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SUPPLEMENT TO “LIMITING LAWS OF COHERENCE
OF RANDOM MATRICES WITH APPLICATIONS TO
TESTING COVARIANCE STRUCTURE AND
CONSTRUCTION OF COMPRESSED SENSING
MATRICES”

By T. ToNny CAI * AND TIEFENG JIANGT

University of Pennsylvania and University of Minnesota

In this supplement we first give more details on Remarks 2.3 and
2.4. Then we prove Propositions 4.1 and 6.2 and verify the conclusions
in the three examples given in Section 4, and finally we prove Lemmas
6.5-6.12 which are used in the proofs of the main results.

Details on Remark 2.3. Consider ¥ = [, with p = 2n and 7 = n. So
conditions (i) and (iii) in Theorem 4 hold, but (ii) does not. Observe

1 2
{G.1<i<j<om, \i—j]Zn}:n—i—(n—l)—i—-u—i—l:n(n;)NpS

as n — 00. So Ly, is the maximum of roughly p?/8 random variables,
and the dependence of any two of such random variables are less than that
appeared in L, in Theorem 3. The result in Theorem 3 can be rewritten as

2 2
nLi — 2log % + log log % — log 8 converges weakly to F'

as n — oo. Recalling L,, is the maximum of roughly p?/2 weakly dependent
random variables, replace Ly, with L, ; and p?/2 with p®/8 to have nL  —

2log % + log log %2 —log 8 converges weakly to F, where F' is as in Theorem
3. That is,

(76) (nL?M — 4logp + loglog p) + log 16 converges weakly to F’

as n — oo (This can be done rigorously by following the proof of Theorem
3). The difference between (76) and Theorem 4 is evident.

*The research of Tony Cai was supported in part by NSF FRG Grant DMS-0854973.
fThe research of Tiefeng Jiang was supported in part by NSF FRG Grant DMS-
0449365.
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2 T. TONY CAI AND TIEFENG JIANG

Details on Remark 2.4. Let p = mn with integer m > 2. We consider the
px p matrix ¥ = diag (Hy,--- , H,) where there are m H,,’s in the diagonal
of ¥ and all of the entries of the n x n matrix H,, are equal to 1. Thus,
if (G, Gp) ~ Np(0,%), then Gny1 = Gni2 = -+ = (uy1)n for all 0 <
I <m—1and (1,Cat1, "+, Cm—1)nt1 are ii.d. N(0,1)-distributed random
variables. Let {(;;; 1 < i < n,1 < j < m} be iid. N(0,1)-distributed
random variables. Then

(<i17"' 7C’i17<i27"‘ 7Ci27'” ;Cimf" 7Cim)/eRp7 1§l§n7
——

n n n

are i.i.d. random vectors with distribution N, (0, X). Denote the correspond-
ing data matrix by (xjj)nxp. Now, take 7 = n and m = [e""*]. Notice
I',s = p for any § > 0. Since p = mn, both (i) and (ii) in Theorem 4 are
satisfied, but (iii) does not. Obviously,

Lnr= max |pijl = _max |pg],

1<i<j<p,|i—j|>7T 1<i<j<m

where p;; is obtained from ((jj)nxm as in (1) (note that the mn entries of
(Cij)nxm areii.d. with distribution N (0, 1)). By Theorem 3 on maxi<i<j<m |fij|,
we have that ”L%,T —4log m + log log m converges weakly to F, which is the
same as the F' in Theorem 4. Set log, © = loglog x for x > 1. Notice

anm —4logm +logyam = anW —4logp + 4logn + logym
= (nLsz — 4logp+ logy p) + 4logn + o(1)

since p = mn and logyp — log, m — 0. Further, it is easy to check that
4logn — 16logy p — 0. Therefore, the previous conclusion is equivalent to
that

(77) (”L%,T — 4logp + loglog p) + 16 log log p converges weakly to F

as n — oo. This is different from the conclusion of Theorem 4.

Proof of Proposition 4.1. Recall the definition of L,, in (3), to prove the
conclusion, w.l.o.g., we assume p = 0 and o2 = 1. Evidently, by the i.i.d.
assumption,

2
p | 2]
P(L,>t) < —P( )
! 2 Nzl - flll —
2 2
p ‘x1x2‘ p° [E2] 1
< 7p(7 ) — 2P — <=
(78) - 2 n 2 +2 < n - 2
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LAWS OF COHERENCE OF RANDOM MATRICES 3

where the event {||z11|?/n > 1/2, [|z12]|?/n > 1/2} and its complement
are used to get the last inequality. Since {z;;; ¢ > 1, 7 > 1} are i.i.d., the
condition Eefol#11l” < 5o implies Fefol*17121 < oo for some t, > 0. By the
Chernoff bound (see, e.g., p. 27 from Dembo and Zeitouni (1998)) and noting
that E(r11712) = 0 and Ex?, = 1, we have

