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Optimal estimation and inference for both the minimizer and minimum
of a convex regression function under the white noise and nonparametric re-
gression models are studied in a nonasymptotic local minimax framework,
where the performance of a procedure is evaluated at individual functions.
Fully adaptive and computationally efficient algorithms are proposed and
sharp minimax lower bounds are given for both the estimation accuracy and
expected length of confidence intervals for the minimizer and minimum.

The nonasymptotic local minimax framework brings out new phenomena
in simultaneous estimation and inference for the minimizer and minimum.
We establish a novel uncertainty principle that provides a fundamental limit
on how well the minimizer and minimum can be estimated simultaneously
for any convex regression function. A similar result holds for the expected
length of the confidence intervals for the minimizer and minimum.

1. Introduction. Motivated by a range of applications, estimation of and inference for
the location and size of the extremum of a nonparametric regression function has been a long-
standing problem in statistics; see, for example, Blum (1954), Chen (1988), Kiefer and Wol-
fowitz (1952). The problem has been investigated in different settings. For fixed design, up-
per bounds for estimating the minimum over various smoothness classes have been obtained
(Miiller (1989), Facer and Miiller (2003), Shoung and Zhang (2001)). Belitser, Ghosal and
van Zanten (2012) and establishes the minimax rate of convergence over a given smoothness
class for estimating both the minimizer and minimum. For sequential design, the minimax
rate for estimation of the location has been established; see Chen, Huang and Huang (1996),
Dippon (2003), Polyak and Tsybakov (1990). Mokkadem and Pelletier (2007) introduce a
companion for the Kiefer—Wolfowitz—Blum algorithm in sequential design for estimating
both the minimizer and minimum.

Another related line of research is the stochastic continuum-armed bandits, which have
been used to model online decision problems under uncertainty. Applications include online
auctions, web advertising and adaptive routing. Stochastic continuum-armed bandits can be
viewed as aiming to find the maximum of a nonparametric regression function through a
sequence of actions. The objective is to minimize the expected total regret, which requires the
trade-off between exploration of new information and exploitation of historical information;
see, for example, Auer, Ortner and Szepesvari (2007), Kleinberg (2004), Kleinberg, Slivkins
and Upfal (2019).

In the present paper, we consider optimal estimation and confidence intervals for the min-
imizer and minimum of convex functions under both the white noise and nonparametric re-
gression models in a nonasymptotic local minimax framework that evaluates the performance
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of any procedure at individual functions. This framework provides a much more precise anal-
ysis than the conventional minimax theory, which evaluates the performance of the estimators
and confidence intervals in the worst case over a large collection of functions. This framework
also brings out new phenomena in simultaneous estimation and inference for the minimizer
and minimum.

We first focus on the white noise model, which is given by

(1.1 dY()=f@)dt +edW(@), 0<tr<l1,

where W (¢) is a standard Brownian motion, and & > 0 is the noise level. The drift function
f is assumed to be in F, the collection of convex functions defined on [0, 1] with a unique
minimizer Z(f) = argminy., - f(¢). The minimum value of the function f is denoted by
M(f), thatis, M(f) = minaf:sl f(@) = f(Z(f)). The goal is to optimally estimate Z(f)
and M(f), as well as construct optimal confidence intervals for Z(f) and M (f). Estima-
tion and inference for the minimizer Z(f) and minimum M (f) under the nonparametric
regression model will be discussed later in Section 4.

1.1. Function-specific benchmarks and uncertainty principle. As the first step toward
evaluating the performance of a procedure at individual convex functions in F, we define the
function-specific benchmarks for estimation of the minimizer and minimum, respectively, by

(1.2) R;(&; f) = sup inf max Eh
geF Z helf,

(1.3) R, (s; f)_supmf max Eh|M M(h)|.
geF M helf.g}

6,9

As in (1.2) and (1.3), we use subscript “z” to denote quantities related to the minimizer and

” for the minimum throughout the paper. For any given f € F, the benchmarks R (e; f)

and R, (&; f) quantify the estimation accuracy at f of the minimizer Z(f) and minimum
M (f) against the hardest alternative to f within the function class F.

We show that R, (¢; f) and Ry, (&; f) are the right benchmarks for capturing the estimation
accuracy at individual functions in F and will construct adaptive procedures that simultane-
ously perform within a constant factor of R;(e; f) and R, (¢; f) forall f € F. In addition, it
is also shown that any estimator Z for the minimizer that is “super-efficient” at some fy € F,
that is, it significantly outperforms the benchmark R;(e; fp), must pay a penalty at another
function f1 € F, and thus no procedure can uniformly outperform the benchmark. An analo-
gous result holds for the minimum.

More interestingly, the nonasymptotic local minimax framework enables us to establish
a novel uncertainty principle for estimating the minimizer and minimum of a convex func-
tion. The uncertainty principle reveals an intrinsic tension between the task of estimating the
minimizer and that of estimating the minimum. That is, there is a fundamental limit to the
estimation accuracy of the minimizer and minimum for all functions in F, and consequently,
the minimizer and minimum of a convex function cannot be estimated accurately at the same
time. More specifically, it is shown that

(1.4) R.(e; f) - Rm(e; [)? < &2
for all f € F. Further, on the lower bound side,

®(-0.5)% ,

(1.5) inf Re(es f) - Run(e: = e

where @ (+) is the cumulative distribution function (cdf) of the standard normal distribution.
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For confidence intervals with a prespecified coverage probability, the hardness of the prob-
lem is naturally characterized by the expected length. Let Z; o (F) and Z,, o (F) be respec-
tively the collection of confidence intervals for the minimizer Z( ) and the minimum M ( f)
with guaranteed coverage probability 1 — « for all f € F. Let L(CI) be the length of a
confidence interval C/. The minimum expected lengths at f of all confidence intervals in
Z.«{f, g}) and Z,, o ({ f, g}) with the hardest alternative g € F for f are given by

1.6 L,.(e; f)=su inf EL(CI),
(1.6) caleif)=sup  inf  ELCD)
(L.7) Ly, o(e; f) =sup inf EfL(CI).

ge}‘CIGIm,a({fvg})

As in the case of estimation, we will first evaluate these benchmarks for the performance of
confidence intervals in terms of the local moduli of continuity and then construct data-driven
and computationally efficient confidence interval procedures. Furthermore, we also establish
the uncertainty principle for the confidence intervals,

(1.8) inf L, o(e; f) - Lina(s; f)* > Cue?,
feF

where C,, is a positive constant depending on « only. The uncertainty principle (1.8) shows
a fundamental limit for the accuracy of simultaneous inference for the minimizer Z(f) and
minimum M (f) for any f € F.

