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CHIME: CLUSTERING OF HIGH-DIMENSIONAL GAUSSIAN
MIXTURES WITH EM ALGORITHM AND ITS OPTIMALITY1

BY T. TONY CAI, JING MA AND LINJUN ZHANG

University of Pennsylvania

Unsupervised learning is an important problem in statistics and machine
learning with a wide range of applications. In this paper, we study cluster-
ing of high-dimensional Gaussian mixtures and propose a procedure, called
CHIME, that is based on the EM algorithm and a direct estimation method
for the sparse discriminant vector. Both theoretical and numerical properties
of CHIME are investigated. We establish the optimal rate of convergence for
the excess misclustering error and show that CHIME is minimax rate opti-
mal. In addition, the optimality of the proposed estimator of the discriminant
vector is also established. Simulation studies show that CHIME outperforms
the existing methods under a variety of settings. The proposed CHIME pro-
cedure is also illustrated in an analysis of a glioblastoma gene expression data
set and shown to have superior performance.

Clustering of Gaussian mixtures in the conventional low-dimensional
setting is also considered. The technical tools developed for the high-
dimensional setting are used to establish the optimality of the clustering pro-
cedure that is based on the classical EM algorithm.

1. Introduction. Clustering analysis, which aims to partition unlabeled data
into homogeneous groups, is an ubiquitous problem in statistics and machine learn-
ing with a broad range of applications, including pattern recognition, disease diag-
nostics and information retrieval (see [6, 19] and the references therein). A number
of clustering algorithms have been proposed in the literature. The well-known k-
means and k-medians algorithms [8] are centroid-based. Hierarchical clustering
[37] builds a hierarchy of clusters based on the empirical measures of dissimilar-
ity among sets of observations. Clustering algorithms have also been developed
and analyzed under the probabilistic mixture model framework [14, 31]. Among
the possible probability distributions for the mixture components, the Gaussian
distribution is the most commonly used for both theoretical and computational
considerations [7, 15, 23], and has been widely used in a range of applications for
clustering and discriminant analysis [16, 30].
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In the present paper, we consider clustering of data generated from Gaussian
mixtures with the focus on the high-dimensional setting. We begin with the fol-
lowing mixture of two p-dimensional Gaussian distributions with equal covariance
matrices:

Y ∼
{

1 with probability 1 − ω∗,
2 with probability ω∗,

and

Z | Y = k ∼ Np

(
μ∗

k,�
∗)

, k = 1,2.

(1.1)

In clustering, Z is observable and Y is not. For identifiability, we assume ω∗ ∈
(0,1/2]. Suppose we have n unlabeled observations z(i) (i = 1, . . . , n) generated
independently and identically from the mixture in (1.1), that is,

(1.2) z(1),z(2), . . . ,z(n) i.i.d.∼ (
1 − ω∗)

Np

(
μ∗

1,�
∗) + ω∗Np

(
μ∗

2,�
∗)

.

The goal is to cluster z(i) (i = 1, . . . , n) into two groups. Although the conven-
tional low-dimensional setting will also be considered later, we are particularly
interested in the high-dimensional setting where the dimension p can be much
larger than the sample size n.

Clustering analysis is closely connected to classification analysis where the
goal is to construct a classifier for future unlabeled observations based on the ob-
served labeled data. In the ideal case where the parameter θ∗ = {ω∗,μ∗

1,μ
∗
2, �∗}

is known, the optimal classification procedure is the Fisher’s linear discriminant
rule

(1.3) Gθ∗(z) =

⎧⎪⎪⎨
⎪⎪⎩

1,

(
z − μ∗

1 + μ∗
2

2

)
�β∗ ≥ log

(
ω∗

1 − ω∗
)
,

2,

(
z − μ∗

1 + μ∗
2

2

)
�β∗ < log

(
ω∗

1 − ω∗
)
,

where β∗ = �∗δ∗, �∗ = (�∗)−1 and δ∗ = μ∗
1 − μ∗

2. Let � be the cumulative
distribution function of the standard normal distribution. Fisher’s rule given in
(1.3) achieves the optimal misclassification error

Ropt(Gθ∗) := E
[
I
(
Gθ∗(Z) �= Y

)]
= (

1 − ω∗)
�

(
1

�
log

ω∗

1 − ω∗ − 1

2
�

)

+ ω∗�̄
(

1

�
log

ω∗

1 − ω∗ + 1

2
�

)
,

(1.4)

where � = √
(δ∗)��∗δ∗ and �̄(·) = 1 − �(·); see, for example, [1].

In practice, the parameters ω∗,μ∗
1,μ

∗
2 and �∗ are unknown and a data driven

method is needed. In the supervised case where the sample labels of z(i) are known,
a common approach in the low-dimensional setting is to simply plug the sample
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values in (1.3). Driven by a wide range of applications, recent focus in clustering
and classification has shifted to the high-dimensional setting where p can be much
larger than n. In this case, the sample covariance matrix may not even be invertible
and it is difficult to estimate the precision matrix �∗. [9, 25] proposed to directly
estimate the discriminant direction β∗ = �∗δ∗. More specifically, let μ̂k be the
sample mean for class k (k = 1,2) and �̂ be the pooled sample covariance matrix.
Assuming that β∗ is sparse, one can estimate β∗ directly through the regularized
�1 minimization

(1.5) β̂ = arg min
β∈Rp

{
1

2
β��̂β − β�(μ̂1 − μ̂2) + λn‖β‖1

}
,

where λn is a tuning parameter. The classification rule is obtained by using (1.3)
with β∗ replaced by β̂ , μ∗

k replaced by μ̂k for k = 1,2, and ω∗ replaced by the sam-
ple proportion. This algorithm is easy to implement and avoids estimation of �∗.

For unsupervised learning, the class labels are not observed. Compared with
the classification analysis, clustering high-dimensional Gaussian mixtures is sig-
nificantly more complicated, both in terms of the algorithm and in terms of the
theoretical analysis. It is not easy to estimate the parameters ω∗,μ∗

1,μ
∗
2 and �∗

in the high-dimensional case. In the classical low-dimensional setting, commonly
used methods for estimating the parameters include the method of moments [28],
spectral method [21], the maximum likelihood and the Expectation-Maximization
(EM) algorithm [4, 29].

In this paper, we introduce CHIME, a clustering procedure for high-dimensional
Gaussian mixtures based on the EM algorithm together with the direct estimation
idea introduced in [9]. The method uses the posterior probability of z(i) in class
k as the “sample label” of z(i) and efficiently estimates the parameters via the
EM algorithm. A key component of the proposed method is to directly estimate
and update the discriminant direction β∗ in each iteration through the regularized
�1 minimization algorithm (1.5). The resulting estimates are subsequently used to
yield the discriminant rule as in (1.3). Instead of restricting both the mean vec-
tors and the precision matrix to be sparse, CHIME only requires sparsity of the
discriminant vector β∗.

Both theoretical and numerical properties of the CHIME algorithm are studied.
Our analysis first obtains the rate of convergence for estimating β∗ under the �2
norm loss, and the convergence rate of the expected excess mis-clustering error
R(ĜCHIME)−Ropt(Gθ∗) [the misclustering error is defined later in (2.1)]. Further-
more, minimax lower bounds are obtained. The upper and lower bounds together
establish the rate optimality of the estimator β̂ and the CHIME procedure. Specif-
ically, we show that

R(ĜCHIME) − Ropt(Gθ∗) 	 s logp

n
,
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where s is the sparsity of the discriminant vector β∗, and prove that this rate is op-
timal. To the best of our knowledge, this is the first optimality result for clustering
of high-dimensional Gaussian mixtures and the first construction of a rate-optimal
clustering procedure.

In addition to its theoretical optimality, CHIME is computationally easy to im-
plement. The updates of ω̂ and μ̂k in the M-step of the EM algorithm can be calcu-
lated analytically, and the update of β̂ can be implemented via linear programming.
Simulation results show that CHIME outperforms existing clustering methods and
achieves performance comparable to that of (1.5), which requires the additional la-
bel information. The effectiveness of CHIME is also illustrated through an analysis
of a glioblastoma gene expression data set, and CHIME yields the smallest error
when clustering heterogeneous patients into two distinct subtypes of glioblastoma.

Although the focus of the present paper is on the high-dimensional setting, we
also consider clustering of low-dimensional Gaussian mixtures via the CLOME
procedure. The technical tools developed for the high-dimensional setting can be
used to establish the optimality for the general low-dimensional setting where the
covariance matrix is not necessarily the identity matrix.

Our proposed clustering method together with its theoretical optimality guaran-
tees extends the literature on clustering of high-dimensional Gaussian mixtures. [2]
considered a special case of (1.1) with �∗ = σ 2Ip , ω∗ = 1/2, and provided both
lower and upper bounds, on the misclustering error for sparse δ∗, but the upper
bound is not tight. [36] also focused on the special case �∗ = σ 2Ip and ω∗ = 1/2,
studied the performance of the high-dimensional EM algorithm and established the
convergence rate for the estimator of the sparse mean vector. [21] considered the
special case where �∗ = Ip and studied the statistical limits of clustering when the
signals are “rare and weak”. A phase transition diagram for the IF-PCA method
is given in [22]. [3] extended the results in [2] to allow for a general covariance
matrix �∗ and directly estimated the discriminant vector β∗ via the LPD rule [9].
Using the initial estimates of μ∗

1,μ
∗
2 and �∗ provided by [18], they established an

upper bound for the misclustering error as well as recovery of the support of sparse
β∗ under regularity conditions. Compared to the procedure in [36], our proposed
CHIME yields a sparse estimate of β∗ without the need of truncation, nor does it
require sample splitting across iterations.

The rest of the paper is organized as follows. The proposed procedure, CHIME,
for clustering high-dimensional Gaussian mixtures is described in detail in Sec-
tion 2. The theoretical properties are analyzed in Section 3. Both upper and lower
bounds are obtained. Together they establish the optimality of CHIME as well
as the estimator of discriminant vector β∗. Section 4 considers clustering low-
dimensional Gaussian mixtures based on the classical EM algorithm and estab-
lishes the optimality of the clustering procedure by modifying our analysis for
the high-dimensional setting. A simulation study is given in Section 5 where we
compare the performance of CHIME to other existing clustering methods in the
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literature. Section 6 uses a real data application to illustrate the merit of CHIME.
Section 7 discusses extensions to the multiclass setting. The proofs of the main
results are given in Section 8. Proofs of other results together with additional tech-
nical details as well as additional simulations are provided in the Supplementary
Material [11].