2
P(|9C'19C2| < E) < 95=n0(t/2) and P (||931|| < 1) < 9p=nl2(1/2)
2/~ 2)

n n
for any n > 1 and ¢t > 0, where the following facts about rate functions I; ()
and I(y) are used:

(i) Ii(x) = 0 if and only if x = 0; Is(y) = 0 if and only if y = 1;

(ii) I;(z) is non-decreasing on A := [0, c0) and non-increasing on A¢. This
is also true for I»(y) with A = [1, c0).
These and (78) conclude

P(I:n > t) < p267n11(t/2) + 2p267n12(1/2) < 3p2efng(t)
where ¢(t) = min{I;(¢/2), I3(1/2)} for any ¢t > 0. Obviously, g(¢) > 0 for
any t > 0 from (i) and (ii) above. [ |

Proof of Proposition 6.2. We prove the proposition by following the
outline of the proof of Proposition 6.1 step by step. It suffices to show

W,
79 i P(7">2 2):0 d
(79) lim T + 2¢ an
W,
80 li P<7"<2_):0
(80) e\ Uitogp =27 €

for any € > 0 small enough. Note that |z11712|? = |711|2 - |212|¢ < |211|¢ +
|z12|%¢ for any ¢ > 0. From the given moment condition, we see that
ap
Eexp (to|lz11[**/1=#) < oo. This implies that Eexp (|Jz11|™) < oo and
28
Eexp (|:L‘11:U12|1+5) < o00. By (i) of Lemma 6.4, (28) holds for {p,} such
that p, — oo and log p, = o(n®). By using (27) and (29), we obtain (79).
45

By using condition E exp{to|z11|T# } < oo again, we know (33) also holds
for {p,} such that p, — oo and logp, = o(n®). Then all statements after
(30) and before (36) hold. Now, by Lemma 6.7, (37) holds for {p,} such that

pn — 00 and log p, = o(n?), we then have (38). This implies (30), which is
the same as (80). [ |

To verify the assertions stated in the three examples in Section 4, we need
the following lemma.
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4 T. TONY CAI AND TIEFENG JIANG

LEMMA 0.1 Let Z be a random wvariable with EZ = 0, EZ?> = 1 and
EetlZl < oo for some tg > 0. Choose o > 0 such that E(Z%e®?l) < 3/2.
Set I(x) = sup,egp{tr — log Ee'?}. Then I(z) > 22/3 for all 0 < x < 3a/2.

Proof. By the Taylor expansion, for any x € R, e =142+ %26096 for some
6 € [0, 1]. Tt follows from EZ = 0 that

t2 t2 3
B =1+ SE(ZM) <1+ SEZ W) <14 78

for all 0 < ¢ < a. Use the inequality log(1 + x) < z for all z > —1 to see
that log Eet? < 3t2 /4 for every 0 < t < . Take tg = 22/3 with x > 0. Then
0 <ty <aforall 0 <z <3a/2. It follows that

$2

3
I(z) > tox — “t2 = = [ ]
(37)_090 470 3

Verifications of Examples 1, 2, and 3 in Section 4. We consider the
three examples one by one.

(i) If 211 ~ N(0,n71) as in (19), then ¢ and 7 are i.i.d. with distribution
N(0,1). By Lemma 3.2 from Jiang (2005), Iz(z) = (v — 1 — logz)/2 for
x> 0. So Ir(1/2) > 1/12. Also, since Ee% = Ee?*6*/2 = (1 — 62)~1/2 for
0] < 1. It is straightforward to get

Va2 +1-1 1. Va2 4+1+1
Lz)=—————log————, >0.
2 2 2
Let y = 7““22“_1. Then y > 222/3 for all |z| < 4/5. Thus, I(z) = y —
%log(l2 +y) > % > :%2 for |z| < 4/5. Therefore, g(t) > min{f (%), &} >
min{%, 5} = L for |¢| < 1. Since 1/(2k — 1) < 1 if k > 1. By Proposition
4.1, we have

- n
s)  P(@k-DI<1)>1-3Pep{ -]
for all n > 2 and k > 1, which is (23).
(ii) Let x11 be such that P(x1; = £1/4/n) = 1/2 as in (20). Then £ and 7 in
Proposition 4.1 are i.i.d. with P(§ = £1) = 1/2. Hence, P(¢én = £1) = 1/2
and &2 = 1. Immediately, Ir(1) = 0 and Iy(z) = +oo for all z # 1. If
o = log% ~ 0.405, then E(Z%e?l) = > < % with Z = &n. Thus, by
Lemma 0.1, I1(z) > :L‘2/3 forall0 <z < % < 370‘ Therefore, g(t) > % for
0<t< g. This gives that

(20  P(@k-1I,<1)> 1—3p26Xp{—M}
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LAWS OF COHERENCE OF RANDOM MATRICES 5

provided ﬁ < g, that is, k > % We then obtain (23) for all n > 2 and
k>1.