1.2. Adaptive procedures. Another major step in our analysis is developing data-driven
and computationally efficient algorithms for the construction of adaptive estimators and adap-
tive confidence intervals as well as establishing the optimality of these procedures at each
ferF.

The key idea behind the construction of the adaptive procedures is to iteratively localize the
minimizer by computing the integrals over the relevant subintervals together with a carefully
constructed stopping rule. For estimation of the minimum and minimizer, additional estima-
tion procedures are added after the localization steps. For the construction of the confidence
intervals, another important idea is to look back a few steps before the stopping time.

The resulting estimators, Z for the minimizer Z (f) and M for the minimum M (f), are
shown to attain within a constant factor of the benchmarks R;(e; f) and R, (¢; f) simulta-
neously for all f € F,

Ef|Z — Z(f)| <C.R.(e; f) and Ef|M — M(f)| < CnRu(e; f),

for some absolute constants C,; and C,, not depending on f. The confidence intervals, C1, ,
for the minimizer Z(f) and C1I,, o for the minimum M (f), are constructed and shown to be
adaptive to individual functions f € JF, while having guaranteed coverage probability 1 — .
Thatis, Cl; o € Z; o(F) and Cl o € Ly o(F) and for all f € F,

EfL(Cl o) < C(@)Lza(e; ),
EfL(CIm,a) <Cp (a)Lm,a(S; f)a
where C; (o) and Cy, (o) are constants depending on « only.
1.3. Related literature. In addition to estimation and inference for the location and size
of the extremum of a nonparametric regression function mentioned at the beginning of this
section, the problems considered in the present paper are also connected to nonparametric

estimation and inference under shape constraints, which have also been well studied in the
literature.
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Nonparametric convex regression has been investigated in various settings, ranging from
estimation and confidence bands for the whole function (Birgé (1989), Guntuboyina and Sen
(2018), Hengartner and Stark (1995), Diimbgen (1998)), to estimation and inference at a fixed
point (Kiefer (1982), Cai, Low and Xia (2013), Cai and Low (2015), Ghosal and Sen (2017)).
Deng, Han and Sen (2023) established limiting distributions for some local parameters of a
convex regression function, including the minimizer based on the convexity-constrained least
squares (CLS) estimator and constructed a confidence interval for the minimizer. As seen
in Section B.1 of the Supplementary Material (Cai, Chen and Zhu (2024)), this confidence
interval is suboptimal in terms of the expected length under the local minimax framework
that we introduce later. It is also much more computationally intensive as it requires solving
the CLS problem.

In the context of estimating and inferring the value of a convex function at a fixed point,
which is a linear functional, the local minimax framework characterized by the benchmarks
(1.2)—(1.3) and (1.6)—(1.7) has been used in Cai, Low and Xia (2013) and Cai and Low
(2015). However, the focus of the present paper is on the minimizer and minimum, which are
nonlinear functionals. Due to their nonlinear nature, the analysis is much more challenging
than it is for the function value at a fixed point.

Another related line of research is stochastic numerical optimization of convex functions.
Agarwal et al. (2011) studies stochastic convex optimization with bandit feedback and pro-
poses an algorithm that is shown to be nearly minimax optimal. Chatterjee et al. (2016) uses
the framework introduced in Cai and Low (2015) to study the local minimax complexity
of stochastic convex optimization based on queries to a first-order oracle that produces an
unbiased subgradient in a rather restrictive setting.

1.4. Organization of the paper. In Section 2, we analyze individual minimax risks, relat-
ing them to appropriate local moduli of continuity and more explicit alternative expressions,
and explain the uncertainty principle with a discussion of the connections with the classi-
cal minimax framework. Super-efficiency is also considered. In Section 3, we introduce the
adaptive procedures for the white noise model and show that they are optimal. In Section 4,
we consider the nonparametric regression model. Adaptive procedures are proposed and their
optimality is established. Section 5 discusses some future directions. For reasons of space,
the numerical results and proofs are given in the Supplementary Material (Cai, Chen and Zhu
(2024)).

1.5. Notation. We finish this section with some notation that will be used in the rest
of the paper. The cdf of the standard normal distribution is denoted by ®. For 0 < o < 1,
ze = D71 (1 — ). For two real numbers a and b, a A b = min{a, b}, a v b = max{a, b}. || - |2
denotes the Ly norm (i.e., || fll2 =/ f(x)?>dx). For f € L,[0,1]and r > 0, B,(f) ={g €
L[0,1]: llg — fll2 < r}and 9B, (f) ={g € L2[0, 1] : lg — fll2 =1}

2. Benchmarks and uncertainty principle. In this section, we first introduce the lo-
cal moduli of continuity and use them to characterize the four benchmarks for estimation
and confidence intervals introduced in Section 1.1, which are summarized in Table 1. We
provide alternative expressions for the local moduli of continuity that are easier to evaluate.
The results are used to establish a novel uncertainty principle, which shows an intrinsic ten-
sion between the estimation/inference accuracy for the minimizer and the minimum for all
functions in F.
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TABLE 1
Benchmarks for estimation and confidence intervals

Estimation Inference
Minimizer Z(f) R:(s; f) L;al(e; f)
Minimum M (f) R (e; f) Lm,a(e; ).

2.1. Local moduli of continuity. For any given convex function f € F, we define the
following local moduli of continuity, one for the minimizer, and the other for the minimum,

(2.1) w.(e; ) =sup{|Z(f)—Z|: If —gl2<e,g€F},
(2.2) wm(e; f)=sup{|M(f)—M@|: I f—gl.<e geF}

As in the case of a linear functional, the local moduli w,(¢; f) and w,, (¢; f) clearly depend
on the function f and can be regarded as an analogue of the inverse Fisher information in
regular parametric models.

