≤ Dn−(2β−1)/(α+2β) (3.6)

for some constant D > 0.

In addition to the function classes defined in (3.1), one can also consider

adaptivity of the estimator b̂ over other function classes. For example, consider

the function classes with a Sobolev-type constraint:

Sβ(M∗) =

b =

∞∑
j=1

bj φj , with

∞∑
j=1

j2β−1b2j ≤M∗ for j = 1, 2, . . .

 .

Let F1 (α, β,M) denote the set of distributions of (X,Y ) that satisfies (3.2) –

(3.4) and b ∈ Sβ(M∗).

Theorem 2. Under assumptions (3.2) – (3.4), the estimator b̂ given in (2.14)

satisfies, for all 2 < α < β,
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sup
F1(α,β,M)

E‖b̂− b‖22 ≤ Dn−(2β−1)/(α+2β). (3.7)

for some constant D > 0.

The proof of Theorem 2 is similar to the one for Theorem 1 with some minor

modifications.

Remark 3. Theorems 1 and 2 remain true if the shrinkage factor ρj in (2.14) is

replaced by ρj = (1− λLjσ2/nS2
i )+ for any constant λ > 1.

Remark 4. We have so far focused on block thresholding. A simpler term-

by-term thresholding rule can be used to yield a slightly weaker result. Let

b̃j = θ̂−1j ĝj as in (2.9). Set

b̂j =


sgn(b̃j)

(
|b̃j | − σ

√
2 log n

nθ̂j

)
+

for 1 ≤ j ≤ m̂∗,

0 for j > m̂∗.

(3.8)

Note that this estimator is equivalent to setting

d̂j =


sgn(d̃j)

(
|b̃j | − σ

√
2 log n

n

)
+

for 1 ≤ j ≤ m̂∗,

0 for j > m̂∗.

(3.9)

and b̂j = θ̂
−1/2
j d̂j . Now let b̂t(u) =

∑m̂∗

j=1 b̂jφ̂j(u) with b̂j given in (3.8). Then

under the conditions of Theorem 1, we have

sup
F(α,β,M)

E‖b̂t − b‖22 ≤ C
(

log n

n

)(2β−1)/(α+2β)

(3.10)

for some constant C > 0. In other words, the term-by-term thresholding estima-

tor b̂t achieves the rate of convergence with a logarithmic factor of the minimax

risk simultaneously over a collection of function classes. The same result holds

with F(α, β,M) replaced by F1(α, β,M) in (3.10).

4. Numerical Properties

The block thresholding procedure proposed in Section 2.2 is easy to imple-

ment. In this section, we investigate its numerical performance through a simula-

tion study in two settings. In particular, we compare its finite-sample properties

with those of the non-adaptive procedure introduced in Hall and Horowitz (2007).

In the first setting, the predictor Xi’s were observed continuously, and inde-

pendently distributed as
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Table 1. Comparison of MISE in the continuous X case.

n σ α β MISE(b̂)
MISE(b̂H,m)

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

100

1

1.1
2 0.032 0.113 0.053 0.038 0.033 0.031 0.032 0.034 0.038
2.5 0.027 0.080 0.039 0.029 0.028 0.028 0.030 0.034 0.038

1.5
2 0.024 0.097 0.034 0.023 0.021 0.024 0.032 0.046 0.059
2.5 0.016 0.055 0.019 0.015 0.017 0.025 0.033 0.044 0.058

2
2 0.027 0.092 0.029 0.019 0.023 0.039 0.063 0.097 0.133
2.5 0.014 0.044 0.014 0.013 0.024 0.038 0.060 0.093 0.127

2

1.1
2 0.046 0.149 0.058 0.047 0.049 0.059 0.077 0.097 0.118
2.5 0.038 0.080 0.041 0.041 0.047 0.060 0.074 0.094 0.113

1.5
2 0.042 0.102 0.045 0.037 0.056 0.076 0.114 0.170 0.220
2.5 0.029 0.059 0.028 0.033 0.050 0.073 0.108 0.160 0.212

2
2 0.042 0.087 0.036 0.045 0.069 0.129 0.227 0.354 0.500
2.5 0.028 0.046 0.021 0.038 0.088 0.145 0.226 0.340 0.552

500

1

1.1
2 0.007 0.091 0.027 0.014 0.009 0.008 0.007 0.007 0.008
2.5 0.005 0.045 0.012 0.007 0.006 0.005 0.006 0.006 0.007

1.5
2 0.007 0.084 0.022 0.010 0.007 0.007 0.008 0.009 0.012
2.5 0.004 0.038 0.008 0.005 0.004 0.004 0.006 0.007 0.104

2
2 0.010 0.087 0.022 0.010 0.008 0.010 0.012 0.016 0.024
2.5 0.005 0.038 0.007 0.004 0.005 0.008 0.013 0.018 0.024

2

1.1
2 0.014 0.093 0.028 0.016 0.014 0.015 0.017 0.021 0.026
2.5 0.009 0.045 0.013 0.009 0.010 0.011 0.013 0.016 0.021

1.5
2 0.014 0.089 0.024 0.014 0.013 0.018 0.023 0.035 0.043
2.5 0.008 0.042 0.010 0.008 0.010 0.014 0.021 0.030 0.043