(iii) Let x11 be such that P(z1; = £4/3/n) = 1/6 and P(x1; =0) = 2/3 as
in (21). Then & and 7 in Proposition 4.1 are i.i.d. with P(¢ = £v/3) = 1/6
and P(§ = 0) = 2/3. It follows that P(Z = £3) = 1/18 and P(Z = 0) = 8/9
with Z = &n. Take a = Llog3 > 0.13. Then E(Z%e4l) = 2X9¢3a = 3,
Thus, by Lemma 0.1, I;(z) > 2?/3 for all 0 < 2 < 3¢ = Llog3 ~ 0.2027.
Now, P(¢? =3) = 1 =1— P(¢% = 0). Hence, £2/3 ~ Ber(p) with p = §. It
follows that

L(z) = sup {(39)5 ~ log Ee%(@/z)}
feR 3

- ()= e (1)

(b) of Exercise 2.2.23 from Dembo and Zeitouni (1998).
log% + %log% ~ 0.0704 > % Now, for 0 <t < %, we have
2
= E'

4(#) = min {Il(%), 12(%)} > min {i %5}

Easily, ¢t := 52— < 2 if and only if ¥ > T. Thus, by Proposition 4.1,
%—1 =35 1

- n
“ Iy <1) 2 1-pPep{ - ]
(83) P ((2k; Jn<1) 2 1= ep{ — o
for all n > 2 and k > I. We finally conclude (23) for all n > 2 and k > 2.
|

Proof of Lemma 6.5. (i) First, since x;;’s are i.i.d. bounded random vari-
ables with mean zero and variance one, by (i) of Lemma 6.4,

(84) P(y/n/logpbps > K) = P( max

1<i<p

1 n
BRI SAELS
nlogp pt

1 n
< p-P(|—= o] > K)
\/nlogpk:1
(K2 1
(85) < pre I = ey 0

as n — oo for any K > +/3. This says that {\/n/logpb,.4} are tight.
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6 T. TONY CAI AND TIEFENG JIANG

Second, noticing that [t—1| < [t2—1| for any ¢ > 0 and nh? = ||z; —Z;||* =
alx; — n|z;|?, we get that

1 n
2 2
b < puag Inf =1 < e |03 ki = 1)+ HZ%
(86) = Zy+b2,

where Z,, = maxj<;<p ‘% Sr (@3, — 1)‘ . Therefore,

2
r bnl S " logp n4> .
logp logp Ty logp

Replacing “zy;” in (84) with “:Cii — 17 and using the same argument, we
obtain that {y/n/logp Z,} are tight. Since logp = o(n) and {/n/logpb, 4}
are tight, using (25) we know the second term on the right hand side of (87)
goes to zero in probability as n — oco. Hence, we conclude from (87) that
{\/n/logpby, 1} are tight.

Finally, since logp = o(n) and {\/n/logpb, 1} are tight, use (25) to have
bn,1 — 0 in probability as n — oco. This implies that b, 3 — 1 in probability
as n — oo.

(ii) We first claim that

bn.3 Blasn— oo, and {y/n/logpby 1} and {\/n/logpb, 4}
(88) are tight if Eetolm11l" ~ 5 for some 0 < o < 2 and to > 0, and
pn — 00 and logp, = o(n®) as n — oo, where 81 = a/(4 — ).

If the claim holds and 0 < « < 2, recalling § = o/(4+a) < o/ (4—a) = f1,
then log p,, = o(n®) = o(n?1) as n — oo, the desired conclusions follow.
If claim (88) holds and a > 2, then Eeboleul® < oo It follows that

{\/n/logp bn 1} and {y/n/logpby 4} are all tight with logp,, = o(n). Notic-
ing B = ;% < 1, we see that {y/n/logpb,1} and {y/n/logpb, 4} are all
tight with logp, = o(n®). We also have that b,3 — 1 in probability as
n — oo by the same argument as in the last paragraph of the proof of (i)
above. Now we turn to prove claim (88).