The following theorem characterizes the four benchmarks for estimation and inference in
terms of the corresponding local modulus of continuity.

THEOREM 2.1. Let0 <« <0.3. Then

(2.3) arw;(e; )< R;(e; f) < Arw,(e; f),
(2.4) arom(&; f) < Ru(e; [) < Arom(e; f),
(2.5) bow;(e/3; [) < Lz a(&; ) < Baw (&5 f),
(2.6) bawm(e/3; f) < Lm,a(; ) < Bywm(e; f),

where the constants ay, Ay, by, By can be taken as a; = ®(—0.5) ~0.309, A; = 1.5, by =
0.6 — 20 and By, =3(1 —2a)z,.

Theorem 2.1 shows that the four benchmarks can be characterized in terms of the local
moduli of continuity. However, these local moduli of continuity are not easy to compute. We
now introduce two geometric quantities to facilitate further understanding of these bench-
marks. For f € F,u e Rand ¢ > 0, let f,(¢) = max{f(¢), u} and define

(2.7 pm(e; f)=suplu —M(f): I f — full2 <&},

(2.8) pz(e; ) =sup{|t = Z(H)]: f) < pm(e; f)+M(f), 1 €[0,1]}.

Obtaining p,, (¢; f) and p.(e; f) can be viewed as a water-filling process. One adds water
into the epigraph defined by the convex function f until the “volume” (measured by | - ||2)

is equal to e. As illustrated in Figure 1, p,(e; f) measures the depth of the water (CD),
and p;(e; f) captures the width of the water surface (FC). p,,(e; f) and p,(e; f) essentially
quantify the flatness of the function f near its minimizer Z(f).

The geometric quantities p,,(¢; f) and p,(e; f) defined in (2.7) and (2.8) have the follow-
ing properties.

PROPOSITION 2.1. ForO<c <1, f e F,

g .
2.9) c= M < 3 and max{ <£> ! , c} < polces J) /) <1
Pm(&; f) 2 0:(e5 f)
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p=(; f)
F1G. 1. Water filling process.

The following result connects the local moduli of continuity to these two geometric quan-
tities.

PROPOSITION 2.2. Let pp,(e; f) and p;(&; f) be defined in (2.7) and (2.8), respectively.
Then

(2.10) pm(e; f) <wm(e; ) <3pm(e; f),
(2.11) p (e f) Sw (e f) <3pz(&; f).

Therefore, through the local moduli of continuity, the hardness of the estimation and in-
ference tasks are tied to the geometry of the convex function near its minimizer. Note that as
the function gets flatter near its minimizer, p,, (e; f) decreases while p,(e; f) increases. It is
useful to calculate p,, (¢; f) and p,(e; f) in a concrete example.

EXAMPLE 2.1. Consider the function f(¢) = |t — 5 |k where k > 1 is a constant. We will
calculate p,, (e; f) and then obtain p,(e; f) by first computmg I f = fu ||% and then setting it
to &2 to solve for om (& f).

. . . 2 4k2 2k+1 . 2 2
It is easy to see that in this case || f — full5 = oahaEn 4 F - Setting || f — full; =¢

k 2k
yields u = (%)ng, Hence,

Rk+1D(k+1) W
74]{2 ) £2k+T |

1
To compute p,(e; f), note that f‘l(u) = l +uk =1 ;£ (MVH1 82k+1 Hence,

Rk+Dk+1) prast 2 1
pues ) =minf (S B et

Proposition 2.2 then yields tight bounds for the local moduli of continuity wy,,(e; f) and
wz(€; f).

REMARK 2.1. Note that the results obtained in Example 2.1 can be extended to a class
of convex functions. For f € F satisfying
f@O-M(f) — f@)—M(f)
0< lim ————= < lim —————= <00
t—z(f) 1t —Z(f)l 1—Z(f) |t —Z(f)l

for some k > 1, it is easy to show that

putei )= (

2k 2
om(e; f)~eFT,  w(e; f)~eFT, ase— 0T,
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2.2. Uncertainty principle. Section 2.1 provides a precise characterization of the four
benchmarks under the nonasymptotic local minimax framework in terms of the local moduli
of continuity and the geometric quantities p,, (¢; f) and p,(e; f). These results yield a novel
uncertainty principle.

THEOREM 2.2 (Uncertainty principle). Let R;(¢; f), Rm(e; f), Lza(e; f) and
Ly «(&; f) be defined as in (1.2)—(1.7). Let 0 < o < 0.3. Then for any f € F,

®(—0.5)3
(2.12) 274¢% > R.(&; f) - Ru(e; f)2 > ( 20~5) 82’
—9g)3
(2.13) 37 (1 =20)% > Leo(e; f) - Lmale: )7 2 (0‘61%82‘

Note that the bounds in (2.12) and (2.13) are universal for all f € F and show that there is
a fundamental limit to the accuracy of estimation and inference for the minimizer and mini-
mum of a convex function. Our finding here states that the minimizer and the minimum of a
convex function cannot be estimated accurately at the same time. This statistical uncertainty
principle comes from an intrinsic relationship between the two operators Z(-) and M (-): For
any convex function f € F and any r > 0, there exists g € 9B, (f) N F such that

2 1 r 2 2
(2.14) 1Z(g) — Z(H)| - |M(g) — M(p)] 25(g> &,

where r/e = ||(f — g)/€]|2 characterizes the probabilistic distance between the two convex
functions f and g under the white noise model.

REMARK 2.2. To the best of our knowledge, the uncertainty principles established in this
paper are the first of their kind in nonparametric statistics in that they reveal the fundamental
tensions between estimation/inference of different quantities. It is shown in the Supplemen-
tary Material (Cai, Chen and Zhu ((2024), Section B.3)) that similar uncertainty principles
also hold for certain subclasses of convex functions. Note that it is not possible to establish
such results using conventional minimax analysis where the performance is measured in a
worst-case sense over a large parameter space.