2. Methodology. In this section, we present in detail the clustering procedure
CHIME under the two-component Gaussian mixture model (1.2).

We begin with notation. Throughout the paper, X,Y,Z, . . . denote random vec-
tors and x,y,z, . . . denote their realizations. For a, b ∈ R, we denote by a ∧ b =
min{a, b} and a ∨ b = max{a, b}. For n ∈ N, [n] denotes the set {1,2, . . . , n}.
For a vector x ∈ R

p , the usual vector �0, �1, �2 and �∞ norms are denoted re-
spectively by ‖x‖0,‖x‖1,‖x‖2 and ‖x‖∞. Here, the �0 norm counts the number
of nonzero entries in a vector. We use supp(x) to denote the support of the vec-

tor x. The Frobenius norm of a matrix A = (aij ) is defined as ‖A‖F =
√∑

i,j a2
ij .

The matrix �1 and �2 norms are defined, respectively, as ‖A‖1 = sup‖x‖1=1 ‖Ax‖1
and ‖A‖2 = sup‖x‖2=1 ‖Ax‖2. The matrix �0 norm is defined similarly to the
vector �0 norm as ‖A‖0 = |{(i, j) : aij �= 0}|, where | · | denotes the cardinal-
ity here. The vector �∞ norm on matrix A is |A|∞ = maxi,j |Aij |. For a sym-
metric matrix A, we use λmax(A) and λmin(A) to denote respectively the largest
and smallest eigenvalue of A. We say A  0 if A is positive definite. The in-
ner product between two matrices A and B is defined as 〈A,B〉 = tr(A�B).
For a set A, we use Ac to denote its complement, and use I (A) to denote
its corresponding indicator function. For a positive integer s < p, let 
(s) =
{u ∈ R

p : 2‖uSC‖1 ≤ 4‖uS‖1 + 3
√

s‖u‖2, for some S ⊂ [p] with |S| = s}. For a
vector x ∈ R

p and a matrix A ∈ R
m×p , we define ‖x‖2,s = sup‖y‖2=1,y∈
(s) |x�y|

and ‖A‖2,s = sup‖y‖2=1,y∈
(s) ‖Ay‖2. For two sequences of positive numbers an

and bn, an � bn means that for some constant c > 0, an ≤ cbn for all n, and an 	 bn

if an � bn and bn � an. Finally, we use c0, c1, c2,C1,C2, . . . to denote generic pos-
itive constants that may vary from place to place.

2.1. The Gaussian mixture model. Suppose we have n observations
{z(1), . . . ,z(n)} generated independently and identically from the p-dimensional
Gaussian mixture model in (1.2) without knowing labels (y1, . . . , yn), and wish to
cluster the observations {z(1), . . . ,z(n)} into two groups. The accuracy of a cluster-
ing rule G : z(i) → {1,2}, i = 1, . . . , n, is measured by the expected misclustering
error,

(2.1) R(G) = min
π∈P2

E
[
I
(
G(z) �= π(y)

)]
,

where P2 = {π : [1,2] → [1,2]} is a set of permutation function, and y is the latent
label of a future observation z.
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As mentioned in the Introduction, for this clustering problem, it is important to
first estimate the parameters ω∗,μ∗

1,μ
∗
2 and �∗ in (1.2). In the classical setting

where p is much smaller than n, it has been shown that the maximum likelihood
estimator (MLE) performs well under mild conditions [4]. The joint log-likelihood
of the data z(i) (i = 1, . . . , n) can be written as

(2.2) L(ω,μ1,μ2,�;z) = 1

n

n∑
i=1

log
{
(1−ω)f

(
z(i) | μ1,�

)+ωf
(
z(i) | μ2,�

)}
,

where f (· | μk,�) represents the density function of Np(μk,�). The MLE maxi-
mizes the joint log-likelihood function L(ω,μ1,μ2,�;z).

When p is large, direct optimization of the log-likelihood in (2.2) becomes
infeasible due to the nonconvexity of the objective function L(ω,μ1,μ2,�;z).
Moreover, the MLE does not even exist in the high-dimensional setting where
p � n. In this paper, we propose to explore the sparsity of the discriminant vector
β∗ as in [9] for the supervised case by noting that the discriminant rule in (1.3) de-
pends on �∗ only through β∗. Further, we adopt the EM algorithm [13] to address
the nonconvexity of the joint log-likelihood.

2.2. A clustering procedure based on the EM algorithm. To simplify the no-
tation, under the mixture model (1.2), we denote θ = (ω,μ1,μ2,�), and let
β = �(μ1 − μ2) with � = �−1. For a given θ , we use Eθ and Pθ to denote the
expectation and probability under the model (1.2) with respect to the parameter θ .
In addition, sometimes we write Eθ∗ , Pθ∗ as E and P when there is no ambiguity.

Note that if the true labels y = {yi}ni=1 ∈ {1,2}n were observed together with
z = {z(i)}ni=1, the log-likelihood of the complete data is given by

LC(θ;y,z) = 1

n

n∑
i=1

2∑
k=1

I (yi = k)
{
logf

(
z(i) | μk,�

) + logPθ (yi = k)
}
.

To address the nonconvexity of the joint log-likelihood, we use the EM al-
gorithm, which iterates between two goals: classification given the parameters,

and estimation given the labels. In the t th iteration, given the estimated θ̂
(t) =

(ω̂(t), μ̂
(t)
1 , μ̂

(t)
2 , �̂(t)) from the previous step, the E-step can be interpreted as clas-

sifying the observed data z(i) by assuming the true parameter is θ̂
(t)

. The posterior
probability of the ith sample in class 2 given the observed data z(i) can be calcu-
lated as

γ
θ̂

(t)

(
z(i)) = P

θ̂
(t)

(
yi = 2 | z(i))

= ω̂(t)

ω̂(t) + (1 − ω̂(t)) exp{(�̂(t)(μ̂
(t)
2 − μ̂

(t)
1 ))�(z(i) − μ̂

(t)
1 +μ̂

(t)
2

2 )}
.

(2.3)
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We then calculate the expectation of the log-likelihood, with respect to the condi-

tional distribution of y given z under the current estimate of the parameters θ̂
(t)

,
as

Qn

(
θ | θ̂ (t)) = E

θ̂
(t)

[
logLC(θ;y,z) | z]

= − 1

2n

n∑
i=1

{(
1 − γ

θ̂
(t)

(
z(i)))(z(i) − μ1

)��
(
z(i) − μ1

)
+ γ

θ̂
(t)

(
z(i))(z(i) − μ2

)��
(
z(i) − μ2

)}
+ 1

n

n∑
i=1

{(
1 − γ

θ̂
(t)

(
z(i))) log(1 − ω) + γ

θ̂
(t)

(
z(i)) logω

}

+ 1

2
log |�|.

The M-step proceeds by maximizing Qn(θ | θ̂
(t)

) given γ
θ̂

(t) (z(i)), and is inter-
preted as parameter estimation given the labels. The maximizer,

(2.4) θ̂
(t+1) = Mn

(
θ̂

(t)) = arg max
θ

Qn

(
θ | θ̂ (t))

,

can be calculated analytically. We now derive the exact analytic form for the M-
step in the t th iteration, which is used to obtain updates of ω,μ1,μ2 and �. It is
straightforward to define and calculate

ω̂(t+1) = ω̂
(
θ̂

(t)) = 1

n

n∑
i=1

γ
θ̂

(t)

(
z(i)),(2.5)

μ̂
(t+1)
1 = μ̂1

(
θ̂

(t)) =
{
n −

n∑
i=1

γ
θ̂

(t)

(
z(i))}−1{

n∑
i=1

(
1 − γ

θ̂
(t)

(
z(i)))z(i)

}
,(2.6)

μ̂
(t+1)
2 = μ̂2

(
θ̂

(t)) =
{

n∑
i=1

γ
θ̂

(t)

(
z(i))}−1{

n∑
i=1

γ
θ̂

(t)

(
z(i))z(i)

}
.(2.7)

This leads to a solution for �̂(t+1) given by

�̂(t+1) = �̂
(
θ̂

(t))
= 1

n

n∑
i=1

{(
1 − γ

θ̂
(t)

(
z(i)))(z(i) − μ̂

(t+1)
1

)(
z(i) − μ̂

(t+1)
1

)�
+ γ

θ̂
(t)

(
z(i))(z(i) − μ̂

(t+1)
2

)(
z(i) − μ̂

(t+1)
2

)�}
.

(2.8)

Note that in the high-dimensional setting where p � n, �̂(t+1) is singular and
cannot be used directly in (1.3) and (2.3) to obtain a clustering rule and γ (z(i)). In-
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stead of estimating the covariance matrix �∗, we estimate the discriminant vector

β∗ directly. The update β̂
(t+1)

can be obtained through the regularized �1 mini-
mization

(2.9) β̂
(t+1) = arg min

β∈Rp

{
1

2
β��̂(t+1)β − β�(

μ̂
(t+1)
1 − μ̂

(t+1)
2

) + λ(t+1)
n ‖β‖1

}
,

where λ
(t+1)
n is the tuning parameter. It is shown in the Supplementary Material

[11] that the sequence λ
(t+1)
n = κt · C1

d2,s (θ̂
(0)

,θ∗)√
s

+ (1−κt+1

1−κ
)Cλ

√
logp

n
, for some

constants C1,Cλ > 0, d2,s is defined later in (3.1) and κ ∈ (0,1/2) is an appro-
priate choice for tuning parameters. In practice, λ

(t+1)
n can be chosen by cross

validation.
As a result, in the high-dimensional setting, the update of γ

θ̂
(t) (z(i)) in the E-step

is different from (2.3) and proposed to be

γ
θ̂

(t)

(
z(i)) := P

θ̂
(t)

(
yi = 2 | z(i))

= ω̂(t)

ω̂(t) + (1 − ω̂(t)) exp{(β̂(t)
)�(z(i) − μ̂

(t)
1 +μ̂

(t)
2

2 )}
.

(2.10)

Given a suitable initialization, the EM algorithm iterates between the E-step and
M-Step as described above, and terminates in, say T0, steps. Once the final esti-
mates of θ∗ and β∗ are obtained, the clustering rule can be constructed by plugging
them into the Fisher’s rule (1.3). We call this procedure CHIME for Clustering of
HIgh-dimensional Gaussian Mixtures with the EM, which is summarized in Al-
gorithm 1.