By (85) and (87), to prove claim (88), it is enough to show, for some
constant K > 0,

(87)

1 n
(89) p-P( mkzlxm‘zf()ao and
(90) p-P( W;xkl ‘>K>—>O
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LAWS OF COHERENCE OF RANDOM MATRICES 7

as n — oo. Using a, := v/Iogp, = o(n?/?) and (i) of Lemma 6.4, we have

1 n

P(| g o7l = ) < e nd
1 n

P(’\/nlogp kzl(xil a 1)‘ = K) = pl?/3

as n is sufficiently large, where the first inequality holds provided
E exp (tolay1 |7/ ) = Eexp(tolzn|*?) < oo

the second holds since E exp (to|2%, —1|2//0+8)) = Eexp(to|z?, —1|*/?) < oo
for some to > 0, which is equivalent to Eetol*111* < oo for some to > 0. We
then get (89) and (90) by taking K = 2. [ |

Proof of Lemma 6.6. Let G,, = {|>_}_, #3,/n — 1| < §}. Then, by the
Chernoff bound (see, e.g., p. 27 from Dembo and Zeitouni (1998)), for any
§ € (0,1), there exists a constant Cs > 0 such that P(GS) < 2" for all

n > 1. Set a,, = t,v/nlogp. Then
n 2
(91) U, < E{P1 (| S wpapsl > an) IGn} 4 2¢Cs
k=1

for all n > 1. Evidently, |zp1282| < C?, EY(2p1282) = 0 and E'(zp1212)% =
xil, where E' stands for the conditional expectation given {zx1, 1 < k < n}.
By the Bernstein inequality (see, e.g., p.111 from Chow and Teicher (1997)),

2

P! >an) Ig, < 4- - — n I
(|;$k1$k2| a) o= exp{ (Zk1$i1+02%)} o

2
a

< 4. - ”

< deen (1 +0)n + CZay) }

1
(92) pt2/(1+25)

as n is sufficiently large, since a2/(n(1 + 6) + C%a,) ~ t*(logp)/(1 + )
as n — o00. Recalling (91), the conclusion then follows by taking ¢ small
enough. |

Proof of Lemma 6.7. Let P? stand for the conditional probability given
{xk2, 1 <k <n}. Since {x;;; ¢ > 1, j > 1} are i.i.d., to prove the lemma, it
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8 T. TONY CAI AND TIEFENG JIANG

is enough to prove

(93) @, ::E{P2<\§:xk1xk2]>tnm)2}:O< ! )
k=1

ptgfe

as n — oo. Here we use the notation “P?” instead of “P!” simply because
of the convenience of notation.
Step 1. For any x > 0, by the Markov inequality

(94) P(max |zgo| > x) < nP(|lxe| > ) < Cne tor®
1<k<n

where C' = Eetol*11l® < oo Second, we know that Eetlen”/"* o for
any t > 0 from the given condition. For any ¢ > 0, by (ii) of Lemma 6.4,
there exists a constant C' = C. > 0 such that

(95) P( e > 6) < o C

for each n > 1.
Set h, = n(l_ﬁ)/4, W = Exwl(\x”\ < hn),

Yij = il (|vij| < hn) — Bzl (|zig] < hy)
(96) zij = Tyl (|ij| > hn) — Bzl (|2i5] > hy)

foralli > 1and j > 1. Then, z;; = y;; +2;; for all ¢, 7 > 1. Use the inequality
PU+V >u+v) <PU >u)+ P(V >v) to obtain

" 2
P2<|Z$k1wk2| > tn\/nlogp)
k=1
r 2
< 2P2<\ Zyklxk2| > (tp, — 5)\/nlogp>

k=1
n 2
(97) + 2P2(|sz1$k2\ > 5\/nlogp) :=2A, + 2B,
k=1
for any § > 0 small enough. Hence,
(98) v, <2FA,+2EB,
for all n > 2.
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LAWS OF COHERENCE OF RANDOM MATRICES 9

Step 2: the bound of A,. Now, if maxj<g<p |Tra| < hn, then |yp1zre| < 252
for all £ > 1. It then follows from the Bernstein inequality (see, e.g., p. 111
from Chow and Teicher (1997)) that

Ay = P(1Y ol > (1 — 0)/mlogp )
k=1

(tn — 8)*nlogp
< 4-.e —
< xp { BE(y11) Xofen T + 203 (tn — 5)\/"@}
(tn — 6)*nlogp
< 4. _
- { E(y3,)(n + en(B+1/2) 4+ 212 (t,, — 5)¢7ng}

n 2
for 0 < § < t, and % < e. Notice E(y3;) — 1 and 2h2(t,, —

d)v/nlogp/3 = o(n) as n — oo. Thus,

(tn — (5)271 logp

~ (t —6)?1
B(y2)(n + en D7) 1 2m3 (1, — ) /mlogp OV 1o8P

. n_ a2 —n
as n — oo. In summary, if max;<x<p |zr2| < hy, and %71’;/22‘ < ¢, then

for any 6 € (0,t/2),

1

as n is sufficiently large. Therefore, for any € > 0 small enough, take §
sufficiently small to obtain

EAy = B{P(1Y vearial > (o - o) v/lomp ) )
k=1

1 | >t Tio — 1
< > = >
< gt P el = )+ PSS > o)
o 1
(100) < ——+Cne i 4% —0 ( 2 >
pt —€ pt —€

as n — oo, where the second inequality follows from (94) and (95), and
the last identity follows from the fact that h% = n® and the assumption
log p = o(n?).