2
2 0.017 0.083 0.023 0.015 0.017 0.025 0.043 0.079 0.118
2.5 0.009 0.041 0.009 0.009 0.015 0.026 0.041 0.068 0.097

X =
∑
j

γjWjφj(t), for t ∈ [0, 2],

where γj = (−1)j+1j−α/2, {φj}∞j=1 = {1, sin(πt), cos(πt), sin(2πt), cos(2πt), . . . }
is the Fourier series with period 2, and Wj ’s are i.i.d. standard normal vari-

ables. In addition, the slope function b was taken to be b(t) =
∑

j j
−βφj(t)

and the errors Zi were distributed as normal N(0, σ2). To show the advantage

of the adaptive procedure, we compared our estimator b̂ with that of Hall and

Horowitz (2007), denoted by b̂H,m, which was shown to be minimax optimal but

not adaptive. In the construction of their estimator b̂H,m, one needs to specify

the optimal cut-off index m, which requires the knowledge of the smoothing pa-

rameters that are usually unknown in practice. We compared the MISE (1.2)

between our adaptive procedure and their method with different values of m

chosen from {1, 2, . . . , 8}. Similar to the setting in Hall and Horowitz (2007),

we took a range of values for (σ, n, α, β) in our simulation study. Specifically,
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Table 2. Comparison of MISE in the discrete X case.

n σ α β MISE(b̂)
MISE(b̂H,m)

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

100

1

1.1
2 0.036 0.131 0.059 0.042 0.036 0.035 0.035 0.038 0.043
2.5 0.030 0.088 0.040 0.031 0.031 0.033 0.034 0.038 0.042

1.5
2 0.032 0.097 0.040 0.031 0.029 0.033 0.042 0.053 0.063
2.5 0.021 0.057 0.024 0.020 0.021 0.028 0.037 0.045 0.055

2
2 0.030 0.101 0.034 0.026 0.028 0.036 0.048 0.065 0.086
2.5 0.017 0.048 0.017 0.018 0.028 0.039 0.052 0.074 0.100

2

1.1
2 0.052 0.124 0.064 0.053 0.054 0.064 0.075 0.087 0.108
2.5 0.044 0.091 0.050 0.043 0.047 0.054 0.068 0.086 0.111

1.5
2 0.048 0.099 0.046 0.043 0.056 0.077 0.109 0.139 0.187
2.5 0.036 0.061 0.032 0.039 0.050 0.070 0.096 0.133 0.173

2
2 0.046 0.102 0.042 0.046 0.074 0.116 0.189 0.257 0.350
2.5 0.031 0.053 0.029 0.043 0.072 0.122 0.180 0.250 0.335

500

1

1.1
2 0.008 0.094 0.027 0.014 0.010 0.009 0.008 0.009 0.010
2.5 0.006 0.044 0.013 0.008 0.007 0.006 0.007 0.007 0.008

1.5
2 0.009 0.090 0.026 0.013 0.009 0.009 0.009 0.010 0.012
2.5 0.005 0.043 0.010 0.006 0.005 0.006 0.007 0.009 0.011

2
2 0.012 0.086 0.023 0.011 0.010 0.010 0.013 0.018 0.022
2.5 0.006 0.040 0.009 0.005 0.006 0.009 0.012 0.017 0.022

2

1.1
2 0.015 0.090 0.028 0.017 0.014 0.015 0.017 0.020 0.024
2.5 0.010 0.047 0.014 0.010 0.010 0.012 0.015 0.019 0.023

1.5
2 0.016 0.089 0.025 0.016 0.014 0.017 0.022 0.029 0.037
2.5 0.009 0.043 0.011 0.009 0.011 0.017 0.024 0.032 0.040

2
2 0.018 0.085 0.025 0.017 0.019 0.029 0.041 0.058 0.076
2.5 0.010 0.041 0.010 0.010 0.014 0.021 0.031 0.046 0.063

(σ, n, α, β) was chosen from the set {1, 2}× {100, 500}× {1.1, 1.5, 2.0}× {2, 2.5}.
All the results were based on 200 Monte Carlo replications for each parameter

setting and the MISEs of different procedures are recorded in Table 1.

The choices of X, b and parameters (σ, n, α, β) in the second setting are the

same as those for the first, except that each Xi was observe discretely on an

equally spaced grid of 41 points on [0, 2], with i.i.d. additive N(0, 4) random

noise. We used a Fourier basis smoother to estimate functions Xi’s from the

discrete data. Table 2 summarizes the averaged MISEs of the proposed block

thresholding method and the method of Hall and Horowitz (2007) with different

cut-off index m, computed by averaging over 200 Monte Carlo simulations. It

is clear from these results that both procedures are robust against discretization

and random errors.

The results in both Table 1 and Table 2 show that the MISEs of the method

proposed by Hall and Horowitz (2007) are sensitive to the choice of cut-off index
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m. The optimal choice of m is usually unknown in practice and needs to be

tuned via empirical method such as cross validation. In contrast, our proposed

method is purely data-driven and adaptive to different degrees of smoothness.

Both tables demonstrate the advantage of the proposed adaptive procedure. The

performance of the proposed adaptive method is as good as, if not better than,

the method of Hall and Horowitz (2007) with the optimally chosen m.

Supplementary Materials

Supplement Cai, Zhang and Zhou (2017) includes the proofs of the main

results as well as some technical lemmas.
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