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Estimating a covariance matrix and its associated principal components
is a fundamental problem in contemporary statistics. While optimal estima-
tion procedures have been developed with well-understood properties, the
increasing demand for privacy preservation introduces new complexities to
this classical problem. In this paper, we study optimal differentially private
Principal Component Analysis (PCA) and covariance estimation within the
spiked covariance model.

We precisely characterize the sensitivity of eigenvalues and eigenvectors
under this model and establish the minimax rates of convergence for estimat-
ing both the principal components and covariance matrix. These rates hold
up to logarithmic factors and encompass general Schatten norms, including
spectral norm, Frobenius norm, and nuclear norm as special cases.

We propose computationally efficient differentially private estimators and
prove their minimax optimality for sub-Gaussian distributions, up to log-
arithmic factors. Additionally, matching minimax lower bounds are estab-
lished. Notably, compared to the existing literature, our results accommodate
a diverging rank, a broader range of signal strengths, and remain valid even
when the sample size is much smaller than the dimension, provided the signal
strength is sufficiently strong.

1. Introduction. The covariance structure plays a fundamental role in multivariate anal-
ysis, and Principal Component Analysis (PCA) is a widely recognized technique known
for its efficacy in dimension reduction and feature extraction [4]. PCA is particularly
adept in settings where the data is high-dimensional but the underlying signal displays
a low-dimensional structure. The estimation of covariance matrices and principal com-
ponents finds applications across a diverse spectrum, encompassing tasks such as im-
age recognition, data compression, clustering, risk management, portfolio allocation, mean
tests, independence tests, and correlation analysis. Methodologies and theoretical advance-
ments, including minimax optimality, for covariance matrix estimation and PCA, have been
well-established in both low-dimensional and high-dimensional settings. See, for example,
[7,12,13,18, 31, 37,52, 55, 58, 65]. For a survey on optimal estimation of high-dimensional
covariance structures, see [14].

Amidst the increasing availability of large datasets containing sensitive personal informa-
tion, privacy concerns in statistical data analysis have gained heightened prominence. The
utilization of personal information in statistical analyses raises apprehensions about the po-
tential compromise of individual privacy. Consequently, there is a growing emphasis on de-
veloping methodologies and techniques that offer robust privacy guarantees while still facili-
tating accurate statistical insights. This motivates a comprehensive exploration of the optimal
tradeoff between privacy and accuracy in fundamental statistical problems, including PCA
and covariance matrix estimation.
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Differential privacy (DP), a concept introduced by [26], provides a framework for safe-
guarding individual privacy in statistical analysis. DP has become a commonly accepted
standard in both industrial and governmental applications [1, 2, 22, 29, 56]. The goal of the
present paper is to develop methods and optimality results for PCA and covariance matrix
estimation within the framework of the spiked covariance model under DP constraints.

1.1. Problem formulation. We begin by formally introducing the spiked covariance
model and general formulation of the privacy constrained estimation problems.

The spiked covariance structure [31, 32] naturally arises from factor models with ho-
moscedastic noise and has found diverse applications in signal processing, chemometrics,
econometrics, population genetics, and various other fields. See, for example, [30, 40, 49, 51].
The spiked covariance model assumes that the population covariance matrix can be decom-
posed as

(1) S=UAU" +o°I,,

where U € O, and A = diag(Aq,---,\,) represent the leading eigenvectors and eigen-
values (excluding o2), respectively. Here, O, denotes the set of p x 7 matrices satisfying
U'U = I,.. The spiked covariance model is convenient for studying the distribution of sam-
ple eigenvalues and eigenvectors, which play a critical role in the statistical inference of X
and its eigenvectors. For instance, [24] studied the optimal shrinkage of sample eigenvalues
in the spiked covariance model. In particular, [13] and [65] established the minimax optimal

rates
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where the infimum is taken over all possible estimators based on the data X = (X1q,---, X},)

consisting of n observations independently sampled from the spiked covariance model (1),
the parameter set O(\, 02) is a collection of covariance matrices in the form (1) with all
spiked eigenvalues have magnitudes of order \ (see formal definition in (4)), and || - || denotes
the matrix spectral norm.

The concept of differential privacy was first introduced in [26]. For a given dataset X
and any € > 0 and § € [0,1), a randomized algorithm A that maps X into R%*% is called
(e, 0)-differentially private ((¢, §)-DP) over the dataset X if

P(A(X) € Q) <eP(A(X) € Q) +3,

for all measurable subset Q C R% %42 and all neighboring data set X’. In the standard defini-
tion, a dataset X’ is a neighbor of X if they differ by only one datum, i.e., one observation in
X is replaced by some other, possibly arbitrary, datum. In the context of PCA and covariance
matrix estimation, as observations in X are independently sampled from a common distribu-
tion, a neighboring dataset X’ is obtained by replacing one datum in X with an independent
copy. This facilitates exploration of the statistical properties of the sample data.

Under the (&,0)-DP constraint, our goal is to investigate the cost of privacy in PCA and
covariance matrix estimation. This includes designing minimax optimal (£, §)-DP estimators
of the principal components and covariance matrix and establishing the privacy-constrained
minimax lower bounds.
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1.2. Main contribution. In this paper, we establish the minimax optimal rates for PCA
and covariance matrix estimation in the spiked model under DP constraints. Over the collec-
tion of sub-Gaussian distributions, these rates, up to logarithmic factors, are given by:
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where the infimum is taken over all possible (¢, d)-DP algorithms denoted by U, 5 for prin-
cipal components and M. s for the covariance matrix. The expectation is taken with respect
to the randomness of both the data and the differentially private algorithm. These rates hold
in Schatten-g norms for all ¢ € [1, 00|, including spectral norm (¢ = oo), Frobenius norm
(¢ = 2), and nuclear norm (g = 1) as special cases. The rank r can grow with respect to p
as long as 7 < p/2, and the sample size can be much smaller than p as long as the signal-
to-noise ratio (SNR) satisfies \/o? > Cy(y/p/n + p/n). This condition is minimal since
no consistent estimation is possible when this condition does not hold. To our knowledge,
this represents the first comprehensive presentation of minimax optimal rates for PCA and
covariance matrix estimation under DP constraints. For technical convenience and theoret-
ical clarity, we focus on sub-Gaussian distributions in this paper. However, we believe that
our results can be extended beyond sub-Gaussian distributions. For further details, see the
discussion in Section 5.

Our contributions are multifod. Methodologically, we introduce (e, §)-DP estimators for
PCA and covariance matrices that are computationally efficient. Specifically, we employ the
Gaussian mechanism for the sample spectral projector in differentially private PCA. Notably,
our DP estimator for the covariance matrix incorporates a novel design to handle unknown
orthogonal rotations. These estimators are shown to achieve minimax optimality, up to log-
arithmic factors. Theoretically, we provide a comprehensive understanding of the minimax
optimal rates for PCA and covariance estimation under privacy constraints, valid across all
Schatten norms. The derivation of minimax lower bounds employs Fano’s lemma with a dif-
ferential privacy constraint and the construction of well-separated spectral projectors based
on the packing complexity of Grassmannians [38, 64].