2.3. Penalty for superefficiency. We have shown that the estimation benchmarks R, (¢; f)
and R, (e; f) defined in (1.2) and (1.3) can be characterized by the local moduli of continuity.
Before we show in Section 3 that these benchmarks are indeed achievable by adaptive proce-
dures, we first prove that they cannot be essentially outperformed by any estimator uniformly
over F. The benchmarks R,(e; f) and R,,(e; f) play a role analogous to the information
lower bound in classical statistics.

THEOREM 2.3 (Penalty for superefficiency). For any estimator Z, if Eﬁ,li —Z(fo)] <
v R (e; fo) for some fo € F and y < 0.1, then there exists fi € F such that

A APRRRINT
2.15) Ef1(|Z—Z(f1)|)ZE(10g;) Re(e: f1).

Similarly, for any estimator M, ifIEf0|M — M(fo)| < vy Ry (e; fo) for some fy € F and
y < 0.1, then there exists f1 € F such that

) I
2.16) Eﬁ\M—M(fl)\zg(log;) Rones 11).
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i
level j —1 --- : N :
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levelj R N N N N N N N ' Lo
N N N AN

possible locations for

FI1G. 2. lllustration of the localization step. At level j, the middle two intervals are the two subintervals of the
selected interval at level j — 1. One adjacent interval of the same length on each side is added and the interval at
level j is selected among these four intervals.

REMARK 2.3. Theorem 2.3 shows that if an estimator of Z( f) or M (f) is superefficient
at some fp € F in the sense of outperforming the benchmark by a factor of y for some small
y > 0, then it must be subefficient at some f| € F by underperforming the benchmark by at

least a factor of (log %) %

3. Adaptive procedures and optimality. We now turn to the construction of data-driven
and computationally efficient algorithms for estimation and confidence intervals for the min-
imizer Z(f) and minimum M ( f) under the white noise model. The procedures are shown to
be adaptive to each individual function f € F in the sense that they simultaneously achieve,
up to a universal constant, the corresponding benchmarks R, (e; f), R (e; f), L; «(g; f) and
Ly «(g; f) forall f € F. These results are much stronger than what can be obtained from a
conventional minimax analysis.

3.1. The construction. There are three main building blocks in the construction of the
estimators and confidence intervals: Localization, stopping and estimation/inference.

In the localization step, we begin with the full interval [0, 1]. Then, iteratively, we halve
the intervals and select one halved interval among a set of halved intervals depending on
the interval selected in the previous iteration. This set of halved intervals include the two
resulting subintervals of the previously selected interval and one neighboring halved interval,
when such an interval exists, on both sides. The selection rule is to choose the one with the
smallest integral of the white noise process over it. See Figure 2 for an illustration of the
localization step.

The second step of the construction is the stopping rule. The localization step is iterative,
so one needs to determine when there is no further gain and stop the iteration. The integral
over each selected interval is a random variable and can be viewed as an estimate of the
minimum times the length of the interval. The intuition is that, as the iteration progresses,
the bias decreases and the variance increases. As shown in Figure 3, the basic idea is to use
the differences of the integrals over the two neighboring intervals 5 blocks away from the
current designated interval when such intervals exist on both sides. If either of the differences
is smaller than 2 standard deviations, then the iteration stops.

After selecting the final subinterval, the last step in the construction is the estima-
tion/inference for both the minimum and minimizer, which will be described separately later.
The detailed construction is given as follows.

ij—5 3 +5

ij— 6 i ij+6

level j

F1G. 3. Illustration of the stopping rule.
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3.1.1. Sample splitting. For technical reasons, we split the data into three independent
pieces to ensure independence of the data used in the three steps of the construction. This is
done as follows.

Let B (¢) and B> (t) be two independent standard Brownian motions, and both be indepen-
dent of the observed data Y. For ¢ € [0, 1], let

2
V(o)=Y + £831(t) + ﬁsBz(t),

2 2
G- Yi(t) =Y (1) + ?sl%](t) - ?8320),

Yo(r) =Y (1) — V2B (1).
Then Y;(-), Y, (-) and Y,(-) are independent and can be written as
dY)(r) = f(t)dt +v/3ed Wi (1),
(3.2) dYs(t) = f (1) dt +3edWa(t),
dY.(t) = f(t)dt +3edWs(1),

where W1, W, and W3 are independent standard Brownian motions.
We now have three independent copies: Y; is used for localization, Y for stopping and Y,
for the construction of the final estimator and confidence interval for the minimum.

REMARK 3.1. For mere estimation and inference for the minimizer, the copy Y, is not
needed, and it suffices to split into two independent copies with smaller variance. This leads
to slightly better performance. In addition, the noise levels of the three processes Y;, Y5 and
Y, can be different. For the simplicity and ease of presentation, we split the original sample
into three independent and homoskedastic copies for estimation and inference for both the
minimizer and minimum.

3.1.2. Localization. For j=0,1,...,andi =0,1,...,2/, let

(33)  my=27.  tj;=i-mj, and if=max{i:Z(f)€ltji-1.1;l}-

That is, at level j for j =0,1,..., the i;‘.‘th subinterval is the one containing the minimizer
Z(f).For j=0,1,...andi =1,2,...,2/, define

tj,,'
Xji 2/ dy; (1),
tji—1
where Y; is one of the three independent copies constructed above through sample splitting.
For convenience, we define X ;; = +oofor j =0,1,... andi € Z\ {1,2,...,2/}.
Letfo= landfor j=1,2,...,let

ij= ~ argmin X
Zij_1—2§i§2ij_1+1

Note that given the value of i j—1 atlevel j — 1, in the next iteration the procedure halves the
interval [#; 105, 1] into two subintervals and selects the interval [; _,#; ] atlevel j from
J— J— J J

these and their immediate neighboring subintervals. So, i only ranges over 4 possible values

at level j; see Figure 2 for an illustration.
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3.1.3. Stopping rule. 1t is necessary to have a stopping rule to select a final subinterval
constructed in the localization iterations. We use another independent copy Y, constructed in
the sample splitting step to devise a stopping rule. For j =0,1,... andi =1,2,...,2/, let

~ 1.
Xj’izf dY, ().
tji—1
Again, for convenience, we define )N(j’i =4oofor j=0,1,... andi € Z\{1,2,..., 2j}. Let
the statistic 7; be defined as
Tj= mm{Xj ii+6 Xj,?‘_,-+5’ Xj,fj—e - Xj,?‘_,-—s}’
where we use the convention +00 — x = +00 and min{+o00, x} = x, for any —oo < x < co.
The stopping rule is based on the value of 7. It is helpful to provide some intuition before
formally defining the stopping rule. Intuitively, the algorithm should stop at a place where the
signal to noise ratio of 7 is small or where the signal is negative. Let crjz =6m jsz. It is easy

to see that when Xj’;j+6 — Xj,§j+5 < 00,

~ ~ i+
3.4 Xj,fj+6 X]z +5|l] N(/ j 6(f(t—|—mj)—f(l‘))dl‘,0'jz>.