REMARK 1. CHIME requires the initialization θ̂
(0)

to be reasonably good to

ensure the convergence of θ̂
(t)

to an optimum near the true parameters θ∗. We ad-
dress the issue of initialization in Section 3. The total number of iterations T0 needs
to be specified. It is shown in Section 3 that T0 	 logn is sufficient to yield the op-

timal convergence rate for β̂
(T0)

. In practice, it is recommended to run Algorithm 1

until the distance between θ̂
(t+1)

and θ̂
(t)

is less than a prespecified tolerance level.
In addition, Algorithm 1 requires specifying the contraction constant κ as well as
constants C1 and Cλ. The choice of the tuning parameter in the form of λ

(0)
n and

(2.11) is necessary for establishing convergence of β̂
(T0)

to the true parameter β∗,
and will be discussed in detail in Section 3.

3. Theoretical analysis. In this section, we study the properties of the esti-

mator β̂
(T0)

and the performance of the CHIME clustering rule ĜCHIME proposed
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Algorithm 1 Clustering of HIgh-dimensional Gaussian Mixtures with the EM
(CHIME)

1: Inputs: Initializations ω̂(0), μ̂
(0)
1 , μ̂

(0)
2 and �̂(0), maximum number of itera-

tions T0, and a constant κ ∈ (0,1). Set

β̂
(0) = arg min

β∈Rp

{
1

2
β��̂(0)β − β�(

μ̂
(0)
1 − μ̂

(0)
2

) + λ(0)
n ‖β‖1

}
,

where the tuning parameter λ
(0)
n = C1 · (|ω̂| ∨ ‖μ̂(0)

1 − μ̂
(0)
2 ‖2,s ∨

‖�̂(0)‖2,s)/
√

s + Cλ

√
logp/n.

2: for t = 0,1, . . . , T0 − 1 do

3: E-Step: Evaluate Qn(θ | θ̂ (t)
) with γ

θ̂
(t) (z(i)) defined in (2.10).

4: M-Step: Update ω̂(t+1), μ̂
(t+1)
1 , μ̂

(t+1)
2 , and �̂(t+1) via (2.5), (2.6), (2.7)

and (2.8), and β̂
(t+1)

via

β̂
(t+1) = arg min

β∈Rp

{
1

2
β��̂(t+1)β − β�(

μ̂
(t+1)
1 − μ̂

(t+1)
2

) + λ(t+1)
n ‖β‖1

}
,

with

(2.11) λ(t+1)
n = κλ(t)

n + Cλ

√
logp

n
.

5: end for
6: Output ω̂(T0), μ̂

(T0)
1 , μ̂

(T0)
2 and β̂

(T0)
.

7: Construct the clustering rule

ĜCHIME(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1,

{
z − μ̂

(T0)
1 + μ̂

(T0)
2

2

}
�β̂

(T0) ≥ log
(

ω̂(T0)

1 − ω̂(T0)

)
,

2,

{
z − μ̂

(T0)
1 + μ̂

(T0)
2

2

}
�β̂

(T0)
< log

(
ω̂(T0)

1 − ω̂(T0)

)
.

in Algorithm 1. We first establish the rates of convergence for the estimation and
misclustering error and then provide matching minimax lower bounds. These re-
sults together show the optimality of CHIME as well as the proposed estimator of
the discriminant vector β∗.

We first introduce the parameter space. For parameters θ = (ω,μ1,μ2,�) and
θ̃ = (ω̃, μ̃1, μ̃2, �̃), define their �2,s distance by

(3.1) d2,s(θ, θ̃) = |ω − ω̃| ∨ ‖μ1 − μ̃1‖2,s ∨ ‖μ2 − μ̃2‖2,s ∨ ∥∥(� − �̃)β̃
∥∥

2,s .



CHIME 1243

We shall write d2,s(θ) for d2,s(θ ,0), and consider the following parameter space:

�p(s, cω,M,Mb) = {
θ = (ω,μ1,μ2,�) :

μ1,μ2 ∈ R
p,� ∈ R

p×p,�  0,‖β‖0 ≤ s,

ω ∈ (cω,1 − cω),M−1 ≤ λmin(�) ≤ λmax(�) ≤ M,

‖β‖1 ≤ Mb

}
.

(3.2)

This is a natural parameter space to consider. The condition on the eigenvalues of
� is standard. For example, it has been used in [5, 10] and [12] for estimation of
precision matrices, covariance matrices and regression coefficients, respectively.
Condition on ‖β‖1 were also similarly used in [27] and [32] for discriminant anal-
ysis.

3.1. Upper bounds. We need two technical conditions before stating the prop-
erties of the clustering algorithm.

Recall that in (1.4), � =
√

(μ∗
1 − μ∗

2)
�(�∗)−1(μ∗

1 − μ∗
2) is the Mahalanobis

distance between μ∗
1 and μ∗

2 with covariance matrix �∗, and can be interpreted
as the signal-to-noise ratio. For constants c0, c1,Cb > 0 and c0 ≤ cω, c1 < 1, the
contraction basin Bcon(θ

∗; c0, c1,Cb, s) is defined as

Bcon
(
θ∗; c0, c1,Cb, s

) = {
θ = (ω,μ1,μ2,�) :

μ1,μ2 ∈ R
p,� ∈ R

p×p,�  0,

ω ∈ (c0,1 − c0), (1 − c1)�
2 <

∣∣δ1(β)
∣∣, ∣∣δ2(β)

∣∣,
σ 2(β) < (1 + c1)�

2,

β − β∗ ∈ 
(s),
∥∥β − β∗∥∥

1 ≤ Cb�,∥∥μ1 − μ∗
1
∥∥

2,s ,
∥∥μ2 − μ∗

2
∥∥

2,s ≤ Cb�
}
,

(3.3)

where δ1(β) = β�(μ∗
1 − μ1+μ2

2 ), δ2(β) = β�(μ∗
2 − μ1+μ2

2 ), and σ(β) =√
β��∗β .

The following conditions are needed to establish the convergence of β̂
(T0)

.

(C1) The initial value θ̂
(0)

satisfies that

d2,s

(
θ̂

(0)
, θ∗) ∨ ∥∥β̂(0) − β∗∥∥

2 ≤ r�, β̂
(0) − β∗ ∈ 
(s)

with r <
|c0−cω|

�
∧

√
9M+16c1−

√
9M

4 ∧
√

c1
M

∧ Cb

5
√

s
.

In fact, condition (C1) guarantees that θ (t) ∈ Bcon(θ
∗; c0, c1,Cb, s) for t ≥ 0

in Algorithm 1, which is shown in Lemma A.2 and proved in the Supplementary
Material [11]. We will discuss in Section 3.2 an initialization algorithm whose
output satisfies Condition (C1).
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(C2) The signal-to-noise ratio � satisfies that

(3.4) � > C(c0, c1,M,Cb),

where C(c0, c1,M,Cb) is a constant that only depends on the c0, c1, M and Cb,
and is given in (C.24) in the Supplementary Material [11].

Before we state the main results, we introduce two technical lemmas that char-
acterize the properties of the population version of the proposed CHIME algorithm
under Conditions (C1) and (C2). We define the respective population version of
M-step as follows.

Let M(θ) = (ω(θ),μ1(θ),μ2(θ),�(θ)) denote the population version of
Mn(θ), the estimator evaluated in (2.4). More specifically,

(3.5) M(θ) = arg max
θ̃

Q(θ̃ | θ) := arg max
θ̃

Eθ∗
[
Qn(θ̃ | θ )

]
.

By definition, M(θ) can be analytically expressed as

ω(θ) = E
[
γθ (Z)

]
,

(3.6)
μ1(θ) = E[(1 − γθ (Z))Z]

E[1 − γθ (Z)] , μ2(θ) = E[γθ (Z)Z]
E[γθ (Z)] ,

�(θ) = E
[(

1 − γθ (Z)
)(

Z − μ1(θ)
)(

Z − μ1(θ)
)�

(3.7)
+ γθ (Z)

(
Z − μ2(θ)

)(
Z − μ2(θ)

)�]
.

Using the above definition of the population version updates, we then introduce
the following two lemmas, Lemma 3.1 characterizes the linear convergence of the
population EM updates, and Lemma 3.2 captures the distance between the sample
and population version estimates. These two lemmas are the key steps in the proof
of the main result Theorem 3.1.

LEMMA 3.1 (Contraction on the population iteration). Suppose θ∗ ∈
�p(s, cω,M,Mb). If � > C(c0, c1,M,Cb), where C(c0, c1,M,Cb) is given in
(C.24) in the Supplementary Material [11]. Then there exists 0 < κ0 < 1

2∨(16M)
,

such that for θ ∈ Bcon(θ
∗; c0, c1,Cb, s),

(3.8) d2
(
M(θ), θ∗) ≤ κ0 · (

d2,s

(
θ, θ∗) ∨ ∥∥β − β∗∥∥

2

)
,

where d2(θ , θ̃) = |ω − ω̃| ∨ ‖μ1 − μ̃1‖2 ∨ ‖μ2 − μ̃2‖2 ∨ ‖(� − �̃)β̃‖2.

REMARK 2. This theorem implies that

d2,s

(
M(θ), θ∗) ≤ κ0 · (

d2,s

(
θ , θ∗) ∨ ∥∥β − β∗∥∥

2

)
.

LEMMA 3.2 (Uniform concentration inequality). Suppose θ∗ ∈
�p(s, cω,M,Mb) with cω ∈ (0,1) and M,Mb universally bounded. Under the
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condition (C1), there exists a constant Ccon > 0, such that with probability at least
1 − o(1),

sup
θ∈Bcon(θ

∗;c0,c1,Cb,s)

d2,s

(
Mn(θ),M(θ)

) ≤ Ccon

√
s logp

n
;

sup
θ∈Bcon(θ

∗;c0,c1,Cb,s)

∥∥(
�̂(θ) − �(θ)

)
β∗∥∥∞ ≤ Ccon

√
logp

n
.

The above two lemmas imply that at each iteration, θ̂
(t)

converges geometrically
to the truth θ∗, until their distance is indistinguishable with the statistical error,
whose rate is characterized by Lemma 3.2.

In addition, we point out that the inequality in (3.8) quantifies the contraction
w.r.t. the �2,s -norm of the distance between the population EM update and the true
parameter θ∗. This contraction property is different from the ones used in [4, 36,
39]. Consequently, our subsequent analysis differs from theirs. Indeed, existing
works use the �2 or �∞-norm of the distance between the EM update and the
true parameter to define the contraction. The advantage with the �2,s -norm is that
it characterizes a more refined sparsity-based difference, which converges at the
rate

√
s logp/n by Lemma 3.2. The �2 or �∞-norm used in previous works is

not suitable for our purpose and requires stronger assumptions to obtain the same
convergence rate in Theorem 3.1. In addition, Lemma 3.1 is established based on
the key observation that each term of M(θ̂) and its corresponding Taylor expansion
around the truth θ∗ involves either β̂ or β∗ − β̂ , both of which lie in the region

(s), leading to a sharper Cauchy–Schwarz inequality by using the �2,s norm. See
Section C in the Supplementary Material [11] for more details.