Differentially private PCA and covariance estimation are challenging because it is difficult
to characterize a sharp sensitivity bound for the eigenvectors. Our main technical contribution
lies in a precise characterization of the sensitivity of the sample spectral projector uu’T,
quantifying its deviation when one datum Xj is replaced by an independent copy X. A key

technical tool is an explicit spectral representation formula for uuT adapted from [61]. We
derive a similar formula specifically for the spiked covariance model, which is of independent
interest. Based on this sharp sensitivity analysis, we apply the Gaussian mechanism to achieve
the upper bounds in (3), up to logarithmic terms.

1.3. Related work. Minimax optimal rates under (e,d)-DP guarantees have been es-
tablished for several statistical problems, such as mean estimation, linear regression, pair-
wise comparisons, matrix completion, factorization, generalized linear models (GLMs), and
sparse GLMs [11, 15, 16, 20, 60]. Additionally, optimality results have also been developed
under local privacy constraints. For example, [25] established minimax rates for mean esti-
mation, GLMs, and nonparametric density estimation, while [53] developed minimax theory
for estimating linear functionals under local privacy. It is worth noting that local privacy is
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a stronger notion of privacy compared to (¢,0)-DP, and it may not be compatible with high-
dimensional problems [25]. A refined fingerprint lower bound method was introduced by
[46], allowing for a broader range of § and establishing a minimax lower bound for covari-
ance matrix estimation (see also [23] and [43]). Both studies focused on general covariance
matrix estimation, but their results become suboptimal in the case of spiked covariance matri-
ces. The Johnson-Lindenstrauss mechanism was examined by [47], providing optimal sample
complexity for differentially private covariance estimation of a bounded high-dimensional
distribution. While these privacy-preserving methods are centered on covariance estimation,
their applicability and performance for PCA remain largely unclear. Additionally, although
enforcing boundedness can guarantee worst-case privacy protection, it may result in a pes-
simistic estimator in certain settings. See Remarks 1 and 3 for a detailed comparison with
existing literature.

Differentially private PCA algorithms were proposed in [9, 19, 28] based on the pertur-
bation mechanism, treating each datum X; as a fixed vector and investigating the sensitivity
of sample eigenvectors. However, their deterministic sensitivity analysis disregards the sta-
tistical properties of sample data, resulting in suboptimal error rates when X;’s are i.i.d.
sampled from a common distribution, such as the spiked covariance model. Differentially
private methods that explore statistical properties have been studied in [10, 33] and related
works. However, optimal differentially private PCA has received much less attention, and
existing results for private covariance estimation are generally suboptimal under the spiked
covariance model. Recently, [42] introduced an online PCA algorithm with DP, providing a
much sharper upper bound for differentially private PCA under the spiked covariance model.
The online Oja’s algorithm in [42] consumes one datum at a time, allowing for an explicit
representation formula in the updated estimate of eigenvectors and enabling a study of their
sensitivity. However, their bound is valid only for the rank-one case (r = 1) and is minimax
optimal only when A < 2. The optimality of their algorithm for general rank r or A > o2
remains unclear. Moreover, the minimax optimal rates for estimating ¥ under privacy con-
straints are still unknown under the spiked covariance model.

1.4. Organization of the paper. The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the Gaussian mechanism and study the sensitivity of the empirical spec-
tral projector under the spiked covariance model. We present a DP algorithm for estimating
the spectral projector and spiked covariance matrix in the same section. The upper bounds
for our proposed DP algorithms are proven in Section 3, where an explicit spectral represen-
tation formula under the spiked covariance model is also developed. Section 4 establishes a
differentially private Fano’s lemma and minimax lower bounds. Extensions to the settings
with diverging conditioning number and sub-Gaussian distributions are discussed in Sec-
tion 5. Some of the key technical lemmas are presented in Section 8. All the proofs as well
as additional simulation results are given in the Supplementary Materials [17].

2. Methodology: Gaussian Mechanism and Sensitivity. Our differentially private
PCA and covariance estimation method relies on a precise characterization of the sensitiv-
ity for both eigenvectors and eigenvalues under the spiked covariance model. For technical
convenience, we first focus on Gaussian PCA and provide a broader extension to general
sub-Gaussian PCA in Section 5.

For brevity, let X := (X1,---, X,,) represent the p x n matrix collecting all i.i.d. obser-
vations X; sampled from a centered normal distribution N'(0,X). The sensitivity of eigen-
vectors and eigenvalues denotes their perturbation if an observation X; is replaced by an
independent copy X expressed briefly as X0 .= (X1, , X1, X!, Xiq1,--- , Xp). Here,
X and X form a pair of neighboring datasets [26]. Notably, the sensitivity is contingent on
the covariance matrix X.
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Through out this paper, we consider the spiked covariance matrix model where ¥ is from
the following parameter space
“4)
O(p,r, A\, 0?) = {E =UAU " +0%I,:

U €0, A=diag(As, -, A)scoh < Ar < A\p < C’o)\},

where I, is the identity matrix and and O, , refers to the set of matrices with orthonormal
columns, i.e., matrices satisfying U ' U = I,.. Thus, our focus is on spiked covariance matrices
with a bounded condition number, a common assumption in existing literature [12, 19, 42].
However, our methodology remains valid, and the theoretical framework can be extended to
the case of an unbounded condition number, as discussed in Section 5. For simplicity, we use
O(A, %) without explicitly stating the dimensions p and rank . Let P denote the family of
normal distributions A/(0,Y) with the population covariance matrix ¥ € ©(\, 02). Without
loss of generality, we assume that o2 is known.

Formally, the sensitivity and Gaussian mechanism are described as follows without proofs.
See, for example, [26, Proposition 1] and [27, Theorem A.1] for more details. Here, || - ||¢
stands for the matrix Frobenius norm.

LEMMA 2.1 (sensitivity and Gaussian mechanism). Let X be a given data set and X'
be any neighboring data set of X, i.e., X and X' differs by at most one observation. The
sensitivity of a function f that maps X into R *% is defined by
(5) wp= sup [[f(X) = f(X)]p.

neighboring(X,X")
Then, for any € > 0 and 6 € [0,1), the randomized algorithm A definedby A(X) = f(X)+Z
where Z has i.i.d. N (0, 2w%€_2 log(1.25/8)) entries is (¢,8)-DP over the dataset X.

The definition of sensitivity in Lemma 2.1 relies on the pair of neighboring data sets. Here,
X is simply the data matrix where each column represents one observation. While X and X’
differ only by one observation, the sensitivity can still be unbounded if no restriction is posed
on the difference, e.g., by replacing one observation of X by infinite. Since X consists of
i.i.d. columns under the spiked covariance model, we assume that a neighboring data set X’
is obtained by replacing some column of X by its i.i.d. copy throughout this paper.

2.1. Differentially private estimation by Gaussian mechanism. Our DP-estimators of
principal components and covariance matrix are built on Gaussian mechanism. Here, we
assume that the rank r and nuisance variance o2 are known for simplicity. Let U be the
top-r eigenvectors of the sample covariance matrix Si=n-1 Sy XiXi—r and denote UU T
the sample spectral projector. By Lemma 2.1, differentially private PCA can be obtained by
adding Gaussian noise Z to uuT provided that the entrywise variance of Z dominates the
sensitivity of UUT. While publishing U +2 protects privacy, it is certainly not a prefer-
able estimator of principal components as it generally lacks validity as a spectral projector.
We therefore take the eigenvectors of UUT + Z as the ultimate estimator. This choice main-
tains differential privacy, as the post-processing of a differentially private algorithm retains
differential privacy according to well-established results, as discussed in [26].