[j qlA] +5
Note that the standard deviation o; decreases at the rate \/LE as j increases. We now turn to

the mean of X . -X

jii+6 Recall the notation introduced in (3.3). It is easy to see that

j;+5|lj
J j+

the algorithm should stop as soon as ft ( f(t+mj)— f(t))dt turns negative, since for

any ij,lfftjf+ (ft+mj)— f()dr < O, then |ij—i*.‘| > 5, and consequently, |ij1 —i;‘fl| >5

JJ+

for any j; > j. When ft ( f({t+mj)— f(t))dt is positive, a careful analysis in the proof

shows that it shrinks at a rate faster than or equal to Z as j increases. Analogous results hold
for Xj,?j—6 — Xj,fj—5|ij‘
Finally, the iterations stop at level j where

n { Tj }
j=min{j:— <2¢.
gj

The subinterval containing the minimizer Z(f) is localized to be [tj T 2 1
" '

3.1.4. Estimation and inference. After the final subinterval [tjc 21 tj 21 1s obtained, we

then use it to construct estimators and confidence intervals for Z(f) and M (f). We begin
with the minimizer Z(f). The estimator of Z(f) is given by the midpoint of the interval
[tf P tjf l@], that is,

i i

(3.5) Z= il

To construct the conﬁdence interval for Z(f), one needs to take a few steps to the left and

to the right at level ] Let Ky = |'1 Cb( 2)'| and define

L = max{0, ;J — 12 x 2Ke 4 1}, U =min{2j,fj¢—|- 12 x 2Ke —2}.
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The 1 — o confidence interval for Z( f) is given by

(3.6) Clow=1; 1.5 1.

For estimation of and confidence interval for the minimum M ( f), define

— Lji
Xj,i=fj Y.(t)dt.
t

Jii—1
Let l']é = if + 2(]1{Xf,ff+6 - Xj,ff—f—S < 2O’J¢} - 1{Xj’2;_6 - Xj,fjc—S < 20‘]6}) and define the
final estimator of the minimum M ( f) by

~ 1
(3.7 M=—
mj

J J

We now construct confidence interval for M (f). Recall that K, = (logl%%}. Compared

with the confidence interval for the minimizer, we take four more blocks on each side at the
level (j — K g — 1)+. More specifically, we define

tr, =t,» 2 tR=1: s .
(-I_K%_l)+’l(j71(%fl)+_5’ (j_K%_1)+’l(j7K%fl)++4

Set
(3.8) Ko =max{4,2 + [log, 2+ z4/3) ]}
Note that at level f +K o, the indices of the intervals with right endpoints ¢, fg, respec-
tively, are
ip=1-2"% and ig=rp-27KS.

. ) 14+Ka+Ka . . )
Note also that ig — iy =9 x 2 4 4, which only depends on «. Define an intermediate
estimator of the minimum M (f) by

. 1 o

f min X iR

. . Py
mj-i—K% 1] <IZIR

it

o,
4

Let F, be the cumulative distribution function of v,, = max{vy, ..., v,}, where vy, ...,

Un i N (0, 1), and define
Sup=F,'(1—p).

(3.9
In other words, S, g is the (1 — B) quantile of the distribution of the maximum of n i.i.d.
standard normal variables. Let
~ V3¢ V3¢ A V3e
Jio = J1 — Zay4 - , Jhi= 1+ Sip—i, @ ——.
\/mti»lga \/m?+lga N mé+1€'a
JtKg JtKg JtKg

Then the (1 — ) level confidence interval for M (f) is defined as

(3.10) Cln,a =110, fhil-
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3.2. Statistical optimality. Now we establish the optimality of the adaptive procedures
constructed in Section 3.1. The results show that the data-driven estimators and the confidence
intervals attain their corresponding local minimax risks/lengths in the sense of staying within
a constant multiplier. We begin with the estimator of the minimizer.

THEOREM 3.1 (Estimation of minimizer). The estimator VA defined in (3.5) satisfies
Ef|Z — Z(f)| <53p;(s; f) < C R (¢; f), forall f€F,

where C, > 0 is an absolute constant.
The following result holds for the confidence interval C1I; 4.

THEOREM 3.2 (Confidence interval for the minimizer). Let0 < «a < 0.3. The confidence
interval CI, o, given in (3.6) is a (1 — ) level confidence interval for the minimizer Z( f) and
its expected length satisfies

EfL(CI; ) < (24 x 2Ka _ 3) x 17.5 x p;(e; f) < Cr oL a(e; ), forall f €F,

where Ky, = (loglfb%] and C; o is a constant depending on a only.

Similarly, the estimator and confidence interval for the minimum M (f) are within a con-
stant factor of the benchmarks simultaneously for all f € F.

THEOREM 3.3 (Estimation of minimum). The estimator M defined in (3.7) satisfies
Ef|M — M(f)| <4490m(e; ) < CuRum(s; f), forall feF,

where C,, > 0 is an absolute constant.

THEOREM 3.4 (Confidence interval for the minimum). The confidence interval Cly, g
given in (3.10) is a (1 — ) confidence interval for the minimum M () and when 0 < o < 0.3,
its expected length satisfies

EfL(CIm,a) =< Cm,apm(g; f) =< Cm,(me,a(e; f)s fOF all f eF,

where cp, o and Cy, o are constants depending on o only.