We are now ready to state the first main result. The following theorem shows

that under Conditions (C1) and (C2), the estimate β̂
(T0)

provided by Algorithm 1
converges to the true parameter β∗.

THEOREM 3.1. Suppose we observe n i.i.d. samples {z(1), . . . ,z(n)} from
model (1.2) with the true parameter θ∗ ∈ �p(s, cω,M,Mb), for some constant
cω ∈ (0,1) and universally bounded constants M,Mb > 0 and s = o(

√
n/ logp).

Assume that conditions (C1) and (C2) hold with r satisfying
√

s logp/n = o(r).

Then there exist constants Cd,Cλ > 0, κ ∈ (0,1/2), such that the output β̂
(T0)

of
Algorithm 1 with tuning parameters Cd,Cλ, κ satisfies, with probability 1 − o(1),

∥∥β̂(T0) − β∗∥∥
2 � κT0d2,s

(
θ̂

(0)
, θ∗) +

√
s logp

n
.

Consequently, if T0 � (− log(κ))−1 log(n · d2,s(θ̂
(0)

, θ∗)), then

(3.9)
∥∥β̂(T0) − β∗∥∥

2 �
√

s logp

n
.
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The proof of Theorem 3.1 relies on Lemmas 3.1 and 3.2. The idea of proving
Theorem 3.1 by establishing the contraction and uniform concentration properties
is similar to that in [4] for the conventional low-dimensional setting. However,
establishing such results in the high-dimensional setting is quite challenging. The
proof of Lemmas 3.1 and 3.2 are involved and are given in the Supplementary
Material [11].

REMARK 3. In comparison with the results in [36, 39], which consider
the high-dimensional EM algorithm under the special Gaussian mixture model
1
2Np(−μ∗, σ 2Ip) +1

2Np(μ∗, σ 2Ip), Theorem 3.1 establishes a faster convergence
rate under a more general model. In fact, [36] and [39] show the convergence rate
‖μ̂ − μ∗‖2 �

√
s logp logn/n for their estimator μ̂ and require sample splitting.

In the present paper, we remove the logn factor and establish that ‖β̂(T0) −β∗‖2 �√
s logp/n by using a uniform concentration inequality (Lemma 3.2), and thus

avoid the need for sample splitting. The idea of using uniform concentration re-
sults is similar to that in [4], but the techniques to prove this uniform concentration
is much more involved in the high-dimensional setting.

We now turn to the performance of the clustering rule given by Algorithm 1. For

ease of presentation, we denote the final output θ̂
(T0)

and β̂
(T0)

of Algorithm 1 by θ̂

and β̂ , respectively. Recall that in Algorithm 1, after obtaining the final estimates
ω̂, μ̂1, μ̂2 and β̂ , we construct the following clustering rule:

(3.10) ĜCHIME(z) =

⎧⎪⎪⎨
⎪⎪⎩

1, (z − μ̂)�β̂ ≥ log
(

ω̂

1 − ω̂

)
,

2, (z − μ̂)�β̂ < log
(

ω̂

1 − ω̂

)
,

where μ̂ = (μ̂1 + μ̂2)/2. By (2.1), we obtain

R(ĜCHIME) = (
1 − ω∗)

�

( log( ω̂
1−ω̂

) + (μ̂ − μ∗
1)

�β̂√
β̂

�
�∗β̂

)

+ ω∗�̄
( log( ω̂

1−ω̂
) + (μ̂ − μ∗

2)
�β̂√

β̂
�
�∗β̂

)
.

The following theorem shows the convergence rate of R(ĜCHIME) to Ropt(Gθ∗),
where Ropt(Gθ∗) is defined in (1.4).

THEOREM 3.2. Under the conditions of Theorem 3.1, if T0 ≥ (− log(κ))−1 ·
log(n · d2,s(θ̂

(0)
, θ∗)), the misclustering error R(ĜCHIME) for the classifier
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ĜCHIME(z) defined in (3.10) satisfies

R(ĜCHIME) − Ropt(Gθ∗)� s logp

n
,

with probability at least 1 − o(1).

The result in Theorem 3.2 pushes forward the convergence rate of the mis-
classification error of the LPD rule [9]. In fact, Theorem 3 in [9] implies that
the convergence rate is R(ĜLPD) − Ropt(Gθ∗) = O((s logp/n)1/2), over the pa-
rameter space �p(s, cω,M1,M2). Theorem 3.2 shows a faster rate and later in
Section 3.3 we will show that this convergence rate in the order of (s logp)/n is
indeed optimal.

3.2. Initialization. As mentioned earlier, CHIME requires a good initializa-

tion θ̂
(0)

that lies in the contraction basin Bcon(θ
∗; c0, c1,Cb, s), defined in (3.3).

This contraction basin forces the two inner products, δ�β∗ and (δ∗)�β to be of the
same order as �2 = (δ∗)�β∗. In the special case where �∗ = Ip , this constraint
reduces to the boundedness condition on the relative error of δ. The latter condi-
tion was used in [4, 36, 39], where they focused on the specialized mixture model
1
2Np(−μ∗, σ 2Ip)+ 1

2Np(μ∗, σ 2Ip). From a theoretical perspective, this condition
guarantees that the weights γ

θ̂
(t) (z(i)) assigned in the E-step are close to the truth.

In the following, we introduce the initialization condition (IC), which ensures

that θ̂
(0) ∈ Bcon(θ

∗; c0, c1,Cb, s).
(IC) For some permutation π : {1,2} → {1,2}

max
k=1,2

{∥∥μ̂(0)
k − μ∗

π(k)

∥∥∞
}
� 1

s
,

∣∣�̂(0) − �∗∣∣∞ � 1

s
.

The estimator θ̂
(0)

satisfying (IC) can be obtained by the Hardt–Price algorithm.
The Hardt–Price algorithm was proposed by [18] (see algorithm B), which first
established tight bounds for learning the parameters of a mixture of two univariate
Gaussians using a variant of the method of moments [28]. They then extended
the univariate result to the multivariate Gaussian mixture model and obtained the
following theorem.

PROPOSITION 3.1 ([18]). Suppose we observe n i.i.d. samples z(i) from model
(1.2). Given ε, ν > 0, if n = �( 1

ε6 log(
p
ν

log(1
ε
))), then with probability at least

1 − ν, the Hardt–Price algorithm produces estimates μ̂
(0)
1 , μ̂

(0)
2 and �̂(0) such that

for some permutation π : {1,2} → {1,2},
max

{∥∥μ̂(0)
1 − μ∗

π(1)

∥∥2
∞,

∥∥μ̂(0)
2 − μ∗

π(2)

∥∥2
∞,

∣∣�̂(0) − �∗∣∣∞}
≤ ε

(
1

4

∥∥μ∗
1 − μ∗

2
∥∥2
∞ + ∣∣�∗∣∣∞

)
.
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Using Proposition 3.1, the following lemma shows that θ̂
(0)

given by the Hardt–
Price algorithm satisfies (IC), and thus guarantees that the subsequent estimators

θ̂
(t)

in Algorithm 1 are contained in the contraction basin.

LEMMA 3.3. Let θ̂
(0)

be the estimator constructed by the Hardt–Price algo-
rithm. Under the conditions of Theorem 3.1, if s(

logp
n

)1/12 = o(1), then for suffi-

ciently large n, with probability 1 − o(1), θ̂
(0)

satisfies (IC), and thus (C1) holds.

REMARK 4. The conditions in Lemma 3.3 implies that the sample size n �
s12 logp. To the best of our knowledge, the rate n � s12 logp is so far the best for
general Gaussian mixture models (without assuming spherical covariance matrix)
in the literature (see, e.g., [18]). The optimality for the required sample size is an
interesting problem for future work.

3.3. Lower bounds. We now turn to the minimax lower bounds for the estima-
tion of β∗ and the misclustering error. Our results show that CHIME yields optimal
results in the minimax sense, both for estimating the discriminating direction β∗
and for clustering.

THEOREM 3.3. Under the conditions of Theorem 3.1, let C be the set of all
clustering rules based on n i.i.d. samples {z(1), . . . ,z(n)} from model (1.2) with
the true parameter θ∗ ∈ �p(s, cω,M1,M2), for some constants cω,M1,M2 > 0.
If logp = O(log(p/s)), then

(1)

inf
β̂

sup
θ∗∈�p(s,cω,M,Mb)

E
∥∥β̂ − β∗∥∥

2 �
√

s logp

n
,

(2)

inf
Ĝ∈C

sup
θ∗∈�p(s,cω,M,Mb)

E
[
R(Ĝ) − Ropt(Gθ∗)

]
� s logp

n
.

Theorems, 3.1, 3.2 and 3.3 together show that our proposed estimator of β∗ and
the clustering rule attain the optimal rates of convergence.

REMARK 5. Although a sparsity assumption on μ∗
1 − μ∗

2 seems to be more
appealing in the Gaussian mixture model (1.2), Theorem 3.3 demonstrates that
sparsity on μ∗

1 − μ∗
2 alone is not sufficient as the precision matrix �∗ also plays

an important role. Indeed, Theorem 3.3 shows that the difficulty of the problem
depends on the sparsity of the product β∗ = �∗(μ∗

1 − μ∗
2). Therefore, a structural

assumption directly on β∗ is the most natural.
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In the proof of Theorem 3.3, while the construction of the lower bound for the
estimation of β∗ is standard, that of the misclustering error is not straightforward.
This is partially due to the fact that the risk function R(Ĝ) − Ropt(Gθ∗) does not
satisfy the triangle inequality. A key step is to reduce the above loss to an alterna-
tive risk function.

Let Gθ be the optimal Fisher’s classification rule defined with the param-
eter θ . For some generic classification rule G, we rewrite the risk function
R(G) − R(Gθ ) = Pθ (G(Z) �= Y) − Pθ (Gθ (Z) �= Y) and define Lθ (G) by

Lθ (G) = min
π∈P2

Pθ

(
G(Z) �= π

(
Gθ (Z)

))
.

The following lemma enables us to reduce the loss R(Ĝ) − Ropt(Gθ∗) to the risk
function Lθ∗(Ĝ).