Step 3: the bound of By,. Recalling the definition of z;; and p, in (96), we
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10 T. TONY CAI AND TIEFENG JIANG

have
\/Bin = P2(|sz1xk2\ >5\/@>
k=1
s_ﬁ@}:mwwqumpwmﬂ>5¢m@§p)
5\/ToED

101 —C, + D,,.
(101) (Zmb —n+m\>) Cn +
Now, by (94),

(102) C, < P(max |zg1| > hy) < Cne 0 = Cne~ton”
1<k<n

Easily, |pn| < El|lzii|I(|x11] > hp) < e—toh%ﬂE(’xll‘etolxulaﬂ) — Ce—ton?/2,
Also, P(| Y p_ymkl = x) < > p_1 P(Ink| > x/n) for any random variables
{n;} and & > 0. We then have

ED, — (’Z$k2|> d0v/nlogp ))

(€7 + ||
dv/nlogp
2n(e~" + !Hn|)>
nP<|x11| > etonﬁ/?’) <e "

IN

nP<|x11| >

(103)

IN

as n is sufficiently large, where the last inequality is from condition Eefol#11l% <
0o. Consequently,

(104) EB, < 2E(C2) + 2E(D2) = 2E(C2) + 2E(D,) < e~

as n is sufficiently large. This joint with (98) and (100) yields (93). [ |
Proof of Lemma 6.8. Take v = (1 — 3)/2 € [1/3,1/2). Set

(105) m; = &I(|&| < 1Y), pn = Emy and o2 = Var(my), 1<i<n.

Since the desired result is a conclusion about n — oo, without loss of gener-
ality, assume o, > 0 for all n > 1. We first claim that there exists a constant
C > 0 such that

(106) max {|Mn|, oy — 1], P(|&1] > rn)} < e /0
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LAWS OF COHERENCE OF RANDOM MATRICES 11
for all n > 1. In fact, since £¢; = 0 and ay = S,

n| = [EGI(|G] >n7)| < El&lI(|&] > n?)

(107) E<‘ 3 ‘et0|f1\a/2> . e—ton? /2

IN

for all n > 1. Note that |0, — 1| < |02 — 1| = p2 + EEI(|&]| > n?), by
the same argument as in (107), we know both |0, — 1| and P(|&1]| > n?) are
bounded by Ce=""/C for some C > 0. Then (106) follows.

Step 1. We prove that, for some constant C > 0,

(108) ‘P(\/ni)m = yn) - P(\/%% > yn)\ < 2e7/C

for all n > 1. Observe

(109) & =m; for 1 <i<n if max & <n.
1<i<n

Then, by (106),

P(2250) < (o= >y 6] <) + P( 6] > 7))
sis i=1

v/nlogpy, vnlogpy
(110) < P(\/z;;zlo% )+Cne n?/C

for all n > 1. Use inequality that P(AB) > P(A) — P(B¢) for any events A
and B to have

S S
p(7”> ) > p(i’l , < v)
vitogm =) 2 P\ ategpy = v i Il =

Z?—lm
- < 'y)
Py 2w maxll <

27'11772' —nB/C
> pf &=Ll S n) — Cne ™/
- <vn10gpn =Y e

where in the last step the inequality P(maxi<i<n || > nY) < Cne
used as in (110). This and (110) concludes (108).
Step 2. Now we prove

—nf/C g

2
vnlogp, — V2rx,
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12 T. TONY CAI AND TIEFENG JIANG

as n — oo, where

1 n
112 =y /1 d ¢ = — - — .
( ) Tp =Y,V 10gp, and y, o (yn log pry Mn)

First, by (106),

|1 — oy 1 n
Yn + —-
On On 10gpn

_npB
(113) ‘y;z - yn| < ‘,U/n| < Ce /e

for all n > 1 since both o, and ¥, have limits and p,, — oo. In particular,
since log p, = o(n?),

(114) zn = o(n?/?)