4. Nonparametric regression. We have so far focused on the white noise model. The
procedures and results presented in the previous sections can be extended to nonparametric
regression, where we observe

4.1) yi=fx) 4oz, i=0,1,2,...n,

. i i.id. . .
with x; = % and z; N (0, 1). The noise level o is assumed to be known. The tasks are the
same as before: construct optimal estimators and confidence intervals for the minimizer and
minimum of f € F.
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4.1. Benchmarks and discretization errors. Analogous to the benchmarks for the white
noise model defined in equations (1.2), (1.3), (1.6), (1.7), we define similar benchmarks for
the nonparametric regression model (4.1) with n 4+ 1 equally spaced observations. Denote by
Z: an(§) and Z,, o » (), respectively, the collections of (1 — o) level confidence intervals for
Z(f) and M(f) on a function class § under the regression model (4.1) and let

R, n(o; f)= suplnf max Eh|Z Z(h)|,
geF 7 he{f.g}

Run(o; f) = supmf max Eh
geF M helf.g}
4.2)

o; f)=s inf EL(CI),
Zan( )= ggg)-‘CIEIan({fg f( )

= nf EfL(CI
mozn(O' = EEECIELnan({fg f Cn.
Compared with the white noise model, estimation and inference for both Z(f) and M (f)
incur additional discretization errors, even in the noiseless case; see the Supplementary Ma-
terial (Cai, Chen and Zhu ((2024), Section C.11)) for further discussion.

4.2. Data-driven procedures. Similar to the white noise model, we first split the data into
three independent copies and then construct the estimators and confidence intervals for Z( f)
and M (f) in three major steps: localization, stopping and estimation/inference.

4.2.1. Data splitting. Let z1,0,21,15---, 21,05 22,05 22,1, - - - » Z22,n be 1.1.d. standard normal
random variables, and all be independent of the observed data {yy, ..., y,}. We construct the
following three sequences:

NG
Yii=Yi+——0z1,i+-——02,,

2 ’ 2
(4.3) V2 V6
Vs,i =Yi+ 5021, — 022,
2 2
Yei =i — 2021,
fori =0,...,n. For convenience, let y;; = ys; = ye; =00 fori ¢ {0,1,...,n}. It is easy
to see that these random variables are all independent with the same variance 302 for i €
{0,1,...,n}. We will use {y;;} for localization, {y,;} for devising the stopping rule, and

{ye.i} for constructing the final estimation and inference procedures.

Let J = [logo(n+1)|. For j =0,1,...,J,i=1,2,...,| ;H;llj the ith block at level
J consists of {X;_1yp7—j, X(i_1)27—i 1> -+ s Xi20-i_1}- Denote the sum of the observations in
the ith block at level j for the sequence u (u =1, s, e) as

i27=7—1
Yjiu= Z Yuk, foru=lIs,e.
k=(i—1)27 =i
Again, let Y, ; , =400 when i € Z\{1,2, ..., |55 ]}, foru =1, s, e.

2J—j—1

4.2.2. Localization. We now use {y;;,i =0,...,n} to construct a localization proce-
dure. Let ig=1,and for j =1,2,...,J, let

i;= arg min Yjil.

max{2;_1—2,1}<i<min{21;_;+1, LZ"JH,J}
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This is similar to the localization step in the white noise model. In each iteration, the
blocks at the previous level are split into two subblocks. The ith block at level j — 1 is split
into two blocks, the (2i — 1)st block and 2ith block, at level j. For a given 1;_1, 1; is the
subblock with the smallest sum among the two subblocks of (j — 1)-level-block i j—1 and
their immediate neighboring subblocks.

4.2.3. Stopping rule. Similar to the stopping rule for the white noise model, define the
statistic T; as

Tj = mln{Yj,ij+6,s - Yj,ij-}—S,S’ Yj,ij—6,s - Yj,ij—is}'

Let ~j2 =6 x 2/ 7152 Itis easy to see that when Y, ; -7

J,1j+6,s jﬂi_/'+575 < 00,

(14527771

(4.4) Y,,;_,,+6,S—Yj,;j+5,s|i,-~N( > f(xk+2u>—f<xk>,&}).
k=(1+4)27 -

Define

vy min{j:T_,- 525’j} if{jZTj 525",‘}0{0, 1,2,...,]}75@,
1= 00 otherwise,
and terminate the algorithm at level 3 = min{J, ] }. So, either T; triggers the stopping rule
for some 0 < j < J or the algorithm reaches the highest possible level J.
With the localization strategy and the stopping rule, the final block, the is th block at level

3 is given by { s (13 — D2/ <k < 152773 — 1.

4.2.4. Estimation and inference. After we have our final block, iath block at level 5 ,
we use it to construct estimators and confidence intervals for the minimizer Z(f) and the
minimum M (f). We start with the estimation of Z(f). The estimator of Z(f) is given as
follows:

1 1 A A A “
—5 7+ —(27791; =277 j <o,
- n o n
4.5) z=11 . -
—arg  min_ Yy, —— J=00.
n i;-2<i<i 42 n

To construct the confidence interval for Z( ), we take a few adjacent blocks to the left and
right of i th block at level j. Let

L = max{0, iﬁ — 12 x 2Ke2 4 1} and
U=min{[(n+ 127777, 5 + 12 x 25«2 2},
When ] < 00, let

2173‘ L ! d ¢ 2173 U !
— — an P = -
2n hi n 2n

lip =

When ] = 00, 1}, and tp; are calculated by the following Algorithm 1. Note that ] =00
means that the procedure is forced to end and the discretization error can be dominant.
Algorithm 1 first iteratively shrinks the original interval [#;, — % thi + %] to find the min-

imizer ’7'“ of the function f among the n 4 1 sample points with high probability. In each
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Algorithm 1 Computing ¢, and ¢;; when ]V =00
L —max{l,i; —12 x 2K} — 1, U < minfn + 1,15 + 12 x 2502} — 1, oy « ¢,
oy =o/24
Generate z3,0,23,1---,23.n Hd N(,1)
ip < min{{U}U{i € [L,U —1]: yei + 3023 — Ye.ix1 + 3023.i11) < 24/3024,}}
ir < max{{L — 1} U{i € [L,U — 11 : ye,i + /3023 — Geiv1 + V302341 =