LEMMA 3.4. Let Z ∼ 1
2Np(μ1,�) + 1

2Np(μ2,�) with parameter θ =
(1/2,μ1,μ2,�). Suppose θ satisfies (μ1 − μ2)

T �−1(μ1 − μ2) ≥ cL for some
cL > 0. Then there exists some constant m > 0, such that if Lθ (G) ≤ 1/m for
some classifier G, then

1

2m
L2

θ (G) ≤ Pθ

(
G(Z) �= Y

) − Pθ

(
Gθ (Z) �= Y

)
.

Lemma 3.4 shows the relationship between the risk function R(Ĝ)−Ropt(Gθ∗)
and a more “standard” risk function Lθ∗(Ĝ). With Lemma 3.4, Theorem 3.3 can be
proved by providing a lower bound for Lθ∗(Ĝ). The risk function Lθ∗(Ĝ) has been
studied in [2] for a specialized model 1

2N(μ1, σ
2Ip) + 1

2N(μ2, σ
2Ip). Although

no matching upper and lower bounds were provided, the following lemma in [2]
is crucial to our analysis, which shows the triangle inequality property of the risk
function Lθ∗(Ĝ). For two probability density functions Pθ1 and Pθ2 , denote their
KL divergence by

KL(Pθ1,Pθ2) =
∫

Pθ1(z) log
Pθ1(z)

Pθ2(z)
dz.

LEMMA 3.5 ([2]). For any θ , θ̃ ∈ �p(s, cω,M,Mb) and any clustering Ĝ, if

Lθ (Gθ̃ ) + Lθ (Ĝ) +
√

KL(Pθ ,P
θ̃
)

2 ≤ 1/2, then

Lθ (Gθ̃ )−Lθ (Ĝ)−
√

KL(Pθ ,Pθ̃ )

2
≤ Lθ̃ (Ĝ) ≤ Lθ (Gθ̃ )+Lθ (Ĝ)+

√
KL(Pθ ,Pθ̃ )

2
.

After applying Lemmas 3.4 and 3.5, we then use Fano’s inequality to complete
the proof of Theorem 3.3. The details are shown in Section 8.
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4. Low-dimensional Gaussian mixtures. Although the focus of the present
paper is on the high-dimensional setting, our analysis can be modified to establish
the optimality of the clustering procedure for the low-dimensional Gaussian mix-
tures that is based on the classical EM algorithm. In the general low-dimensional
setting, we consider the model

(4.1) z(1),z(2), . . . ,z(n) i.i.d.∼ (
1 − ω∗)

Np

(
μ∗

1,�
∗) + ω∗Np

(
μ∗

2,�
∗)

,

without imposing any assumption on the sparsity of the discriminant direction. In
such case, direct estimation of β∗ is not needed. The clustering procedure under
model (4.1), which uses the classical EM algorithm to estimate ω∗,μ∗

1, μ∗
2 and

�∗, is summarized in Algorithm 2. We call it CLOME for Clustering of LOw-
dimensional Gaussian Mixtures with the EM.

The technical tools developed for the proofs of Theorems 3.1, 3.2 and 3.3 can
be used to establish the optimality of CLOME in Algorithm 2. We consider the
theoretical performance of estimation and the CLOME clustering procedure over
the parameter space �p(cω,M1,M2), defined by

�p(cω,M1,M2) = {
θ = (ω,μ1,μ2,�) : μ1,μ2 ∈ R

p,� ∈ R
p×p,�  0,

ω ∈ (cω,1 − cω),‖�‖2 ≤ M1,‖μk‖2 ≤ M2, k = 1,2
}
.

Algorithm 2 Clustering of LOw-dimensional Gaussian Mixtures with the EM
(CLOME)

1: Inputs: Initializations ω̂(0), μ̂
(0)
1 , μ̂

(0)
2 and �̂(0), maximum number of itera-

tions T0.
2: for t = 0,1, . . . , T0 − 1 do

3: E-Step: Evaluate Qn(θ | θ̂ (t)
) with γ

θ̂
(t) (z(i)) defined in (2.3).

4: M-Step: Update ω̂(t+1), μ̂
(t+1)
1 , μ̂

(t+1)
2 , and �̂(t+1) via (2.5), (2.6), (2.7)

and (2.8).
5: end for
6: Output ω̂(T0), μ̂

(T0)
1 , μ̂

(T0)
2 and �̂(T0).

7: Construct the clustering rule

ĜEM(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1,

{
z − μ̂

(T0)
1 + μ̂

(T0)
2

2

}
�(

�̂(T0)
)−1(

μ̂
(T0)
1 − μ̂

(T0)
2

)
≥ log

(
ω̂(T0)

1 − ω̂(T0)

)
,

2,

{
z − μ̂

(T0)
1 + μ̂

(T0)
2

2

}
�(

�̂(T0)
)−1(

μ̂
(T0)
1 − μ̂

(T0)
2

)
< log

(
ω̂(T0)

1 − ω̂(T0)

)
.
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Similar to the high-dimensional setting, CLOME requires a good initialization.

The initial value θ̂
(0)

should lie in the contraction basin B̃con(θ
∗; c0),

B̃con
(
θ∗; c0

) =
{
θ = (ω,μ1,μ2,�) :

ω ∈ (c0,1 − c0),μ1,μ2 ∈ R
p,� ∈R

p×p,

�  0,
∥∥� − �∗∥∥

2 ≤ 1

4
φmin

(
�∗)

,

∥∥μk − μ∗
k

∥∥
2 ≤ 1

4‖�‖2

∥∥μ∗
1 − μ∗

2
∥∥

2, k = 1,2
}
.

Indeed, in the low-dimensional regime, the algorithm proposed by [17], which
is based on the method of moments, was proved to satisfy the above condition (see
Theorem 3.4 of [17]).

We are ready to provide the upper bound results of CLOME under the low-
dimensional Gaussian mixture model (4.1). For any θ , θ̃ ∈ �p(cω,M1,M2), define
the �2 distance between θ and θ̃ by

d2(θ , θ̃) = |ω − ω̃| + ‖μ1 − μ̃1‖2 + ‖μ2 − μ̃2‖2 + ‖� − �̃‖2.

THEOREM 4.1. Consider the model (4.1) over the parameter space

�p(cω,M1,M2) where p = o(n). Suppose the initialization θ̂
(0) ∈ B̃con(θ

∗; c0)

and �2 > log(16M1/3+64M2/3). Then there exist constants κ ∈ (0,1),C1,C2 >

0, such that with probability at least 1 − n−1, the outputs μ̂
(T0)
1 , μ̂

(T0)
2 and �̂(T0) of

Algorithm 2 satisfy

∥∥μ̂(T0)
k − μ∗

k

∥∥
2 ≤ κT0d2

(
θ∗, θ̂ (0)) + C1

√
p

n
, k = 1,2;

∥∥�̂(T0) − �∗∥∥
2 ≤ κT0d2

(
θ∗, θ̂ (0)) + C2

√
p

n
.

In particular, if T0 ≥ 2(− log(κ))−1 log(nd2(θ
∗, θ̂ (0)

)/p), then there exists a con-
stant C3 > 0, such that

d2
(
θ∗, θ̂ (T0)) ≤ C3

√
p

n
and R(ĜEM) − Ropt(Gθ∗) ≤ C3

p

n
.

REMARK 6. Theorem 4.1 provides upper bound results for the estimators
given in Algorithm 2 under a general Gaussian mixture model in (4.1), and

shows that CLOME is consistent if the initialization θ̂
(0)

lies in the contraction
basin B̃con(θ

∗; c0). Applying Theorem 4.1 to the special case 1
2Np(−μ∗, σ 2Ip) +

1
2Np(μ∗, σ 2Ip) leads to the same result as that in [4].
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We establish the optimality of Algorithm 2 for both the estimators and the clus-
tering rule by providing the following lower bound results.

THEOREM 4.2. Under the conditions of Theorem 4.1, we have

inf
μ̂k

sup
θ∗∈�p(cω,M1,M2)

E
∥∥μ̂k − μ∗

k

∥∥
2 �

√
p

n
, k = 1,2;

inf
�̂

sup
θ∗∈�p(cω,M1,M2)

E
∥∥�̂ − �∗∥∥

2 �
√

p

n
,

inf
Ĝ∈C

sup
θ∗∈�p(cω,M1,M2)

R(Ĝ) − Ropt(Gθ∗)� p

n
.

Theorems 4.1 and 4.2 together characterize the optimality of CLOME. Note
that in the low-dimensional case the estimators μ̂

(T0)
k and �̂(T0) achieve the same

convergence rate as the MLE obtained with known sample labels.

5. Simulations. The proposed CHIME procedure is easily implementable. In
this section, we conduct simulation studies to investigate the numerical properties
of CHIME under various settings.

We compare the performance of CHIME with the k-means (KM), sparse k-
means (SKM, [38]), Influential Feature PCA (IF-PCA, [22]), penalized model-
based clustering with common covariance matrices (PCCM, [40]), sparse cluster-
ing via HardtPrice (SHP, [3]), the linear programming discriminant rule (LPD, [9])
and the oracle Fisher’s rule obtained by plugging in the true parameters (Oracle)
on a suite of three simulated examples. Three methods including SKM, PCCM
and SHP were implemented in R, whereas the others were implemented in MAT-
LAB. We refer readers to the Supplementary Material [11] for additional simulation
scenarios—including unequal mixing proportion case and settings with discrimi-
nant vectors of different sparsity levels—and subsequent discussion.

In all simulations, the sample size is n = 200 while the number of vari-
ables p varies from 100,200,500 to 800. The probability of being in either
of the two classes is equal, that is, ω∗ = 0.5. The discriminant vector β∗ ∝
(1, . . . ,1,0, . . . ,0)� is sparse such that only the first s = 10 entries are nonzero.
We consider the following three models for the inverse covariance matrix �∗.

Model 1: Erdős–Rényi random graph: Let �̃ = (ω̃ij ) where ω̃ij = uij δij ,
δij ∼ Ber(1,0.05) being the Bernoulli random variable with success probabil-
ity 0.05 and uij ∼ Unif[0.5,1] ∪ [−1,−0.5]. After symmetrizing �̃, set �∗ =
�̃ + {max(−φmin(�̃),0) + 0.05}Ip to ensure the positive definiteness. Finally, �∗
is standardized to have unit diagonals.
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Model 2: Block sparse model: �∗ = (B + δIp)/(1 + δ) where bij = bji = 0.5 ∗
Ber(1,0.3) for 1 ≤ i ≤ s, i < j ≤ p; bij = bji = 0.5 for s +1 ≤ i < j ≤ p; bii = 1
for 1 ≤ i ≤ p. In other words, only the first s rows and columns of �∗ are sparse,
whereas the rest of the matrix is not sparse. Here δ = max(−φmin(B),0) + 0.05.
The matrix �∗ is also standardized to have unit diagonals.