Our proposed differentially private PCA and covariance estimation procedures are given
in Algorithm 1. The proper choice of sensitivities A; and Ag is determined by Lemma 2.3
and Lemma 2.4 in Section 2.2, respectively. However, U and U are close up to an orthogonal
rotation. As a result, our algorithm chooses to add Gaussian noise to U UTSU instead of the
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Algorithm 1 Differentially private PCA and covariance estimation

Input: data matrix X = (X1,---,Xn) € R™*P; eigenvectors and eigenvalues sensitivity A7 and Ay > 0;
rank 7; nuisance variance o2; privacy budget e > 0,0 € (0,1).

Output: (g,§)-DP estimate of U and X.

Compute the sample covariance matrix and top-r eigenvectors:

~ 1 ~ ~
B Z X;X;' and U+« SVD,(S);
=1
Compute (¢/2,8/2)-DP PCA by adding artificial Gaussian noise:

8A? 2.
llvd_/\/'< 11g 5

U«—sVDr (00T +2) where Z;;=

Compute (£/2,6/2)-DP estimates of eigenvalues up to rotations:

T STia 2007 i.i.d. 3 . o
X 0" E-o’p)U+E where Ej=E;"~ N(O,E—QlogT), Vi<i<j<r
Compute (g, )-DP covariance estimate by :
S ORTT + 021,
Return: U and &
empmcal eigenvalues A= ()\1, -, A\+)". The added noise level depends on the sensitivity

of UTSU, within Wthh U is already dlfferentlally private. It thus suffices to study the upper
(E S N ||p < HZ 50 )||¢, which will be established in Lemma 2.4.

Our approach to differentially privately estimating the main covariance term involves sep-
arately privatizing the eigenvectors and eigenvalues. This separation is driven by the obser-
vation that the relative sensitivity of eigenvalues is significantly larger than that of eigen-
vectors. Note that a natural estimator of U(A + oI, )U " is UUTSUUT. It is possible to
characterize the sensitivity of this estimator by directly studying the bound || UUTSUUT -
UOTOTSOTOT (i)THF. However, the sensitivity of eigenvalues will be the dominating
factor and force us to add unnecessarily large noise to a p x p matrix. This delivers a statisti-
cally sub-optimal estimator of the spiked covariance matrix.

The estimated eigenvectors U is (¢/2,5/2)-DP and eigenvalues A is (¢/2,/2)-DP with
high probability. By the composition property of differentially private algorithm, the estima-
tor UAU T is (€,0)-DP. The conclusion is formally stated in the following lemma. Recall that
7= (rA+pc?) /(A4 o?) is the effective rank of . Here, \ is regarded as the signal strength.

LEMMA 2.2. Let the data matrix X = (X1, --,Xy) consists of i.i.d. columns sam-
pled from N(0,3) with ¥ € O(\,0%), ¢ > 0,0 € (0,1), and assume n > Cy(rlogn +
log?n),2r < p, and \/o? > C1(p/n + /p/n) for some large absolute constant Cy > 0.
If we choose

? 2 I A(r +1 2(p +1
A1::CQ<O;\+\/€>p(Tj;Ogn) and Ay = Cs (r+ ogn);o‘ (p+ Ogn)’

for some large absolute constants Co,C3 > 0, then Algorithm 1 is (&, 9)-DP with probability
at least 1 — 4n=9 — e=1("\) for some absolute constant ¢1 > 0.

REMARK 1 (Worst-case and high-probability privacy guarantee). Compared to existing
literature [19, 23, 34, 42, 47], our algorithm does not truncate the observations, allowing || X;||
to remain unbounded. As a result, our algorithm is differentially private with high probability.
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The DP-Oja algorithm proposed by [42] ensures worst-case privacy guarantees due to its
online nature. However, it is limited to the rank-one case, performs poorly in both simulation
and real data experiments (see Section 6), and the established error rate is much larger than
ours under spiked covariance model when signal strength A > o2 (see Remark 2). The DP-
Gauss method [28, 43] ensures worst-case privacy by applying a global scaling, limiting
each observation to at most unit norm. While we could apply global scaling to our method to
ensure worst-case privacy, as discussed in Remark 3, this approach would result in an overly
pessimistic estimator with a significantly larger error rate under the spiked covariance model.
Therefore, we do not pursue worst-case privacy guarantees in this paper. Moreover, note that
the probability terms n~?? in Lemma 2.2 can be replaced by n~¢> with any absolute constant
Cs > 0 (by adjusting the constants Co, C3 in the definitions of A; and As accordingly). The
failure probability decreases polynomially fast with respect to sample size n.

The sensitivities A; and A, play a critical role in guaranteeing the differential privacy
of Algorithm 1, which shall be developed in next section. The conditions 7logn + log?n =
O(n) and 2r < p are mild. The SNR condition \/o? > Cy(p/n + +/p/n) is typical in the ex-
isting literature of spiked covariance matrix model. See, e.g., [45, 65] and references therein.

2.2. Sensitivity analysis. In this section, we analyze the sensitivities of sample eigenvec-
tors and eigenvalues under the spiked covariance model. The data matrix X = (X1, -+, X,,) ~
N(0,%)®" for some X € O(\, o). Similarly, its neighboring data matrix X ) = (X7,---, X!,

-, X)) ~ N(0,2)%". Define the sample covariance matrices by

- 1 a1
== d XX and S0 := - (X;Xf +> XjXJ-T),
i=1 i
Denote U € Op,- and Ul e Oy, the top-r left eigenvectors of S and f](i), respectively. The

sensitivity of sample eigenvectors characterizes the deviation between U and U caused by
replacing the i-th observation by its i.i.d. copy. Since eigenvectors are determined up to an
orthogonal rotation (note that we allow the eigengap |\; — A;| to be zero), a commonly used
metric for measuring the distance between eigenvectors is the projection distance defined by
|IOUT —UOTOT .

The primary challenge in differentially private PCA lies in characterizing a precise upper
bound for H[?[?T — UOTU®||p. In most existing works [9, 19, 28], the data matrix X is
assumed to be fixed, and its columns are all bounded, denoted as || X;|| < 7, where we slightly
abuse the notation by letting || - || denote the ¢2-norm for vectors and -y is a deterministic value.
This immediately implies an upper bound ||f) S0 | <272/ and the sensitivity of oo’
is guaranteed by the Davis-Kahan theorem.

However, this approach becomes invalid when observations are unbounded and sub-
optimal when observations are randomly sampled from a common distribution. A more re-
cent work [42] aimed to exploit the statistical properties of i.i.d. samples to achieve a sharper
bound for differentially private PCA. This work focused on the rank-one case (» = 1) and the
Oja’s algorithm, well-known for online PCA, which iteratively updates the estimation with
one additional observation. The online fashion of Oja’s algorithm in the rank-one case allows
for an explicit representation of the eigenvector estimator, enabling a sharp upper bound of
the sensitivity to be derived. Consequently, nearly optimal differentially private PCA for the
case r = 1 was achieved. However, it remains unclear how this approach can be extended to
the rank-r case and what the minimax optimal convergence rates are.