_2\/§GZal }}
if i; = U then
ifij=n and yen—2— Yen—1— \/§U (Z3,n—2 — 23.n—1) + 2\/602112 >0 then

thi <1
yg,n—ye,n_1—«/30(23,,,—13,”_1)4—2«/60@2 n—1 n—1 n
fio < ((— /3 /6 + n)\/T)/\ﬁa
n(Ye.n—2—Ye.n—1—~30(23 n—2—23 n—1)+2v60 24, )
else
to=thi =U/n
end if
end if

ifi, =L — 1 then
ifi,=—1 and y,2 — ye.1 — ﬁa(zg,z —231)+ 2\/60’2012 > 0 then
Ye,0—Ye,1—+/30(23,0—23,1)+2v/60 24,

) Iy, 0y A 1 —
thi < ((n(ye.z—ye.l—«/§a(z3,z—z11)+2ﬁaza2) +-) V)ALt =0
else
flo =1 =0
end if
end if

if i — U)(iy — L + 1) #0 then
ljo<— (U — DV L,ipi < (U +2)AU
if iy; —i;, >3 or (ip; —n)i;, =0, then
fio =llo/ N, thi = ini/n
else if Ve i1 — Yein — V30 (@341 — 23in) < —2vV6024, OF Yeifo—1 — Yesify —
V30 (23,ip,—1 — 23,i),) < —2+/6024, then
to = thi = (ini +i10)/2n

else
thi < (( ye,ihi—l—ye,ihi—«/ga(zs,ihi_l—zlihi)+2«/501a2 i lﬂ) v M) N
N (Ye,ip+1—Yeip; =~ 30 (23,1 +1—23,i5; ) +2/60 20 n n n
fo < ((— Yeuigy 41— Ye.ip, —~/30 (231, +1—23.i;, ) +2v/60 20, n il_o) v iz_o) A llotl
n(Ye,iyy—1—Ye.isy —~30(23,i;,—1—23,i;, ) +2v/60 2ary) n n n
end if
end if

iteration, the algorithm tests whether the slopes of the segments on both ends are positive or
negative. It shrinks the left end with negative slope (on the left), or shrinks the right end with
positive slope (on the right) or stops if no further shrinking is needed on either side.

Note that the minimizer of any convex function with given values at these n + 1 points is
smaller than the intersection of the following two lines:

I G B G WA im+ 1
B (t_ n >+f( n >

4.6) y:f(%m) and y 0



MINIMIZER AND MINIMUM OF CONVEX FUNCTIONS 407

Note that these two lines are determined by f (%’”), f (%) and f (#) only. Given the

noisy observations at these three points, %, % and # the range of these two lines
and the intersection can be inferred, and the right side of the interval can then be shrunk
accordingly.

Similar is done for the left side of the confidence interval. In addition, boundary cases and
other complications need to be considered, which are handled in Algorithm 1.

Note that our construction and the theoretical results only rely on convexity. In particular,
the existence of second-order derivative is not needed as it is commonly assumed in the
literature. This is an important contributing factor to optimality under the nonasymptotic
local minimax framework.

The (1 — «r)-level confidence interval for the minimizer Z( f) is given by

4.7) CIa =Ito Athi, thil

We now construct the estimator and confidence interval for the minimum M (f). Let

A= 1{Yﬁ,i§+6,s - Yﬁ’iﬁ—l—S,s =< 2\/60’\/2]7_3}
S LERNIED CERIN 260273}

and define
i542A if j < oo,

argmin  y,;—1 if j =o0.
ii—2§i§i§+2

-1

(4.8)

The estimator of M(f) is then given by the average of the observations of the copy for
estimation and inference in the iﬁth block at level 7,
1

(4.9) M= 3 Y55, e

To construct the confidence interval for M ( f), we specify two levels j; and j;, with
Js = max{0, j— K% —1} and j; =min{/J, I+ IE%},

where K g is defined as in equation (3.8). It will be shown that at level j;, Z( f) is within four

blocks of the chosen block with probability at least 1 — 7, and at level j;, with probability at

least 1 — 7, the length of the block is no larger than pz(%; f). Define

A ) N n+1
Ijp =max{1,27/(1; —5)}, Iy =mm{2]’ B +4)+1, ’721_].1—”.

It can be shown that Z( f) lies with high probability in the interval [21—]', 511’”_1) , zj_jl,l]hi_] n
[0, 1]. Define an intermediate estimator for M (f) by

1

fl = min Py
lio<i<Ip; 2 —Ji

Yjie-
Let
V3o
V2T
where S, g is defined in equation (3.9) in Section 3. This is the upper limit of the confidence
interval, now we define the lower limit £;,.

Eni = £1+ Sp—p,41,2
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Algorithm 2 Computing £;, when ﬁ +K o« > J

H « Slhi—110+3,%\/§0s kp<1Iio— 1,k < I; =2

if 7;, = 1 then

e 2 Ve 2H .
vr0(t) < %(f —1/n) + ye,1 — H, h(0) <= minse(o,1/n] Vr,0(2), ki < 110

end if

if I, — 1 =n then
YLJ,n—l_yeA,n—Z_zH

V-1 (1) = PSR SE (¢ = ) Yot — H h(n = 1) = min, ut 001 (0),
kp < In; —3
end if

fori =k, ..., k- do
Define two linear functions:
vi(t) = W(f —Xi)+ Yei — H, v = W(f —Xi+1) + Yei+1 — H
h(i) = minse[y; x;, ) max{vy; (1), vy ()}

end for

f1o0 < minf{h(Q): L1, — 1 <i < Ipi — 2} A £

Whenﬁ—i—l& < J,let

%
V3o
NG

When j + K « > J, we compute fj, by Algorithm 2, which is based on the geometric
property of the convex function f that forany 1 <k <n —2,

£1o=F1 — (Zaa + 1)

inf  f()> inf max{f(xk)_f(xk_l)(t—xk)—i—f(xk),
telxg, xk+11 le[k’]il] l/l’l
(4.10) e
S k42) — f (K1)

(t — xp1) + f(xk—f—l)}-
1/n
Note that /(i) in Algorithm 2 is derived from one or two linear functions, so given the
relationship of the function values at two end points of the corresponding interval, it has an
explicit form. Hence, the procedure is still computationally efficient.
The (1 — «)-level confidence interval for the minimum M (f) is given by

4.11) CIna =[£10, £nil.