Model 3: AR(1) model: �∗ = (�∗
ij )p×p with �∗

ij = 0.8|i−j |.

In both Model 1 and Model 2, the vector β∗ = (1, . . . ,1,0, . . . ,0)�. To ensure suf-
ficiently strong signals in Model 3, we increase the magnitude of nonzero entries in
β∗ such that β∗ = 2.5 · (1, . . . ,1,0, . . . ,0)�. Given the inverse covariance matrix
�∗, the mean of class 1 is μ∗

1 = 0 and mean of class 2 is μ∗
2 = μ∗

1 − (�∗)−1β∗.
To find initializations for use in CHIME, we first run the k-means algorithm

to find the initial class labels, and calculate μ
(0)
1 and μ

(0)
2 . The pooled sample

covariance matrices �̂(0) is used as the initial value for the covariance matrix. We
recommend running CHIME with multiple random initial class labels to obtain the
best possible clustering and estimation results. In the case of Model 3, class labels
estimated from SKM are sometimes more accurate than those from the k-means
algorithm, and are thus used as candidates for initializing the parameters needed
in CHIME.

As with any other penalization-based methods, CHIME, SKM, SHP, PCCM and
LPD all require selecting a tuning parameter. To this end, we generated indepen-
dently training data and test data from the same distribution. For a given λ, the
training data were first used to estimate the parameters, with misclustering error
evaluated based on the test data. The optimal λ was selected as the one that mini-
mizes the misclustering errors over the test data. If there are multiple λ’s that yield
the same misclustering error, then the largest one will be selected. The tuning for
SKM follows a slightly different procedure as the penalty parameter is specified
in terms of an upper bound for a sequence of weights. The training data were first
used to find the optimal upper bound, with misclustering error further evaluated on
the test data under the optimal upper bound.

Figure 1 summarizes the average mis-clustering errors for different methods
under the three aforementioned settings, with respective standard errors (s.e.) pre-
sented in Table 1. All comparisons were evaluated from 100 replications based on
n = 200 test samples. Note the LPD rule is a supervised method for classification
and is included as a benchmark comparison with the proposed method CHIME.

CHIME outperforms all other unsupervised clustering methods in both Models
1 and 2. Moreover, the misclustering errors from CHIME are comparable to those
from LPD for p = 500,800 in Model 1 and p = 200,500,800 in Model 2. In com-
parison, KM, SKM and PCCM yield rather similar performances, with IF-PCA
showing the worst performances in all three models, since IF-PCA is designed for
the case of “rare and weak” signal [22] and requires a diagonal covariance ma-
trix. Clustering with SHP generally returns large misclustering errors and large
standard errors, including in Model 3. This is due to its use of the moment-based
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FIG. 1. Average misclustering errors based on n = 200 test samples from 100 replications under
Model 1 (left), Model 2 (middle) and Model 3 (right). CHIME performs well in all three models.

TABLE 1
Average misclustering errors (s.e.) based on n = 200 test samples from 100 replications

under three different models

p

100 200 500 800

Model 1 KM 42.53 (6.81) 59.07 (7.67) 23.94 (6.53) 18.72 (4.32)

PCCM 41.43 (5.63) 55.53 (7.41) 22.31 (5.60) 17.87 (3.93)

SHP 64.33 (16.38) 72.34 (13.91) 58.28 (18.79) 51.33 (16.78)

SKM 44.20 (6.02) 65.30 (8.87) 19.29 (6.42) 17.59 (3.91)

IF-PCA 92.73 (5.87) 94.50 (4.58) 94.98 (4.59) 94.03 (3.94)

CHIME 16.21 (6.21) 15.37 (9.97) 5.21 (3.03) 4.79 (1.99)

LPD 6.94 (2.49) 5.67 (2.22) 3.51 (2.02) 2.94 (1.58)

Oracle 5.92 (2.46) 4.92 (2.13) 2.44 (1.64) 1.79 (1.24)

Model 2 KM 37.33 (5.82) 19.54 (4.33) 15.71 (3.57) 0.54 (0.72)

PCCM 36.59 (6.26) 18.05 (4.23) 15.20 (3.34) 0.60 (0.75)

SHP 51.54 (20.14) 20.07 (16.71) 14.98 (9.84) 7.16 (6.75)

SKM 38.23 (6.18) 23.28 (4.89) 15.78 (3.67) 0.60 (0.72)

IF-PCA 75.25 (22.16) 82.65 (15.99) 87.55 (10.40) 91.15 (8.94)

CHIME 9.62 (4.92) 3.35 (2.18) 2.07 (1.46) 0.03 (0.21)

LPD 4.80 (2.42) 2.04 (1.39) 1.09 (0.96) 0.03 (0.17)

Oracle 4.14 (2.20) 1.53 (1.23) 0.81 (0.86) 0.01 (0.10)

Model 3 KM 15.08 (4.49) 19.39 (9.47) 47.68 (22.73) 65.19 (20.57)

PCCM 48.52 (36.81) 79.38 (18.67) 85.72 (3.47) 86.37 (3.64)

SHP 24.13 (20.92) 24.96 (19.90) 35.37 (22.17) 37.34 (24.64)

SKM 12.00 (3.17) 12.32 (3.28) 12.21 (3.28) 18.66 (20.99)

IF-PCA 88.17 (11.19) 93.00 (6.50) 92.98 (7.22) 93.83 (5.2456)

CHIME 8.96 (2.89) 9.75 (2.87) 12.94 (3.76) 19.97 (20.14)

LPD 5.08 (2.41) 7.77 (2.69) 8.98 (2.85) 9.65 (2.76)

Oracle 1.53 (1.34) 1.52 (1.29) 1.73 (1.24) 1.69 (1.19)
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estimator from the Hardt–Price algorithm for parameter initializations. The Hardt–
Price algorithm requires a good pivot, that is, one out of the p variables that shows
the largest difference between the two cluster centers, to get a reasonable initial-
ization. Such a pivot might be especially difficult to find in Model 1 as a majority
of entries in μ∗

2 are randomly distributed around zero.
Clustering with Model 3 is more challenging due to the special structure of

the inverse covariance matrix. Indeed, �∗ in Model 3 is not sparse. Nonetheless
CHIME maintains its good performance and achieves misclustering errors that are
comparable to those from SKM and smaller than those from other clustering meth-
ods. On the other hand, since μ∗

2 is exactly sparse with s + 1 nonzero entries by
construction, SKM shows significant improvement over KM, especially for large
p, by taking advantage of sparsity in the true mean parameters. PCCM performs
poorly in Model 3 and worse than KM for p = 500,800, mainly because of its poor
performance in estimating the nonsparse precision matrix. In the case of large p,
it also suffers from poor initializations with the k-means algorithm.

6. Applications to glioblastoma gene expression data. To illustrate the pro-
posed CHIME procedure, we consider in this section an application based on
glioblastoma gene expression data. Glioblastoma (GBM) is the most common and
aggressive form of brain cancer in adults. In order to provide the best treatments
for patients with glioblastoma, an important question is classification of GBM
subtypes, as different subtypes may respond to treatments differently. In a well-
known paper, [35] introduced a robust gene expression-based molecular classifi-
cation of GBM into Proneural, Neural, Classical and Mesenchymal subtypes. The
data are available at https://tcga-data.nci.nih.gov/docs/publications/gbm_exp/. In
this study, 200 GBM and two normal brain samples assayed across three gene ex-
pression platforms were first integrated into a single unified dataset. After further
filtering, there remain 1740 genes with consistent but highly variable expression
across the platforms. The 202 samples were hierarchically clustered using the con-
sensus average linkage. Based on the silhouette width, 173 of the 202 samples
were selected as the “core samples” for being most representative of the clusters.
Thus our following analysis was based solely on the core samples.

To validate the performance of CHIME in recovering the labels of a two-
component Gaussian mixture, we focused on two of the four identified GBM sub-
types: Mesenchymal and Neural, yielding a total of 82 samples among which 56
are from the Mesenchymal group. For the purpose of clustering, one can use the
full set of 1740 genes, or select a subset of them. As the samples are preselected,
direct application of any clustering methods on the full set yields almost perfect
match between the estimated clusters and the true ones. We thus followed the latter
approach and chose p = 200 genes from the full set of 1740 genes. In particular,
we considered gene selection as follows. First we calculated the variances of all
the genes and ranked them in a decreasing order. The top 20 genes with the largest
variances and the last 180 genes with the smallest variances were then selected as

https://tcga-data.nci.nih.gov/docs/publications/gbm_exp/
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the training set. We anticipate that the high variance genes are more informative
than low variance genes, although this is not always true as the results below show.

Since we do not have a separate test data with labels, we propose to select the
tuning parameter required in CHIME via a stability approach, motivated by [33].
The idea is to first randomly split the data into the training set and the test set.
For a given λ, we run CHIME on the test data and obtain class labels of the test
data, run CHIME on the training data and finally measure how well the parameters
estimated from the training data predict the class labels of the test data. Formally,
let f (X) be a clustering operation learned from data X and G[f (·),X] be the
class labels estimated on X based on the clustering operation f (·). The prediction
strength is then defined as the average adjusted random index when comparing
G[f (Xtrain),Xtest] to G[f (Xtest),Xtest] over B replications:

(6.1) ps(λ) = 1

B

B∑
i=1

ARI
(
G

[
f

(
Xi

train
)
,Xi

test
]
,G

[
f

(
Xi

test
)
,Xi

test
])

.

The optimal λ∗ is selected as arg maxλ ps(λ). Note the adjusted rand index is pre-
ferred over the rand index as the former has the advantage of being corrected-
for-chance. This is especially important since if β̂ = 0 due to the large penalty,
G[f (Xtrain),Xtest] can randomly coincide with G[f (Xtest),Xtest], resulting in a
large value in rand index, but not in terms of the adjusted rand index. In addition,
we define the prediction strength in terms of the adjusted rand index rather than
the original one proposed in [33], as the former favors a larger penalty parameter,
and thus returns a sparser estimate that is more interpretable.

To apply CHIME, SHP and PCCM, we first selected the tuning parameters by
maximizing the prediction strength defined in (6.1). The tuning parameter required
in SKM was selected via criteria defined in [38]. Sparse clustering of the 200 genes
with CHIME at the optimal λ yields 2 errors. A comparison with other clustering
methods reveals that CHIME performs the best in recovering the correct sample
labels, as shown in Table 2. Among all other methods, SHP yields the largest error,
possibly due to incorrect parameter initializations with the Hardt–Price algorithm.