We take a fundamentally different approach by directly focusing on || ouT-—yOgOT Ilp-
This task presents two challenges: the spectral projector UUT involves a complicated func-
tion of the data matrix X, and a sharp perturbation analysis is required for a set of r empiri-
cal eigenvectors. Fortunately, we leverage an explicit spectral representation formula adapted
from [61] and successfully establish a precise upper bound for |[UU T — uOgOHT |F.

LEMMA 2.3.  Suppose the conditions in Lemma 2.2 hold and assume n > C1(rlogn +

log? n) and 2r < p. There exist absolute constants c1,Cy > 0 such that with probability at
least 1 — 3n=99 — e=c1 ()

A~ NN N 2 2
© max |50 - GOTT e < (5 + \/Q VPl +logn),
em

A n

The logn term in upper bound (6) is due to the maximization over n. Nevertheless, the
bound is much smaller than that achieved by the deterministic analysis in [9, 19, 28]. Indeed,
a direct application of Davis-Kahan theorem yields an upper bound O([|S — S [|\/7/A),
which is at least in the order O((rA + po?)y/r/(n))), with high probability. The significant

improvement is due to a sharp spectral characterization showing that the difference uuT -
UDUOT is mainly contributed by the term IUT(X,X," = XIX!/T)U L ||g/(n)\). Here, U, €
Op,p—r denotes the orthogonal complement of U such that (U, U ) is an orthogonal matrix.
The proof of Lemma 2.3 is technically involved and deferred to Section C.2. It is worth
noting that the original spectral representation formula developed in [61] is inapplicable here
because X is not exactly rank-r. Interestingly, we establish a similar spectral representation
formula exclusively for spiked covariance matrix, which may be of independent interest. See
Lemma 3.1 in Section 3.1.

The sensitivity of eigenvalues is also necessary for constructing differentially private co-
variance estimation. Let A;(X) and Az(X()) denote the k-th largest eigenvalue of & and
50, respectively. Compared to the eigenvectors, the sensitivity of eigenvalues can be eas-
ily characterized by Hoffman-Weilandt’s inequality. The proof of Lemma 2.4 is deferred to
Section C.3.

LEMMA 2.4. Suppose the conditions in Lemma 2.2 hold. There exists an absolute con-
stant Cy > 0 such that with probability at least 1 — n =100,

p > YoNk | 2 1 2
(7 Z)/\k(z)_/\k(z(’))‘ SC,2<)\(7“—|- ogn) —;U (p+ Ogn)) 7
k=1

forallie€ [n].

We can regard ( P (w(E) - )\k(fl(i)))Q) 1/2/)\ and |[UUT —UOUTDT||p//r as the
relative sensitivity of eigenvectors and eigenvalues, respectively. Lemmas 2.3 and 2.4 show
that the relative sensitivity of eigenvalues can be considerably larger than that of eigenvectors.
This insight implies that, when designing a differentially private optimal estimation proce-
dure for the population covariance matrix, it is advisable to privatize the eigenvalues and
eigenvectors separately, as elaborated in Algorithm 1.

3. Upper Bounds with Differential Privacy.
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3.1. Spectral representation formula. Our key technical tool is the following spectral
representation formula. Recall that U and U denote the top-r eigenvectors of S and %, re-
spectively. Denote the deviation matrix by A:=%—Ysothat ¥ =3+ A is viewed as a
perturbation of the “signal" matrix Y. The spectral representation formula was first intro-
duced in [61], which, however, requires the “signal" matrix to be exactly rank-r. This is
certainly not the case here since X is full-rank. Here, we develop the spectral representation
formula exclusively for the perturbation of a spiked covariance matrix.

The spectral representation formula is actually deterministic. Let the symmetric matrix
A € RP*P be an arbitrary perturbation. Denote U the top-r eigenvectors of ¥ + A where
S=UAUT + 0?1, with A = diag(A1, -+, \,). We are interested in developing an explicit
representation formula for the spectral projector UUT in terms of A. Let Q+=U LUI =
I, — UUT denotes the orthogonal projection. For all ¢ > 1, we define @t :=UA~'U ". We
slightly abuse the notation and denote Q¥ := Q- =U | UI.

LEMMA 3.1. Suppose that ¥ is a spiked covariance matrix as in (1) and 2||Al| < Ay,
then

UUT—UUT =) Ss (),
k>1

where the k-th order term Sgk(A) is a summation of (Zkk) terms defined by
Ser(D)= Y (—)HTE.QTmAQTELAQ T,
s:$1+...+Sk+1=k

where s = (s1,...,Sk41) contains non-negative indices and T(s) = >
ple upper bound of the k-th order term is

ool () (5

Based on Lemma 3.1, the leading term, i.e., the 1st-order term, of UUT —UUT is con-
tributed by A~'U T AU, and UIAU A~!. The latter terms can be sharply controlled by ex-
ploiting the statistical properties of A if observations are i.i.d. sampled.

ffll I(s; >0).A sim-

3.2. Upper bounds. In this section, we present the upper bounds of our (e, d)-DP esti-
mator UU T and 3. In this section, we focus on the Gaussian setting, with an extension to
the sub-Gaussian case provided in Section 5.2. Cases beyond sub-Gaussian distributions are
discussed in Section 7.3. Let || - ||, denotes the matrix Schatten-¢g norm for any ¢ € [1, 00|,
e.g., the spectral norm || - || if ¢ = oo, the Frobenius norm || - ||r if ¢ = 2, and the nuclear
norm || - ||« if ¢ = 1. A straightforward application of the triangle inequality

uuT —-vU" |, <||lUUT =00 ||, + ||[UUT —UU T,
q q q

leads to the following theorem.

THEOREM 3.2.  Suppose that X1,--- , X, N N(0,%), n> Cy(rlogn + log?n),2r <
p, and \/o* > C1(p/n + +/p/n) for some large absolute constant Cy > 0. If we choose

9

NP ca W ey
A A n
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then, there exist absolute constants c1,Cy > 0 such that, for any € > 0,6 € (0, 1), Algorithm 1
outputs an (g, 8)-DP estimator UU " satisfying

vuT —uUuT 2 2 ) 2.5
| : ”"§C4 o] p ., pyrtlogn /i 25)
rl/a A A n ne )

with probability at least 1 — e~ ("\P) Moreover, if \Jo? < (p/n)e®>®P"") for some small
absolute constant co > 0, then

E|UUT —UUT 2 2 +1 2.5
I : Hq§04 o] P pVrtlogn /log— .
rl/a A A n ne )

Here, q can be any number in [1, cc].

Basically, the upper bounds consist of two parts: the first one represent the statistical error
rate and the second one is the cost of privacy constraint. It is well-known that the first term
is minimax optimal [13, 37, 45]. The second term decays at the rate O (p/(ne) log'/? 5 1)
with respect to the sample size, dimension and privacy-related parameters, which is typical in
differentially private algorithms [16, 42]. In Section 4, we shall develop matching minimax
lower bounds showing that the rates in Theorem 3.2 are minimax optimal up the logn and
log(2.5/0) terms.