as n — oo. Now, set

i — Hn
n; =
On
for 1 <14 < n. Rasily
Z”ﬂm 21177/' /
115 P(Z;> ):P(l;l> )
) Vitogp, = ) =P Gigp, =

for all n > 1. Reviewing (105), for some constant K > 0, we have |n}| < Kn"?
for 1 < i < n. Take ¢, = Kn?~1/2. Recalling x,, in (112). It is easy to check
that

n 1/2 n
Sp 1= (ZET}F) =N, on = ZE‘T};P ~nC, |ni| < epsp, and
i=1 =1
0<ec, <1

as n is sufficiently large. Recall v = (1 — §)/2, it is easy to see from (114)
that

0< <
n 18¢,,

for n large enough. Now, let () be as in Lemma 6.3, since 5 < 1/3, by the
lemma and (114),

3
()] < 2aln o (n51) 50 ang LEIE _ omnrz) g
Sn s3 s3
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LAWS OF COHERENCE OF RANDOM MATRICES 13

as n — oo. By (112) and (113), 2,8, = y,,v/nlogp, and z,, — 00 as n — oo.
Use Lemma 6.3 and the fact 1 — ®(¢) L_¢~1*/2 a5 t — +00 to obtain

= V2t
> i ' -, e~ %n/?
116 P(le ):P( -2:rs>~1—<I>x ~
(116) mTog pr Yn ;771 nSn (n) P,

as n — oo. This and (115) conclude (111).
Step 3. Now we show

e~ Tn/2 p;y%/Q(logpn)—l/Z

Vora, V2my

as n — oo. Since y, — y and o, — 1, we know from (113) that

(118) Vo, =V 27ry§1(10gpn)1/2 ~ 21y (logpn)l/2

= wy,

(117)

as n — oo. Further, by (112),

e—m%/Z

—2/2
on va/

Ln
2

2 92 I 2
- flogpn} = exp{f(yn —%) logpn}-

(119) 5

:exp{—

Since y, — y, by (113), both {y,} and {y/,} are bounded. It follows from
(113) again that |y2 — y/2| < Cly, — y| = O(e‘”ﬁ/c) as n — oo. With as-

- _ (B —22/2 o =Yn/2 : .
sumption log p,, = o(n”) we get e ~ Dnp, as n — 0o, which combining

with (118) yields (117).
Finally, we compare the right hand sides of (108) and (117). Choose C’ >
max{y2; n > 1}, since logp, = o(n?), recall w, in (117),

2€fn5/C

—— = 2V2ry (logpy)pli/ 2/
n

= 0 <n5/2 - exp {C'logpn — 1?})

= O<n5/2-exp{—gg}> -0

as n — oo for any constant C' > 0. This fact joint with (108), (111) and
(117) proves the lemma. [ |

Proof of Lemma 6.9. For any Borel set A C R, set
P2(A) = P(A’Ukl,’ll,k-g, 1 S k S n)v
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14 T. TONY CAI AND TIEFENG JIANG

the conditional probability of A with respect to ugi, ug3, 1 < k < n. Observe
from the expression of ¥4 that three sets of random variables {uy1, ugs; 1 <
kE<n}, {ug; 1 <k <n}and {ugg; 1 <k < n} are independent. Then

n n
P(! > uriurel > an, | ursua| > an)
k=1 k=1
n n
= E{P2<\ Zukluk2| > an>P2(| Zuk:sum\ > an)}
k=1 k=1
n 241/2 n 2
{EP2<|Zuk1uk2\ > an> } . {EPQ(\Zukgukﬂ > an) }
k=1 k=1

by the Cauchy-Schwartz inequality. Use the same independence again

1/2

IN

w, 1<k <n);

(120) P2<| Zuklukg\ > Cln) = P(’ Zukluk2| > an,
k=1 k=1

ukg,lgkgn).

n n
(121) P2(| Zukgum\ > an) = P(! Zuk3uk4| > ap,
k=1 =

These can be also seen from Proposition 27 in Fristedt and Gray (1997). It
follows that

n n
sup P(I ZUklukz! > ap, Izukgum\ > an)
Ir[<1 k=1 k=1

" 2
< E{POZUMUM > Ap|Uiy, e ,un1) }

k=1
Since {ug1; 1 < k < n} and {uge; 1 < k < n} are independent, and
tn = ap/v/nlogp — t = 2, taking @ = 2 in Lemma 6.7, we obtain the
desired conclusion from the lemma. |

Proof of Lemma 6.10. Since ¥, is always non-negative definite, the de-
terminant of the first 3 x 3 minor of ¥4 is non-negative: 1 —7? — 73 > 0. Let
r3 = /1 —71? —7r3 and {ugs; 1 < k < n} be ii.d. standard normals which
are independent of {ug;; 1 <i<4; 1<k <n}. Then,

d
(w11, w12, w13, u14) = (U1, w12, r1UI1 + T2UL2 + T3ULS, Uld).
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LAWS OF COHERENCE OF RANDOM MATRICES 15