To understand the performance of CHIME better, we also looked at the selected
informative variables, that is, genes with nonzero coefficients in β̂ . Figure 2 shows

TABLE 2
Clustering results for the GBM gene expression data with p = 200 genes and 82 samples

CHIME KM PCCM SHP SKM

Class 1 2 1 2 1 2 1 2 1 2

Neural 26 0 26 0 26 0 12 14 25 1
Mesenchymal 2 54 7 49 5 51 10 46 6 50
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FIG. 2. The discriminant vector |β̂| is plotted against the marginal variances.

that large marginal variances do not necessarily imply large coefficients in |β̂|. In
fact, a significant number of the low variance genes (59 of 180) turn out to be
informative for the clustering. This again confirms that direct estimation of the
discriminant vector with CHIME yields a better characterization of the cluster-
ing boundary than estimating separately the cluster mean differences and (partial)
correlations among variables.

7. Extensions to multiclass Gaussian mixtures. The proposed method can
be readily extended to Gaussian mixtures with K (K ≥ 2) components. Consider
the model

P(Y = k) = ω∗
k , Z | Y = k ∼ Np

(
μ∗

k,�
∗)

, k = 1, . . . ,K.

Here,
∑K

k=1 ω∗
k = 1. We assume K is fixed and known. In the ideal case where the

parameters are known, the oracle Bayes’ rule yields the label assignment

(7.1) Ŷ = arg max
k=1,...,K

{
β∗�

k

(
Z − (

μ∗
k + μ∗

1
)
/2

) + logω∗
k

}
,

where β∗
k = (�∗)−1(μ∗

k − μ∗
1) (k = 1,2, . . . ,K) are the discriminant directions.

By definition, the vector β∗
1 is trivial.

When neither the parameters nor the sample labels are known, under the as-
sumption that the discriminant directions β∗

k (k = 2, . . . ,K) are sparse, CHIME
can be generalized for clustering multiclass Gaussian mixtures. Specifically, de-
note the posterior probability of the ith sample in class k by

γ̂
(t)
ik := P

(
yi = k | z(i), θ̂

(t)) = ω̂
(t)
k f (z(i) | μ̂(t)

k , β̂
(t)

)∑K
�=1 ω̂

(t)
� f (z(i) | μ̂(t)

� , β̂
(t)

)
.
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The conditional log-likelihood at the t th step becomes

Qn

(
θ | θ̂ (t)) = − 1

2n

∑
i∈[n]

k∈[K]

γ̂
(t)
ik

(
z(i) − μ̂

(t)
k

)T
�

(
z(i) − μ̂

(t)
k

)

+ 1

n

∑
i∈[n]

k∈[K]

γ̂
(t)
ik log ω̂

(t)
k + 1

2
log |�|.

The updates of ωk,μk and � in the M-step are respectively,

ω̂
(t+1)
k = 1

n

n∑
i=1

γ̂
(t)
ik , μ̂

(t+1)
k =

∑n
i=1 γ̂

(t)
ik z(i)∑n

i′=1 γ̂
(t)
i′k

,

�̂(t+1) = 1

n

n∑
i=1

K∑
k=1

γ̂
(t)
ik

(
z(i) − μ̂

(t+1)
k

)(
z(i) − μ̂

(t+1)
k

)�
.

Finally, β̂k’s are updated by solving the following optimizations:

β̂
(t+1) = arg min

β∈Rp

{
1

2
β��̂(t+1)β − β�(

μ̂
(t+1)
k − μ̂

(t+1)
1

) + λ(t+1)
n ‖β‖1

}
,

k = 2, . . . ,K.

This algorithm assumes sparsity of each discriminant direction β∗
k (k = 2, . . . ,K),

but no conditions on their joint support. If it is believed that the discriminant vec-
tors have similar support, one might impose a group lasso penalty for their estima-
tion, as done in [24].

The final clustering rule is constructed by plugging the estimates ω∗,μ∗
k

(k = 1, . . . ,K) and β∗
k (k = 2, . . . ,K) into the optimal rule (7.1). Provided with a

good initialization, similar techniques introduced in previous sections can be used
to establish the convergence rate of β̂k as well as the upper and lower bounds of
the misclustering error under suitable regularity conditions. The initialization for
clustering multiclass Gaussian mixtures can be obtained by algorithms in [26] or
[17]. It was shown that the estimate lies in Bcon with probability at least 1 − δ

when n > poly(p, 1
δ
, 1

�
), where poly(·) denotes the polynomial dependence. We

also note here that the initialization step is of much importance in the multiclass
setting, since it has been shown in [20] that the EM algorithm could stuck at a local
optimum without a good initialization.

8. Proofs. In this section, we prove the optimality for the misclustering error,
that is, Theorem 3.2 and the part (2) of Theorem 3.3. The proof of the optimality
for the estimation error, Theorem 3.1 and part (1) of Theorem 3.3, is given in the
Supplementary Material [11]. A few technical lemmas are needed for the proof of
the main results. These technical lemmas as well as some other minor results are
proved in the Supplementary Material [11].
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8.1. Proof of Theorem 3.2. We start with the following lemma.

LEMMA 8.1. For two vectors γ ∗ and γ̂ , if ‖γ ∗− γ̂ ‖2 ≤ ‖γ ∗‖2, and ‖γ ∗‖2 ≥ c

for some constant c > 0, then(
γ ∗)�γ̂ − ∥∥γ ∗∥∥

2 · ‖γ̂ ‖2 	 ∥∥γ ∗ − γ̂
∥∥2

2.

Consider the model (1.2). Given the estimators ω̂, μ̂k , and β̂ , the sample z is
classified as

Ĝ(z) =

⎧⎪⎪⎨
⎪⎪⎩

1,
(
z − (μ̂1 + μ̂2)/2

)�β̂ ≥ log
(

ω̂

1 − ω̂

)
,

2,
(
z − (μ̂1 + μ̂2)/2

)�β̂ < log
(

ω̂

1 − ω̂

)
.

Let τ ∗ = ω∗
1−ω∗ , τ̂ = ω̂

1−ω̂
and �̂ =

√
β̂

�
�∗β̂ . The misclustering error is

R(Ĝ) = (
1 − ω∗)

�

(
log τ̂ + (μ̂ − μ∗

1)
�β̂

�̂

)
+ ω∗�̄

(
log τ̂ + (μ̂ − μ∗

2)
�β̂

�̂

)
,

with Ropt(Gθ∗) = (1 −ω∗)�(
log τ∗−�2/2

�
)+ω∗�̄(

log τ∗+�2/2
�

). Define an interme-
diate quantity

R∗ = (
1 − ω∗)

�

(
log τ ∗ − (δ∗)�β̂/2

�̂

)
+ ω∗�̄

(
log τ ∗ + (δ∗)�β̂/2

�̂

)
.

We first show that R∗ − Ropt(Gθ∗) � s logp
n

. Applying Taylor’s expansion to the

two terms in R∗ at log τ∗
�

− �
2 and log τ∗

�
+ �

2 , respectively, we obtain

R∗ − Ropt(Gθ∗) = (
1 − ω∗)( log τ ∗

�̂
− (δ∗)�β̂

2�̂
− log τ ∗

�
+ �

2

)

× �′
(

log τ ∗

�
− �

2

)

− ω∗
(

log τ ∗

�̂
+ (δ∗)�β̂

2�̂
− log τ ∗

�
− �

2

)

× �′
(

log τ ∗

�
+ �

2

)

+ OP

(
s logp

n

)
,

(8.1)

where the remaining term is bounded by using the facts that(
log τ ∗

�̂
+ (δ∗)�β̂

2�̂
− log τ ∗

�
− �

2

)2
= Op

(
s logp

n

)
and �′′ = O(1).
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In fact, ∣∣∣∣ log τ ∗

�̂
+ (δ∗)�β̂

2�̂
− log τ ∗

�
− �

2

∣∣∣∣
≤

∣∣∣∣ log τ ∗

�̂
− log τ ∗

�

∣∣∣∣ +
∣∣∣∣(δ∗)�β̂

2�̂
− �

2

∣∣∣∣
≤

∣∣∣∣ log τ ∗

�̂
− log τ ∗

�

∣∣∣∣ +
∣∣∣∣(δ∗)�β̂

2�̂
− �2

2�̂

∣∣∣∣ +
∣∣∣∣�2

2�̂
− �

2

∣∣∣∣
� |�̂ − �| + ∣∣(δ∗)�

β̂ − (
δ∗)�

β∗∣∣
≤ ∣∣√(

β̂ − β∗)
�∗(

β̂ − β∗)∣∣ + ∣∣(δ∗)�
β̂ − (

δ∗)�
β∗∣∣

�
∥∥β̂ − β∗∥∥ �

√
s logp

n
.

(8.2)

Recall that τ ∗ = ω∗
1−ω∗ , (8.1) can be further expanded such that

R∗ − Ropt(Gθ∗)√
(1 − ω∗)ω∗ 	

(
log τ ∗

�̂
− (δ∗)�β̂

2�̂
− log τ ∗

�
+ �

2

)
e− 1

2 (
log τ∗

�
−�

2 )2− log τ∗
2

−
(

log τ ∗

�̂
+ (δ∗)�β̂

2�̂
− log τ ∗

�
− �

2

)
e− 1

2 (
log τ∗

�
+�

2 )2+ log τ∗
2

= exp
(
− log2 τ ∗

2�2 − �2

8

)
·
(
� − (δ∗)�β̂

�̂

)
�

∣∣∣∣� − (δ∗)�β̂

�̂

∣∣∣∣
�

∥∥β∗ − β̂
∥∥2

2.

In fact, for the last step, we can obtain this inequality by letting γ = (�∗)1/2β∗
and γ̂ = (�∗)1/2β̂ . Then∣∣∣∣� − (δ∗)�β̂

�̂

∣∣∣∣ =
∣∣∣∣‖γ ‖2 − γ �γ̂

‖γ̂ ‖2

∣∣∣∣ =
∣∣∣∣‖γ ‖2‖γ̂ ‖2 − γ �γ̂

‖γ̂ ‖2

∣∣∣∣.
By Lemma 8.1, eventually we obtain R∗ − Ropt(Gθ∗)� ‖β∗ − β̂‖2

2.
To upper bound R(Ĝ) − R∗, applying Taylor’s expansion to R(Ĝ),

R(Ĝ) = (
1 − ω∗){

�

(
log τ ∗ − (δ∗)�β̂/2

�̂

)

+ log τ̂ − log τ ∗ + (μ̂ − μ∗
1)

�β̂ + (δ∗)�β̂/2

�̂

× �′
(

log τ ∗ − (δ∗)�β̂/2

�̂

)
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+ OP

(
s logp

n

)}

+ ω∗
{
�̄

(
log τ ∗ + (δ∗)�β̂/2

�̂

)

− log τ̂ − log τ ∗ + (μ̂ − μ∗
2)

�β̂ − (δ∗)�β̂/2

�̂

× �′
(

log τ ∗ + (δ∗)�β̂/2

�̂

)

+ OP

(
s logp

n

)}
,

where the remaining term OP (
s logp

n
) can be obtained similarly as (8.1).