It worth to mention that the logn term appearing in the privacy-related rate is due to the
requirement of differential privacy that applies to each of the n observations. This logn term
seems to be present in the upper bounds of most differentially private algorithms. See, e.g.,
[15, 16, 28] and references therein. A slight difference here is that the log n term appears not
as an additional factor, but as an additive term. If » > logn, the logarithmic factor can be
ignored and the rate becomes minimax optimal except for the log 6! factor.

REMARK 2 (Comparison with Oja’s algorithm [42]). The DP-Oja algorithm introduced
in [42, Corollary 5.2] delivered a rank-one (r = 1) PCA estimator achieving the following
error bound, with probability 0.99:

5 2 log1/6
- —0<(1+“> . (ﬁ+pg/>>
A n En

where 6() hides logarithmic factors in n and p. Their established upper bound is much larger
than ours when the signal strength \ > 02, and their failure probability is a constant while
ours decay polynomially fast as sample size n increases.

We now present the performance bound for the differentially private estimator 5.

THEOREM 3.3.  Suppose that X1,--- , X, iid. N(0,%), n > Cy(rlogn + log?n),2r <
p, and \/o? > Cy1(p/n + /p/n) for some large absolute constant Cy > 0. If we choose

2 2 1 2
A1;:CQ<"A+\/§>79(T+OW) and Ay = o, " T logn) +o7(pFlogn)

n n

then, there exist absolute constants ¢1,Cy > 0 such that, for any € > 0,0 € (0, 1), Algorithm 1
outputs an (&,0)-DP estimator Y. satisfying

12— Xllq
rl/q

§C4</\<\/Z+W- 10gi5> + 02()\+02)<\/§+ W\/log

)
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with probability at least 1 — 3n~9 — e~ (""\P) Moreover, if \/o? < (p/n)e®* "™ for some
small absolute constant co > 0, then

E|% —Xllq
rl/q

<o <)\<\/:+ \/F(T;log”) log%f) 4 02(A+02)<\/§+ W\/log

By Theorem 3.3, the privacy-irrelevant error rate

A\/Z+ mﬂ

matches the minimax optimal rate of spiked covariance estimation in the existing literature
[13, 18]. For ease of discussion, let us focus on the error rate in spectral norm. There are two
terms related to the cost of privacy:

. 1 .
A.Jm;logn) /logi’; nd W(HU%Q/%W\/@?),

where the second term is approximately of order )\Hﬁ UT —UUT||, contributed by the cost
of estimating the eigenvectors. The first term grows at the rate O(r3/ 2) with respect to the
rank, which is contributed by the cost of estimating the eigenvalues. Due to the unknown
orthogonal rotation measuring the alignment between U and U, privacy cost is also paid
for the r x r unknown rotation matrix. Minimax lower bounds are developed in Section 4
demonstrating the optimality of these bound up to the logn and log(2.5/6) related terms.

REMARK 3 (Comparison with [28] and [43]). The DP-Gauss method is a privacy-
preserving low-rank approximation method originally proposed by [28] and later improved
by [43]. The method applies the Gaussian mechanism to find the rank-r approximation of the
sample covariance matrix f), denoted by ir hereafter. Under the spiked covariance model,

the DP-Gauss method provides an (¢,0)-DP estimator, denoted as S, achieving the rate
(Corollary 2.3 in [43])

= & o? T
® 50 = S e < Comax P (14 5 ) Y2 g 21/0),
which can be viewed as the cost of privacy in their method. Note that the term max;¢/y,) [| X |2
appears here because [28] and [43] require that each observation has at most unit norm. Under
the spiked model, we have max; || X;||? < rA + po? up to logn factors. Plugging this into
Equation (8), we can conclude that the bound attained by DP-Gauss in [43] is much larger
than ours under the spiked covariance model.

Private covariance estimation for Gaussian distributions was studied by [34] using the
Gaussian mechanism. Their rate is optimal in the case A < o? and r = p, but becomes sub-
optimal otherwise. In contrast, our rate is optimal, allowing a much more relaxed condition
on \ and o2. Moreover, their method cannot be applied to differentially private PCA.

REMARK 4 (High-dimensional data). Our methods work as long as the signal-to-noise
ratio satisfies /o2 > p/n + \/p/n, meaning that a strong signal is required when the di-
mension p is much larger than the sample size n. However, we emphasize that such a signal
strength condition is necessary for a non-trivial estimate of the population eigenvectors, even

2.5
)

)
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in the conventional non-private setting. See, e.g. , [37]. Moreover, simulation results in Sec-
tion 6 and Appendix A demonstrate that our method is much more robust than other methods
(DP-Oja [42] and DP-Gauss [28, 43]) when dimension p is relatively large compared to the
sample size n.

4. Minimax Lower Bounds with Differential Privacy. In this section, we establish
the minimax lower bound of PCA and covariance matrix estimation under the constraint
of differential privacy. Our main technical tool is a version of Fano’s lemma with privacy
constraint.

4.1. DP-constrained Fano’s Lemma. Several techniques have been developed to estab-
lish minimax lower bounds under the constraint of differential privacy. Notable examples
include the fingerprint method [33], Le Cam’s method under differential privacy [6], differ-
entially private Fano’s lemma [3], and the recently introduced Score Attack method [16]. Le
Cam’s method and Fano’s lemma construct a multitude of hypotheses that are difficult to
distinguish, while the fingerprint method and Score Attack design a test statistic with a prior
distribution.

For our convenience, we employ the differentially private Fano’s lemma, as detailed in
Lemma 4.1, whose proof is provided in Section C.5 of the Supplementary Materials [17].
Here, KL(-,-) and TV(,-) denote the Kullback-Leibler divergence and total variation dis-
tance between two distributions.

LEMMA 4.1. Let P:={P: P =y x --. x ™} be a family of product measures
indexed by a parameter from a pseudo-metric space (©,p). Denote 6(P) € © the param-
eter associated with the distribution P. Let Q = {P,---,Px} C P contain N probability
measures and there exist constants po, lo,to > 0 such that for all i # i’ € [N],

p(0(F;),0(P)) = po, KL(B||Py)<lo,

and
> TV <u§k),u§fk)) < to,
ke[n]
where P; :ugl) X e X ;Lgn) and Py :/%(‘/1) X oo X ,ug/n). Then,
&)

. 00 lo+1log2\ po N-1 25e’eto
f Eap(A0(P)) > — 1), 1/ \N— | (1= — ] ¢,
Ae}lI:,L;(P) }?é% A p(4,0(P)) max{ 2 < log N ) 4 ( /\ exp (4etp) et —1
where the infimum is taken over all the (&,0)-DP randomized algorithm defined by
Acs(P):={A: X — O and A is (e,9)-differentially private for all X ~ P € P } .