Define Z;; = | Y p_; ukiug| for 1 < i,j < 5 and r5 = r3. By the Cauchy-
Schwartz inequality,

n

n
| Z(Tlum + roUg2 + T3Uk5 ) Ukal Z |ril - | Z Ui s
k=1

k=1 i€{1,2,5}

IN

1/2

IN

1/2
(r% + 75+ 7“%) (Z%4 + Z5y + 2524)
< \/§ -max{Z14, Zo4, Z54}.

It follows from the above two facts that

n n
P(\ > uriuga| > an, | ukguga| > an>
k=1 k=1

Qn
< P<Z12 > ap, max{Z4, Zoa, Z54} > %>
Qnp,
< . Z P<Z12>anazi4>ﬁ>
1€{1,2,5}
(122) = 2P<Z > an, Z >a—”)+P(z >a ) -P(Z >a—”)
12 ny 414 \/g 12 n 54 \/3

by symmetry and independence. For any Borel set A C R, set P}(A) =
P(Alugi, 1 < k < n), the conditional probability of A with respect to
ug1, 1 < k < n. For any s > 0, from the fact that {ug}, {ur2} and {ug4}
are independent, we see that

P(Z12 > an, Z1a > san) - E(Pl(Zlg > ap) - P (Z1a > San))
1/2 1/2
< {E PY(Z1s > an)z} - {E PY(Zu > san)Q}

by the Cauchy-Schwartz inequality. Taking t,, := a,/v/nlogp — t = 2 and
ty = san/\/nlogp — t = 2s in Lemma 6.7, respectively, we get

EP(Z1 > a,)? = O(p™*) and EP'(Zyy > san)? = O(p~')
as n — oo for any € > 0. This implies that, for any s > 0 and ¢ > 0,
(123) P<Z12 > Ay, Z14 > san> < O(p_2_252+5>
as n — oo. In particular,

(124) P(le > an, Z14 > %) < O(p_§+e>
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16 T. TONY CAI AND TIEFENG JIANG

as n — oo for any € > 0.

Now we bound the last term in (122). Note that [ujui2| < (ud+u2y)/2, it
follows that Eel*11%121/2 < 50 by independence and E exp(N(0,1)?/4) < oo.
Since {ugy,uge; 1 < k < n} are i.i.d. with mean zero and variance one, and
Yn = an/+/nlogp — 2 as n — oo, taking @ = 1 in Lemma 6.8, we get

1 - a
P(Z12 > a ) = P(i‘ ukluk2| > 771)
" vnlogp ; vnlogp

~yn/2(] —1/2 -y/2 1
(125) o P (logp)™ /% eV z
2V2m V2mr D
as n — oo. Similarly, for any ¢t > 0,
(126) P(Zlg > mn) - o(p*%?“)
as n — oo (this can also be derived from (i) of Lemma 6.4). In particular,
a a 2
127 P(Zs> %) = P(Z2> %) =0(pi+)
(127) > > p

as n — oo for any e > 0. Combining (125) and (127), we know that the

last term in (122) is bounded by O(p_%Jre) as n — oo for any € > 0. This
together with (122) and (124) concludes the lemma. [ |

Proof of Lemma 6.11. Fix 0 € (0, 1). Take independent standard normals
{ugs, uks; 1 < k < n} that are also independent of {u;; 1 <i<4;1 <k <
n}. Then, since {ug1, ur2, ugs, uks; 1 < k < n} are i.i.d. standard normals,
by checking covariance matrix Y4, we know

d
(128) (u11,u12, w13, u14) = (w11, Uiz, riuty + riuns, rauis + roue)
where r{ = /1 —7r% and ry, = /1 —r3. Define Z;; = |> }_; ugiuy;| for
1<4,5 < 6. Then

n

| (rrurs + ryuks) (rougs + rhuse)|
k=1

|r1r2|Z12 + |r1rh| Z16 + |riral Zas + |rirh| Zse

<
< (1 -10)*Z12 + 3max{Zig, Z25, Zs6 }

(129)

for all |ry|, |re] < 1 —4. Let o = (14 (1 —6)?)/2, B = a/(1 — §)? and
v=(1—a)/3. Then

(130) f>1 and v>0.
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LAWS OF COHERENCE OF RANDOM MATRICES 17

Easily, if Z12 < Bay, max{Zis, Z25, Z56} < ~yan, then from (129) we know
that the left hand side of (129) is controlled by a,. Consequently, by (128)
and the i.i.d. property,

