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Proof of Lemma 2. Without loss of generality, we assume that EX = 0 and Var(X;) =1
for 1 < i < p. We first prove (i). Let

n

~ 1 ~ 17 1~ n
Oij = o Z [inXk:j - Uij] with & = 3 3 Xei X

k=1

We shall show that for any M > 0, there exists a constant C such that

P(max|d; — b| > C1/logp/n) = O™ 1)

To prove (1), we write

1 _ . _ . _._ 12
4o [ C XX - XX+ 2X’Xﬂ} . 2)
n

By the simple inequality s?¢* < e% for s > 0, we have EXZe!Xnil < €, Kyt72 for t < n'/2,
It follows from the inequality (24) and (C1) that for any M > 0, there exists a constant

Cy such that

P(mZaX|Xi] > C'Q\/logp/n> — O(p™M). (3)
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Let

Viij = X Xegs Yiij = XiiXeg,  Xiy = X IH{| Xs| < C3/log(p + n)},

where Cj satisfies C2n > M + 1. Then for any Cy > 0,

P(mgx ) iykij > C'4n> + npmlaxP<|Xi| > C34/log(p + n))
k=1

> Can) +O(p™). (4)

“ k=1
= P(m.ax ‘ ZYW
“ k=1

Let t = 7(log(n+p)) /2 and = ((M+2)log p)'/? in Lemma 1 with 7 > 0 sufficiently small.

)!/?(Ee*@7Xk)/2 = O(n). By (C1) and p < exp(n'/?),

We have B2 = O(1)nmax; ;(EY};
we can let Cy be sufficiently large such that Cyn > 2C; B,z and C; > 2max;; EXF|Xy;|. It

follows from Lemma 1 that

P(Inax‘jg:jiw
" k=1

> 0471) ‘ i(ykij — EYij)| > 0471/2)
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Combining (3)-(5), we see that for any M > 0, there exists C5 > 0 such that

J n

1 iy 1
P(maxﬁ‘ > X}i-ijXj‘ > Cs ng) =0(p™). (6)
k=1

Similar inequalities can be proved for other terms in (2), and hence (1) is proved.

Write

1 - -
Oij — 0i5 = - [(inij)2 - E(inij)Z] — 04 (03)? — (G55 — 0))*.

ij ij
By Lemma 1 and (C1), we see that
P((max & — o5 > Cov/logp/n) = O™). (7)

Take t = 7(log(n + p))~" and = = (M + 2)logp)"/? in Lemma 1. Since p = exp(o(n'/?)),

we have ne > Ciy/nx for any € > 0. Thus by some similar truncation arguments in (4) and
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(5), it can be shown that for any € > 0,
P((max ‘— [ > [(XuiXi)? - E(XuiXiy)?] | 2 £) = 0™). (8)
Combining (1), (7) and (8) yields that for any € > 0 and M > 0,
P(migmﬂéij — 03] + 105 — 05|} > 5) =0(p™). 9)
By (13) and Var(X;) = 1, we see that min; ; 6;; > 7o which implies
P(Hlll]néw > 7'0/2) >1-0(p™). (10)
By (1), (3) and (10), it is easy to show that

P(max|aw — 02J|/«91/ > 5\/logp/n>
ij

<P ( max {(”éij)_l/2’ Z(inij o
k=1

P } > 5\/ 1 — C7y/logp/n) logp>

+0(p™") (11)

with some C; > 0 and any M > 0. Applying Theorem 2.2 and equation (2.2) in Shao

(1999) to the second probability in (11), we have for § > 0,

P(max|aw~ - O'U|/91/2 > 5\/logp/n> ((log p)~/2p0F2).

To prove (ii), we only need to show (1), (3) and (8) hold under (C2) with O(p~™) being

replaced by O(p™™ 4+ n=/%). Let
Xpi = XpiI{| X1i| < (n/(logn)?)/4}.

Then we have

P(In?XIXiI > 02\/logp/n> < P(IﬂgXIXn:(Xm — EXyi)| > 2‘102\/n10gp)

k=1
npmax P(|Xu| = (n/(logn)*)"*)
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— OGpM +), (12)

where in the last inequality we used Bernstein’s inequality (cf. Bennett (1962)) and (C2).

Recall Yj; and define Ykij =X ,fz)?kj Using Bernstein’s inequality again, we have

n
P < max ’ g Yiij
ij
k=1

> 2,1(34”) + O(n~/%)

v

> C4n> < P(m.ax ’ i(yfkw‘ — EYyyj)
k=1

= O(p™ +n=%).