Lemma 4.1 provides a powerful tool for developing a minimax lower bound in estima-
tion problems under the constraint of differential privacy. Basically, if one can construct a
sufficiently large set of distributions which are pairwise close in both Kullback-Leibler di-
vergence and total variation distance, then a minimax lower bound can be derived if the
underlying parameters are well-separated. The first term in the RHS of (9) is derived from
the classic Fano’s Lemma without privacy constraint and serves as a lower bound for the
statistical error rate. This term is a well-established outcome in information theory by the
framework of hypothesis testing and has been extensively employed in the statistics litera-
ture. The second term in the RHS of (9) characterizes the price one needs to pay for dif-
ferential privacy. It is noteworthy that the cost of privacy is determined by t(, which is the
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summation of marginal total variances. Intuitively, if the marginal total variance distances
between P; = ugl) X X ,uz(") and Py = ug,l )% x u§,") are small , it becomes challenging
to identify the distribution from which the dataset is drawn. Therefore, the cost of privacy is
expected to be low when ¢ is small. Moreover, if we assume that X = (X1, -+, X,,) ~ P,

then the cost of privacy resulting from replacing Xj ~ M(k) by X ~ ,u(,k ) should be upper

(3 T
bounded in terms of TV(ugk), /Lg,k ))

only when § < (ef — 1)e 4o,

. We remark that the bound given in (9) is meaningful

4.2. Minimax lower bounds. In this section, we apply Lemma 4.1 to establish the mini-
max lower bounds for differentially private PCA and covariance estimation under the spiked
covariance model. Denote the family of normal distribution with a spiked covariance matrix
by

P\, 02) = {N(o, %) : 8 =UAUT + 021, ¢ @(/\,02)}.

By definition, each distribution P € P(\,c?) is indexed by the pair of eigenvalues A and
eigenvectors U € Oy, ;.. We first focus on the minimax lower bounds for estimating the spec-
tral projector UU '. Similarly, the minimax lower bounds are established in all Schatten-q
norms for ¢ € [1, 00].

THEOREM 4.2. Let the p X n data matrix X have i.i.d. columns sampled from a distri-

bution P=N(0,UTAUT +021,,)) € P(\,02). Suppose § < ¢}y exp {2e — co(e\/mpr+pr) }
for some small constants cy, c{) > 0. Then, there exists an absolute constant c1 > 0 such that

E Trr T T 2
inf sup lvo Wi UU lg >c1 <a +14/ > <\/E pf) /\1
Uel. s PEP(M0?) ri/a A A

where the infimum is taken over all the possible (¢,0)-DP algorithms, denoted by U; 5, and

the expectation is taken with respect to both U and P.

Theorem 4.2 imposes a strong restriction on the parameter §. For most interesting cases,
0 needs to be near zero. Therefore, the minimax lower bounds hold primarily for the pure
differential privacy case, i.e., = 0. It is worth noting the two terms in the minimax lower
bound of spectral norm (g = 00):

[\ [p o2 [®\pyr

The first term concerns the statistical error of PCA without privacy constraint. The error
bound is free of the rank r, which is very typical in spectral norm error rate and the rate
matches the existing minimax optimal rate of PCA for spiked covariance model. See, e.g.,
[13, 63, 64]. The second term is the price paid for differential privacy. Interestingly, the
second term is dependent on the rank r even though spectral norm is considered here. The
technical explanation is that the sensitivity of empirical spectral projector increases as the
number of PC’s grows. Comparing the two terms in (10), we observe that if € > (rp/n)/2,
the cost of privacy is dominated by the statistical error.

A minimax lower bound for rank-one PCA has been established in [42, Theorem 5.3].
Their developed rate in spectral norm also have two terms:

N AR o’
A+ o2 n A+ o2
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Their rate matches ours when 7 = 1 and A > o2. On the other hand, if A < ¢2, our minimax
lower bound is much stronger. Moreover, our minimax lower bounds hold for a diverging
rank as long as 2r < p.

We now shift our focus to the minimax lower bound of differentially private estimation of
the spiked covariance matrix. Here, we assume o2 is known and it suffices to estimate the
signal part UAU ". As a result, the minimax lower bound is essentially determined jointly by
the lower bounds in estimating eigenvalues and eigenvectors.

THEOREM 4.3. Let the p X n data matrix X have i.i.d. columns sampled from a distri-
bution P=N(0,UTAU" +021,) € P(\, 02). Suppose § < c{yexp {2e — co(e\/npr +pr) }
for some small constants cy, c{) > 0. Then, there exists an absolute constant c1 > 0 such that

E[|S-% ,3/2
inf  sup MZQ A T+— +Vo2(A+0?) PP A,
1/q
5 €M, 5 PEP(A\0?) T ne n  ne

where the infimum is taken over all the possible (¢, 0)-DP algorithms, denoted by M. s, and
the expectation is taken with respect to both ¥ and P. Here, q can be any number in [1,c0].

Without loss of generality, let us discuss the two terms in the spectral norm distance

(11) A(ﬁ#ﬁf) and m(\f \nf€p>

The second term is contributed by the differentially private estimation error of PCA in the
form of A|UUT — UU "||2. The first term dominates if the signal strength is exceedingly
large, or more precisely, when \/a? > p/r. In this case, we can simply regard o = 0 and
the stochastic error mainly comes from the randomness of a low-dimensional distribution.
Basically, it suffices to consider the minimax optimal estimation under a smaller family of
normal distributions {NV (0, A\UU " 4+ \I,.): U € Oy.r/4}. By replacing o < A, 7 < /4,
and p < r, the second term reduces to the first term in (11). Without the privacy constraint,
the first term also matches the existing optimal rate in covariance estimation under spiked
covariance model [13, 18].

5. Extensions. For the sake of clarity, we have assumed uniformity in the order of spiked
eigenvalues and Gaussian distributions. In this section, we extend our analysis to provide up-
per bounds for differentially private PCA and covariance estimation without requiring these
specific conditions.

5.1. Diverging condition number. Suppose that X1,---, X, N N(0,%) where ¥ =
UAUT + 021p with spiked eigenvalues A = diag(\1,- -+, A.). Denote kg := A1 /A, the ratio
of the largest and smallest spiked eigenvalues. The proof of Corollary 5.1 is almost identical
to that of Theorems 3.2 and 3.3, and thus omitted. We only present the upper bounds of the
expected error in Schatten norms, but high probability bounds hold similarly.

COROLLARY 5.1.  Suppose thatn > C’l(ﬁgrlogn—l—log2 n),2r <p, A\1/o? < (p/n)e(p/\”)/cl,
and A\ /o > C1(kop/n + \/p/n) for some large absolute constant Cy > 0. If we choose

2
and AQ::CQ)\l(T+IOgn)+U (p—|—logn)7

n n

A1::C’2<02+ KOUQ) p(r + logn)

A A
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then, there exist absolute constants Cy > 0 such that, for any € > 0,6 € (0,1), Algorithm 1
outputs an (g,0)-DP estimators UU " and ¥ satisfying

sidl T 2
E|jUU" -UU" |4 <af% 4 Koo 2 N p\/r—I—lognlOgl/2 (&) .
rl/a Ar Ar n ne 0

and

E[E -2l
rl/q

SC“(M(\/ZJFW' 1og255> + 02(A1+a2)<\/§+ W%og?)).

forall g € [1,00].

5.2. Sub-Gaussian. Suppose that X follows a sub-Gaussian distribution satisfying that,
for any u € RP, the following bound holds

X 2

where ¥ € O(\,0?). For ease of exposition, we focus on the case of bounded condition
number. Interestingly, the sensitivity of eigenvectors and eigenvalues is actually identical to
that under Gaussian distributions.