This leads to

R∗ − R(Ĝ)√
(1 − ω∗)ω∗ �

√
1 − ω∗

ω∗ · log τ ∗ − log τ̂ − (δ∗)�β̂/2 − (μ̂ − μ∗
1)

�β̂

�̂

× �′
(

log τ ∗ − (δ∗)�β̂/2

�̂

)

−
√

ω∗
1 − ω∗ · log τ ∗ − log τ̂ + (δ∗)�β̂/2 − (μ̂ − μ∗

2)
�β̂

�̂

× �′
(

log τ ∗ + (δ∗)�β̂/2

�̂

)

= log τ ∗ − log τ̂ − (δ∗)�β̂/2 − (μ̂ − μ∗
1)

�β̂

�̂

× e
− 1

2 { log τ∗−(δ∗)�β̂/2
�̂

}2− log τ∗
2

− log τ ∗ − log τ̂ + (δ∗)�β̂/2 − (μ̂ − μ∗
2)

�β̂

�̂

× e
− 1

2 { log τ∗+(δ∗)�β̂/2
�̂

}2+ log τ∗
2 .

Then it follows that

R∗ − R(Ĝ)√
(1 − ω∗)ω∗ �

∣∣∣∣ log τ ∗ − log τ̂ − (δ∗)�β̂/2 − (μ̂ − μ∗
1)

�β̂

�̂

∣∣∣∣
· ∣∣e− (log τ∗−(δ∗)�β̂/2)2

2�̂2 − log τ∗
2 − e

− (log τ∗+(δ∗)�β̂/2)2

2�̂2 + log τ∗
2

∣∣
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=
∣∣∣∣ log τ ∗ − log τ̂ − (δ∗)�β̂/2 − (μ̂ − μ∗

1)
�β̂

�̂

∣∣∣∣︸ ︷︷ ︸
(i)

· e− log2 τ∗+(δ∗�β̂/2)2

2�̂2︸ ︷︷ ︸
(ii)

· ∣∣e log τ∗·(δ∗)�β̂

2�̂2 − log τ∗
2 − e

− log τ∗·(δ∗)�β̂

2�̂2 + log τ∗
2

∣∣︸ ︷︷ ︸
(iii)

�
√

s logp

n
· Op(1) ·

√
s logp

n
� s logp

n
,

where the last inequality uses the following facts:

(i)�
√

s logp

n
, (ii) = OP (1) and (iii) �

√
s logp

n
.

In fact, the bound on (i) follows the same idea of (8.2). (ii) uses the fact that e−x ≤
1 when x ≥ 0. (iii) uses the fact that |ex − e−x | � x when x = o(1), and thus can
be bounded as

∣∣e log τ∗·(δ∗)�β̂

2�̂2 − log τ∗
2 − e

− log τ∗·(δ∗)�β̂

2�̂2 + log τ∗
2

∣∣ � ∣∣∣∣(δ∗)�β̂

�̂2
− 1

∣∣∣∣ �
√

s logp

n
,

where the last inequality also follows the same idea as (8.2). Combining the pieces,
we obtain

R(Ĝ) − Ropt(Gθ∗)� s logp

n
.

�

8.2. Proof of Theorem 3.3. We focus on misclassification error. Consider
the model 1

2Np(μ1,�) + 1
2Np(μ2,�) with θ = (1/2,μ1,μ2,�) ∈

�p(s, cω,M,Mb). Let Gθ be the Fisher’s rule defined in (1.3) with parameter
θ , and the risk function for a generic parameter θ and classification rule G is
defined as

(8.3) Lθ (G) = Pθ (G �= Gθ ).

The proof of lower bound requires the generalized version of Fano’s lemma.

LEMMA 8.2 ([34]). Let M ≥ 0 and θ0, θ1, . . . , θM ∈ �p(s, cω,M,Mb). For
some constants α ∈ (0,1/8), γ > 0, and any classifier Ĝ, if KL(Pθ i

,Pθ0) ≤
α logM/n for all 1 ≤ i ≤ M , and Lθ i

(Ĝ) < γ implies Lθj
(Ĝ) ≥ γ for all

0 ≤ i �= j ≤ M , then

inf
Ĝ

sup
i∈[M]

Eθ i

[
Lθ i

(Ĝ)
]
� γ.
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LEMMA 8.3 ([34]). Let As = {u : u ∈ {0,1}p,‖u‖0 ≤ s}. If p ≥ 4s, then there
exists {u0,u1, . . . ,uM} ⊂ As such that u0 = {0, . . . ,0}�, ρH (ui ,uj ) ≥ s/2 and
log(M + 1) ≥ s

5 log(
p
s
), where ρH is the Hamming distance.

LEMMA 8.4. For any θ , θ̃ ∈ �p(s, cω,M,Mb), let Pθ = (1 − ω) ×
Np(−μ/2, Ip)+ωNp(μ/2, Ip) and Pθ̃ = (1 −ω)Np(−μ̃/2, Ip)+ωNp(μ̃/2, Ip)

with ‖μ‖2 = ‖μ̃‖2. Then KL(Pθ ,Pθ̃ ) ≤ (‖μ‖2
2 + log τ/2)(‖μ‖2

2 − |μ�μ̃|), where
τ = ω

1−ω
. In particular, if ω = 1/2, we have

KL(Pθ ,Pθ̃ ) ≤ ‖μ‖4
2 ·

(
1 − |μ�μ̃|

‖μ‖2

)
.

Define the function g(x) = φ(x){φ(x)− x�(−x)}, where φ(x) is the probabil-
ity density function of the standard normal distribution, that is, φ(x) = �′(x).

LEMMA 8.5 ([2]). For any θ , θ̃ ∈ �p(s, cω,M,Mb) and cosψ = |μ�μ̃|/
‖μ‖2, we have

2g

(‖μ‖
2σ

)
sinψ cosψ ≤ Lθ (Gθ̃ ).

PROOF OF THEOREM 3.3. First we construct a subset of the parameter space
� that characterizes the hardness of the problem. Let e1 = {1,0, . . . ,0}� ∈ R

p .
By Lemma 8.3, there exist u1, . . . ,uM ∈ Ãs = {u ∈ {0,1}p : u�e1 = 0,‖u‖0 = s},
such that ρH (ui ,uj ) > s/2 and log(M + 1) ≥ s

5 log(
p−1

s
). Note the first entry in

uj is 0 for all j = 1, . . . ,M .
Define the parameter space

�1 = {
θ = (1/2,μ1,μ2,�) : μ1 = εu + λe1,μ2 = −μ1,� = σ 2Ip;u ∈ Ãs

}
.

Here, ε = σ
√

logp/n, σ 2 = O(1) and λ = O(1) are chosen to ensure θ ∈
�p(s, cω,M,Mb) and (μ1 − μ2)

T �−1(μ1 − μ2) = 4‖εu+λe1‖2
2

σ 2 ≥ c1, as required
in Lemma 3.4. To apply Lemma 8.2, we need to verify two conditions: (i) the up-
per bound on the KL divergence between Pθu

and Pθv
, and (ii) the lower bound of

Lθu
(Ĝ) + Lθv

(Ĝ) for u �= v.
We calculate the KL divergence first. For u ∈ Ãs , denote μu = εu + λe1.

For θu = (1/2,μu,−μu, σ
2Ip) ∈ �1, the model parameterized by μu is

1
2Np(μu, σ

2Ip) + 1
2Np(−μu, σ

2Ip). For u,v ∈ Ãs , since

ε2 · ρH (u,v) = 〈μu − μv,μu − μv〉
= ‖μu‖2

2 + ‖μv‖2
2 − 2μ�

u μv = 2‖μu‖2
2 − 2μ�

u μv,
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we have ‖μu‖2
2 − μ�

u μv = 1
2ε2 · ρH (u,v) 	 s logp

n
. Lemma 8.4 then yields

(8.4) KL(Pθu
,Pθv

) ≤ ‖μu‖2
2
(‖μu‖2

2 − μ�
u μv

)
� s logp

n
.

Consider Lθ (G) defined in (8.3). Recall that in Lemma 8.5, cosψ = μ�
u μv/

‖μu‖2
2. For the choice of ε and μu, we have ‖μu‖2

2σ
= O(1), which implies that

2g(
‖μu‖2

2σ
) = O(1) under the condition s = o(n/ logp). Also,

1 − cosψ = 1 − μ�
u μv

‖μu‖2
2

= ‖μu‖2
2 − μ�

u μv

‖μu‖2
2

= ρH (u,v)ε2

2(λ2 + sε2)
	 s logp

n
.

Therefore, by Lemma 8.5,

Lθu
(Gθv

) ≥ 2g

(‖μ‖2

2σ

)
sinψ cosψ

≥ g

(‖μ‖2

2σ

)√
1 + cosψ

√
1 − cosψ ≥

√
s logp

n
.

Applying Lemma 3.5 with a proper choice of ε, we have, for any u,v ∈ Ãs ,

Lθu
(Ĝ) + Lθv

(Ĝ) ≥ Lθu
(Gθv

) −
√

KL(Pθu
,Pθv

)

2
�

√
s logp

n
.

So far we have verified the aforementioned conditions (i) and (ii). Lemma 8.2
immediately implies that

(8.5) inf
Ĝ∈C

sup
θ∈�p(s,cω,M,Mb)

Lθ (Ĝ) �
√

s logp

n
.

Finally, combining (8.5) with Lemma 3.4, we obtain the desired lower bound for
the misclustering error. �
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SUPPLEMENTARY MATERIAL

Supplement to “CHIME: Clustering of high-dimensional Gaussian mix-
tures with EM algorithm and its optimality” (DOI: 10.1214/18-AOS1711SUPP;
.pdf). This supplement provides detailed proofs of the Theorem 3.1 and 3.3, which
are respectively the upper and lower bounds of the estimation error for β∗. All
technical lemmas used throughout the paper are also proved. In addition, extra
simulation results are provided in the supplement.

https://doi.org/10.1214/18-AOS1711SUPP
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