Therefore, (6) holds under (C2). Replacing O(p~™) with O(p~ 4 n~/%), the inequalities
(7) and (8) can be similarly proved. Finally, applying Theorem 2.2 and (2.2) in Shao (1999)

to the second probability in (11), we complete the proof of (ii). &

Proof of Lemma 4. Let s; = Msy(p) with M > 0 being a sufficiently large number. Let

Ag‘?--jsl = ML {163 | = Anigi (6)},

By ={j:oy=0;j#i}.
We will show that for any 6 > v/2,
PV Uiy e Al ) = O™ (13)

for some Cs > 0, which implies that with probability 1 — O(p~%M), for each i, there
are at most s; nonzero numbers of {|G;;|;7 € B;} and by Lemma 2, they are of order
O(max; 09/logp/n). This together with (44) proves (36). Let D denote the subset of
{j1," -+ ,Js, } such that the random variables {X; : i € D} are pairwise uncorrelated. Let
k = max{Card(D)} be the largest number of X;’s with j € {ji, -+, s, } such that they

are uncorrelated. Suppose the lower bound for k is ky. Then we can write the set

{(jl,“' 7.j81) :.jh'" aj51 € Bl} = Uzlzko{<j17"' aj81) :jla"' 7j51 € Bi,maX{C'ard(D)} = k}

= UzlszBiJg. (14)



As in the proof of Theorem 3, we can show that ky > M. The number of elements in B;

is no more than (ks)*'C}. Define

> 6y/nlogp}.

where Ylm = Qi;i/QXlinjk. To prove (13), we only need to show that for any ¢ > V2,

P( Uf:l Uj1--~jsleBiA§'?---jsl> = O(p_C(SM) (15)

for some Cs > 0. Without loss of generality we assume that EX; = 0 and EX fk = 1. By

Lemma 1, we have for any € > 0,
i n
for any M > 0. Thus it suffices to prove that for any ¢ > v/2,

D P(f_ﬁck) = O(p~ M),

=1 ji-js; €B;

where

. :{ et XiiXi,

V2 Xi

Note that X; and {Xj,, ..., X, } areindependent. So by (14) and conditioning on {Xj;, 1 <

> 5\/logp .

[ < n}, we can get
p S1 S1 )
> 2 P(NG) <Y (k) O ™2 = 0
=1 j1~~~jSIEBi k=1 k=ko
for some Cs > 0. This proves (13).

To prove (37), we have for any M > 0 in (36),

S log p
EIIS*(6) =0l < Choxmsg(p) -

) X lo
SEIS(6) — Sal3TIS(0) — Solle > s maxasalp) (2E2))



lo
< C,sxmse(p)—— P

R lo
2|20 = Dol B{IIE7(6) = Bolla > Cro maxoso(p) (22 )}

A . lo
SOES(6) — B — SlBIIS(0) — Sall > O g maxofsalp) (222 .

It is easy to show that E||X, — 3|3 < co max;(0%)*p®/n?, where ¢y is an absolute constant.

Note that max; E9 < ¢omax;(02)%. Then by Lemma 2,

p
E[[S7(0) = T = Soll3 < o max(of)'p* + Emlax(z M (6))°)

< compety (4 +(22)’

+cop” max EXni; (0 )I{|0;; — 03] > max(c%)?}

1 2 1 2
< CHlaX(O'?i)4(p5 +p5< ng> +p5< ng> p—M>.
7 n n
This implies that for M =5 + £71,

E[[S(6) — Zoll3

IN

lo
C (83(1?)—5]) + pP/2m M2 1ogp>

log p
< Cshp)=t.

Proof of Lemma 5. Take | = [p™] with 2¢9+7%/2 < 75 < 1. Then there exist independent
variables Xj,, ..., X;,, where ig =i and 4y,--- ,i; € B; = {j : O'ZQ» = 0;7 # i}. To prove the
result, it suffices to prove (38). In fact, by (38) and the inequality || A||; > max;(3-7_, af;)'/?

for a symmetric matrix A = (a;;), we have with probability tending to 1,

Sk € lo 1/2 € lo 1/2
|3*(7) — Zoll2 > Cp 0(%) > Cp 0/230(p)(ﬂ> _

n

Split the set {41, , 4} into p*® subsets Hy, -« , H2e, with the same cardinality [p™~2<].

Note that 7 — 2¢p > 72/2. By Lemma 2, it suffices to show that for some € > 0,

P(mm' {‘ ZX;“X;W > T—i—e)\/mgp} > 1) — 1, (16)

]€m




where we assume that EX; = 0 and EX ]2 = 1. As in the proof of Lemma 4, it suffices to

show that for some € > 0, P(minim >jen,, 1H{C5} > 1) — 1, where

C, { 2kt XYy

V ZZ:I Xlgz

By conditioning on {Xy;; 1 < k < n}, we can get

> (T+e)\/@}.

P( U CJ) > 1= (1—p P22l _ O(pM)
JjE€EHMm

> 1— exp ( . |Hm|p—(7—+2e)2/2> o O(p_M),

where |H,,| = [p™%®°]. This implies (16) by letting € satisfy 7 — 2¢y > (7 + 2¢)?/2. &
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