COROLLARY 5.2.  Suppose that n > C1(rlog(p + n) log?r + log? n),2r <p, A\/o? <

(p/n)e®M/C1 and \/o* > Cy(p/n + \/p/n)log(p + n) for some large absolute constant
C1 > 0. If we choose

o [\ /ol T logn)
A= Oy T gy VR osm)
1 Cz<)\ + A)

then, there exist absolute constant Cy > 0 such that, for any € > 0,9 € (0,1), Algorithm 1
outputs an (£, 0)-DP estimators UU " and ¥ satisfying

E|UUT -UUT|, o?  [o?\ ([ [plogp  pVr+logn (25
<Oy =— — log!/? (22
rl/a =4\ + A n + ne 08 ( ) > ’
and

E[l% —Xlq
rl/q

1 2. 1 \/ 1 2.
<Cy| A \/7+\/77(7"—|— ogn) . log—5 +vV2(A+0?) \/p LT r+ ogm log—5 :
n ne 1) n ne )

forall g € [1,00].

I 2 I
and Ay i— 02)\(7“—1- ogn)+o°(p+ ogn)’
n n

As shown by Corollary 5.2, the upper bounds of differentially private sub-Gaussian PCA
and covariance estimation are almost the same as those for Gaussian distributions, implying
that these bounds are minimax optimal. However, some additional logarithmic factors appear
in the upper bound and signal-to-noise ratio condition when controlling the higher-order
terms in spectral perturbation.
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5.3. Private estimation of nuisance variance. In this section, we provide a differentially
private estimator of o2, demonstrating that minimax optimal estimation of the spiked covari-
ance matrix is still achievable even if o2 is unknown.

The estimation of o2 in spiked covariance models has been studied by [13, 24, 54]. These
methods exploit the eigenvalues of the sample covariance matrix or the properties of the
empirical spectral distribution. We utilize the robust estimator of o2, originally proposed by
[35] for detecting the number of spikes. The basic idea is to average several bulk eigenval-
ues that are separated from the spike eigenvalues. We begin by reviewing the well-known
Marchenko-Pastur (MP) law [5, 44].

Let Z be a p x n matrix whose entries are independent, identically distributed random
variables with mean 0 and variance o2. Let Y, := ZZ /n be the sample covariance matrix,
and let A\ (Y7,) > -+ > Apan(Y5) be its non-zero eigenvalues. Define the empirical spectral
distribution (ESD) of Y;, by pn(A) := (p An) "' PV 1(X(V,) € A), VA CR. Assume
that p/n — 7 as n — oo for some > 0. It is known that the ESD converges in distribution
to the MP distribution 1(-), whose density function is given as follows.

DEFINITION 1. Given v > 0, the zero-excluded MP distribution is defined by the density

Fu@) = gy V@ P00 =) e € 1, o22))

where 74 := (1£,/7)%

Since EY,, = aglp, a natural estimator of o2 is by taking the average of several bulk
eigenvalues of Y,,. Recall the sample covariance matrix S under the spiked model (1), and
let /\1@) > > )\p,\n(i) denote the non-zero eigenvalues of 5. The eigenvalue stick-
ing property [8, Theorem 2.7] tells that )\j+T(§I) ~ \;(Yy,) with high probability for all
(pAn)/4<j<3(pAn)/4if r < (pAn).Denote g the k/(p A n)-upper quantile of the
MP distribution with 7, :=p/n and 02 =1, i.e., fq(kHﬁ)Q froa(x)de =k/(p An).

We define the non-private estimator of o2 by

<2 _ 2orn)/asksapm)/a HAR()

Z(p/\n)/4§k§3(p/\n)/4 a;

The convergence rate of 52 was established by Theorem 1 of [35]. Its sensitivity is charac-
terized in Theorem 5.3. Let 5(92 be defined as 52 using ©.() instead of 3.

THEOREM 5.3.  Suppose the conditions in Theorem 3.3 hold, r < C5 for any large con-
stant C's, and p/n — vy for a constant -y > 0 . Then, there exists an absolute constant Cy > 0
such that, with probability at least 1 — n 100

2
‘82 —E(i)Q‘ < Ayim Cy A(r+logn)+o (p—i—logn).

«/p/\n. n

Consequently, the estimator > } 2+ N(0, 18 (As/e)*1og(3.75/6)) | is an (¢/3,0/3)-DP
estimate of o with probabtllty at least 1 —n="".

We now study the DP PCA and covariance estimator using the private estimate 2.
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THEOREM 5.4. Suppose the conditions in Theorem 5.3, p/n — =y for a constant vy > 0,
and there exists a small constant ¢1 > 0 such that

(12) i<cn (pAn)/logn € and P logn € <.
o2 =1 (r+logn) \/1og(4/9) n\lpAn /log(4/d) — !

Let U, A, and S be defined as Algorithm 1 with replacing (¢,0,0%) by (£/3,6/3,52), respec-
tively. Then, with probability at least 1 — e~(""P) — 4n=9 U and A are (¢/3,5/3)-DP, ¥
is (¢,0)-DP, and the following bounds hold

. 2 2 \/7(r +logn) 4

OO —UU |p <Oy &+ 4/ 2 ) (/2 + BVEE T 08T flog =

I e < 4<A+ A n+ ne og5 ’
and

max{”i—z

DEDIN:

§C5ﬁ</\<\/2+(r+12§n>3/2 : @) + 02(>\+02)<\/§+ W\/Ieg§>>,

where co,Cs5 4 > 0 are constants.

)

These rates are nearly identical to those in Theorems 3.2 and 3.3, making them minimax
optimal up to logarithmic factors. Condition (12) is imposed to ensure that the outputs of
Algorithm 1 remain differentially private when using the private estimate 52 instead of the
true o2. Essentially, this condition guarantees that 52 < o> with high probability, ensuring
that the artificial noise added in Algorithm 1 is sufficiently strong to maintain the privacy
guarantee.

6. Numerical Experiments.

6.1. Simulations. We present simulation results comparing the performance of our dif-
ferentially private (DP) algorithms with existing methods in the literature. The DP-Oja al-
gorithm, proposed by [42], estimates the first principal component under privacy constraints
by extending Oja’s algorithm, originally introduced by [48] for online PCA. We also com-
pare it with the DP-Gauss algorithm proposed by [28], which uses the Gaussian mechanism
for privacy-preserving PCA. Both our method and DP-Gauss use the Gaussian mechanism
to ensure privacy. However, our method is specifically motivated by the spiked covariance
model, while DP-Gauss is designed for deterministic data, assuming each observation has
at most unit norm. This distinction is also reflected in the artificial noise levels introduced
by the two methods. For the spiked covariance model, we implement the DP-Gauss method
after applying a universal scaling to ensure each observation has at most unit norm. The DP-
Oja method, as discussed by [42], is directly applicable to the spiked covariance model for
Gaussian distributions.

Under the spiked covariance model (1), we carefully and fairly choose the constants in-
volved in the artificial noise level for the DP-Oja, DP-Gauss, and our methods. For sim-
plicity, we set the nuisance variance parameter o> = 1 in all experiments. In our method,
the constant C5 in the definition of Ay in Lemma 2.2 arises from the concentration of the
sub-exponential random variable max;c(y |UTX;X,"U, || (see Lemma 8.3). In DP-Gauss,

a scaling by (max;epy || Xi(|?) s applied to the sample covariance matrix to enforce the
unit norm upper bound assumption. By Lemma 8.2, max;e ) [| X;]|* < (r+C5logn) A +po?.
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Fig 1: Comparison of our method, DP-Oja [42], and DP-Gauss, DP-Gauss* [28] in differen-
tially private PCA with varying n and r. The dimension p = 50, A = 10,02 = 1, and privacy
constraints e = 1,9 =0.1.