P(Z12 > Ay, L34 > an)
n
= P(le > ap, | Z(Tlukl + s ) (rouge + rouke)| > an)
k=1
< P(Ziz > an, Z12 > Pay) + Z P(Z13 > an, Zis > van,)
ie{1,2,5)
= P(Zi2 > Bayn) +2P(Z12 > ay, Z16 > yan)
(131) +P(le > an) . P(Z56 > fyan)

where “2P(Z12 > an, Z16 > Yay)” comes from that (Z12, Z16) 4 (Z12, Z2g).
Keep in mind that (Z12, Z16) 4 (Z12, Z14) and Zsg 4 Z12. Recall (130), ap-
plying (123) and (126) to the three terms in the sum on the right hand side
of (131), we conclude (72). [ |

Proof of Lemma 6.12. Reviewing notation {23 = Q; for j = 3 defined
below (65), the current case is that di < d3 < dy < dy with d = (dy,ds)
and d' = (ds,d4). Of course, by definition, d; < dg and d3 < d4. To save
notation, define the “neighborhood” of d; as follows:

(132)  Ni= {de 1, ,p}: |d— di <T}

for:=1,2,3,4.

Given dy < da, there are two possibilities for dy: (a) dy — do > 7 and
(b) 0 < dg — do < 7. There are four possibilities for ds: (A) d3 € No\Ny;
(B) d3s € N1\N2; (C) d3 € N1 N Na; (D) dg ¢ Ni U Ny. There are eight
combinations for the locations of (ds,ds) in total. However, by (64) the
combination (a) & (D) is excluded. Our analysis next will exhaust all of the
seven possibilities.

Case (a) & (A). Let Q, 4 be the subset of (d, d’) € Q3 satisfying restrictions
(a) and (A), and others such as €, ¢ are similarly defined. Thus,

(133) > P(Za>anZa >an) <Y Y. P(Za>an, Zg > an)
(d,d’)EQ;; 6,0 (d,d/)GQQ,@

where 6 runs over set {a,b} and © runs over set {A, B,C, D} but (6,0) #
(a, D).
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18 T. TONY CAI AND TIEFENG JIANG

Easily, [Q,.4| < 7p? and the covariance matrix of (wgy,, W, , W5, wa,) (Se€
(67)) is

I

o O =
S O = O
o = o
— o O O

Take € = 1/2 in Lemma 6.9 to have P(Zy > an, Zg > ap) = pn = o(p_7/2)
for all (d,d’) € Q4 4. Thus

(134) Y P(Za>an,Zy > an) =|R|- pn =0
(d,d)eR

as n — oo for R =, 4.

Case (a) & (B). Notice |Q, 5] < 7p® and (wg,, W4y, W4y, wa,) has the same
covariance matrix as that in Lemma 6.9. By the lemma we then have (134)
for R =Q, B.

Case (a) & (C). Notice |Qqc| < 72p* and the covariance matrix of
(Wd, , Way, Wy, Wq,) is the same as that in Lemma 6.10. By the lemma, we
know (134) holds for R = Qg c.

Case (b) & (A). In this case, [ 4| < 7%p? and the covariance matrix of
(Wdy, Wa,, Wdy, Wq, ) is the same as that in Lemma 6.10. By the lemma and
using the fact that

P(Zd > Qp, Lar > an) = P(Z(d37d4) > an7Z(d2,d1) > an)

we see (134) holds with R = Q 4.

Case (b) & (B). In this case, [ 5| < 7%p? and the covariance matrix of
(Wd, , Way, Wy, Wq,) is the same as that in Lemma 6.11. By the lemma, we
know (134) holds for R = € p.

Case (b) & (C). We assign positions for dy, ds, da, dy step by step: there
are at most p positions for d; and at most k positions for each of d3, ds and
dy. Thus, |Qc| < 73p. By (125),

- 1
P(Zg> an, Zg > an) < P(Zg > a,) = P<| meﬂ > an) = O<1?>
i=1

as n — oo, where {&;,n;; ¢ > 1} are i.i.d. standard normals. Therefore, (134)
holds with R = 2 ¢.
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LAWS OF COHERENCE OF RANDOM MATRICES 19

Case (b) & (D). In this case, || < 7p* and the covariance matrix of
(Wdy Wy, Wy, Wq, ) is the same as that in Lemma 6.9. By the lemma and
noting the fact that

P(Zd > ap, Lagr > an) = P(Z(d4,d3) > an7Z(d2,d1) > an)

we see (134) holds with R = p.
We obtain (72) by combining (134) for all the cases considered above with
(133). m
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