REMARK 4.1. As mentioned in the Introduction, Agarwal et al. (2011) propose an al-
gorithm for stochastic convex optimization with bandit feedback. While both our procedures
and the method in Agarwal et al. (2011) include an ingredient trying to localize the minimizer
through shrinking intervals by exploiting the convexity of the underlying function, the two
methods are essentially different due to the significant differences in both the designs and loss
functions. The goal of exploiting convexity in Agarwal et al. (2011) is mainly to determine
the direction of shrinking their intervals, while ours is mainly for deciding when to stop and
what to do after stopping.

4.3. Statistical optimality. Now we establish the optimality of the adaptive procedures
constructed in Section 4.2. The regression model is similar to the white noise model, but
with additional discretization errors. The results show that our data-driven procedures are
simultaneously optimal (up to a constant factor) for all f € F. We begin with the estimator
of the minimizer.
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THEOREM 4.1 (Estimation of the minimizer). The estimator 7 of the minimizer Z(f)
defined in (4.5) satisfies

(4.12) Ef|Z - Z(f)| < CiR.u(0; f), forall f€F,

where C1 > 0 is an absolute constant.
The following result holds for the confidence interval CI; o of Z(f).

THEOREM 4.2. Let 0 <a < 0.3. The confidence interval CI; o given in (4.7)is a (1 —
a)-level confidence interval for the minimizer Z(f) and its expected length satisfies

EfL(CIz,a) = C2,aiz,a,n(0§ f), foradll feF,

where Cy  is a constant depending on o only.

Similarly, the estimator and confidence interval for the minimum M (f) are within a con-
stant factor of the benchmarks simultaneously for all f € F.

THEOREM 4.3 (Estimation for the minimum).  The estimator M defined in (4.9) satisfies
Ef|M — M(f)| < C3Run(os f), forall f€F,

where C3 is an absolute constant.

THEOREM 4.4. Let 0 < o < 0.3. The confidence interval CI,, o given in (4.11) is a
(1 — a)-level confidence interval and its expected length satisfies

EfL(CIm,ot) = C4,al~1m,a,n(o'; f)’ for all f € F,

where Cy o is a constant depending only on .

In addition to statistical optimality, the proposed algorithms are computationally fast.
We conducted numerical experiments and the results are in the Supplementary Material
(Cai, Chen and Zhu ((2024), Section A)). A comparison of our algorithms with convexity-
constrained least squares based methods (e.g., Deng, Han and Sen (2023)) and is also given
in the Supplementary Material.

5. Discussion. In the present paper, we studied optimal estimation and inference for the
minimizer and minimum of a convex function under a nonasymptotic local minimax frame-
work. We show in the Supplementary Material (Cai, Chen and Zhu ((2024), Section B.2))
that the results in this paper can be readily used to establish the optimal rates of convergence
over the convex smoothness classes under the classical minimax framework.

A key advantage of the nonasymptotic local minimax framework is its ability to charac-
terize the difficulty of estimating individual functions and to demonstrate novel phenomena
that are not observable in the classical minimax theory. The uncertainty principle established
in this paper highlights the fundamental tension between the accuracy of estimating the min-
imizer and that of estimating the minimum of a convex function. Similar results also apply
to inference accuracy. It would be of great interest to establish uncertainty principles for
other statistical problems, such as stochastic optimization with bandit feedback under shape
constraints.

A more conventional approach to assessing the difficulty at individual functions is to con-
sider the minimax risk over a local neighborhood of a given function in the parameter space.
However, this entails defining a topology/metric over the parameter space and specifying the
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size of the local neighborhood, which can be challenging due to variations across problems.
Metrics such as L1, L or weighted L, distances are often employed. In contrast, our frame-
work does not require specifying topology/metric on the parameter space or the size of a local
neighborhood. This makes it more convenient and easier to use.

The correct form of the conventional local minimax benchmark for the minimizer under
(1.1) is given by Rcon,;(¢; f) = inf, SUPLeB(f.e) Eh|2 — Z(h)|, where B(f,e) ={h e F:
|h — fll2 < ¢} is the e-neighborhood of f in F. The order of Rcon;(e; f) is clearly no
smaller than our local minimax benchmark R, (e; f) because

Reon,z(¢; f) =inf sup Eh‘z - Z(h)‘
7 heB(f.e)

>inf sup sup Eg|Z —Z(g)|
Z heB(f.e) ge{f.h}

> O(=0.5w(e; f)~ R (e; f),

where the last inequality holds because of lim,_ . SUDg. | o— flla=n 1Z(g) — Z(f)] =w(e; f)
and the last step is due to Theorem 2.1. Analogous results hold for the other three problems.
This means that our benchmarks are at least as stringent as their conventional counterparts.
Therefore, our procedures are also adaptive and optimal under the conventional local mini-
max framework.

The present work can be extended in different directions in addition to the aforementioned
ones. For estimation, the results can be easily generalized to the £, loss for g > 1. It is inter-
esting to consider the extremum under more general shape constraints such as s-convexity. In
addition, estimation and inference for other nonlinear functionals such as the quadratic func-
tional, entropies and divergences under a nonasymptotic local minimax framework can be
studied. We expect the penalty-of-superefficiency property to hold in these problems and our
approach to be particularly helpful for the construction of the confidence intervals. Another
important direction is to apply our framework to other statistical models such as estimation
and inference for the mode and the maximum of a log concave density function based on
i.i.d. observations. We expect similar uncertainty principles to hold.

Acknowledgments. We would like to thank the Associate Editor and the referees for
their detailed and constructive comments, which have helped to improve the presentation of
the paper.

SUPPLEMENTARY MATERIAL

Supplement to “Estimation and inference for minimizer and minimum of con-
vex functions: Optimality, adaptivity and uncertainty principles” (DOI: 10.1214/24-
AOS2355SUPP; .pdf). Section A of the supplement presents the simulation results. Section
B discusses the comparisons with CLS based methods and the connection with the classi-
cal minimax framework. The proofs of the main results and the technical lemmas are given
respectively in Sections C and D.
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