The scaling factor is set as (r + Cslogn)\ + po? in DP-Gauss. For a fair comparison, we
set both the C'5 in our method and the C} in the scaling factor in DP-Gauss to 4. We can

also set the scaling factor in DP-Gauss exactly as ( max;ep, || Xi[|?) ~' The resultant algo-
rithm is denoted as DP-Gauss*. The artificial noise level in DP-Oja involves several unset-
tled constant factors, with the dominating one determined by the concentration property of
maxe [y ||XiXZ-T G;—1]|| (see Lemma 3.2 in [42]). For a fair comparison, we should set the
constant C' = 2 in their Algorithm 2. However, since DP-Oja is an online PCA algorithm
with random initialization, it is unsurprising that this method significantly underperforms our
method and DP-Gauss. For clear illustration, we set C' = 0.2 in their Algorithm 2. Note that
DP-Oja only works for rank-one PCA, and its stepsize is set as 0.5/n after fine tuning for the
best performance.

In the first simulation setting, we set p = 50, ¥ = A\UU " + I, with A =10, and U con-
tains the left singular vectors of a p x r random matrix with i.i.d. N (0, 1) entries. The privacy
budget is set as ¢ = 1 and 6 = 0.1. We first set » = 1 and compare the utility performances
of the three methods in terms of the error [|[TU T — UU T ||y as the sample size n varies. For
each n, the simulation is repeated for 40 times, and the average error and standard deviation
are recorded. The results are displayed in the left panel of Figure 1. It shows that DP-Oja sig-
nificantly underperforms compared to other methods, while our method slightly outperforms
DP-Gauss. Our method and DP-Gauss* achieve similar performance. Moreover, we observe
that DP-Oja runs much slower than the others. We then compare our method and DP-Gauss
while varying the rank r. The boxplots shown in the right panel of Figure 1 are based on 40
independent simulations, demonstrating that our method consistently outperforms DP-Gauss
for different ranks. Interestingly, as the rank r increases, our method becomes better than
DP-Gauss™.

The second simulation setting compares these methods with respect to the varying privacy
parameter € and signal strength A. The results, presented in Figure 2, show that the error rates
of all methods increase rapidly as € decreases, which aligns with our theoretical predictions.
When the signal strength A is small, DP-Gauss* performs the best. However, as A increases,
our method outperforms the others.

The third simulation setting aims to test the performance of our method and others in
the high-dimensional case where p > n. We demonstrate that our method is applicable as
long as the signal strength condition \/o? > C(p/n + /p/n) hold. The dimension, rank,
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Fig 2: Comparison of our method, DP-Oja [42], and DP-Gauss, DP-Gauss* [28] in differen-
tially private PCA with varying £ and \. The dimension p = 50, 0 = 1, and privacy con-
straint 6 = 0.1.
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Fig 3: Comparison of our method, DP-Gauss, and DP-Gauss™ [28] in differentially private
PCA when p > n and the signal strength A changes. The dimension p = 50, n = 30,r =
3,02 =1, and privacy constraints § = 0.1.

and sample size are set to p = 50, r = 3, and n = 30, respectively. The boxplots of error
|IUUT — UUT ||y based on 40 simulations are displayed in Figure 3. They show that our
method significantly outperforms DP-Gauss and DP-Gauss™ in this setting. The error rates
of DP-Gauss and DP-Gauss* hardly improve as the signal strength increases. One possible
reason is that the universal scaling procedure used in DP-Gauss and DP-Gauss™ leads to
significant information loss, especially when sample size n is small.

In the fourth simulation settings, we compare the performance of our method, DP-Gauss,
and DP-Gauss™ for covariance estimation. Due to space constraints, the results are provided
in Appendix A.

6.2. MNIST dataset. 'We implemented our method, DP-Gauss, and DP-Gauss™ for differ-
entially private PCA on the MNIST dataset, which contains grayscale images of handwritten
digits from O to 9. The dataset includes 500 samples for each digit. For a clear illustration,
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Fig 4: Comparison of our method and DP-Gauss* [28] in differentially private PCA on
MNIST dataset. The privacy constraints are ¢ = 2 and § = 0.1. The total sample size is
n = 1500. All images are downscaled to a size 14 x 14.

we used only the images corresponding to digits 1, 4, and 9, creating a sample of n = 1,500
images. Each image is an observation of length p = 28 x 28 = 784. The dimension is rela-
tively large compared to the sample size. We downscaled the original images to 14 x 14. The
rank was set to » = 3. We estimated A by averaging the first three eigenvectors of the sample
covariance matrix and o2 by the mean the 50-th to 140-th sample eigenvalues. The privacy
constraints were set as ¢ = 2 and J = 0.1. After obtaining the DP estimates of eigenvectors,
we applied dimension reduction to each observation, reported the variance explained, and
visualized the scores corresponding to first and second components. The results are shown as
in Figure 4. As expected, the DP-Gauss* method performed poorly due to the relatively small
sample size. These methods add too much noise, resulting in principal components that can
explain only 2% of the total variance.

7. Discussion. In this paper, we establish optimal rates of convergence, up to logarithmic
factors, for differentially private estimation of both the principal components and the covari-
ance matrix under the spiked covariance model. We propose computationally efficient algo-
rithms, and our results accommodate a diverging rank and a wider range of signal strengths.

7.1. Private estimation of unknown rank. In the present paper, we assume that the num-
ber of components, r, in the spiked covariance model is known. However, in practice, r
is typically unknown. The consistent estimation of the rank 7 in such models has been
extensively studied in the conventional setting (see, e.g., [41], [13], [35] and references

therein). For instance, we can use the eigen-ratio estimator 7" := argmax;<y<p (/\k(E) +

Zk) ()\k_}rl(i) + Zk+1)_1, where Z1,---,Zp are i.i.d centered N(O,8A%5_210g(2.5/5))
noise, and R < (n A p) is a postulated upper bound for r. Lemma 2.4 ensures that 7 is
(¢/2,6/2)-DP with probability 1 — 4n~9%. By the concentration property of edge eigen-
values and the sticking property of bulk eigenvalues of the sample covariance matrix [8],
we can show that 7 is a consistent estimate of r as long as the signal-to-noise ratio satisfies
M a? > Copy/log(R)log(2.5/5)/(ne) for some large enough constant C > 0, in addition
to the conditions required in Theorem 3.3.

7.2. Private estimation of unknown eigenvalue. We assume the signal strength X is
known for simplicity. It can be estimated by averaging the first r eigenvalues of the sam-
ple covariance matrix. This approach works well in our numerical experiment on the MNIST
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dataset. The properties of the sample eigenvalues under the spiked covariance model are
well-understood (see, e.g., [8] for a precise characterization). To protect privacy, one can
also perturb sample eigenvalues with Gaussian noise, as discussed above using sensitiv-
ity Ay developed in Lemma 2.4. The resultant estimator X is consistent in the sense that
Cyt < IA/A| < Cy with high probability under the conditions of Theorem 3.3 and if
ne > C1(r + logn) and \/o? > Cipy/log(2.5/6)/(ne), where Cp > 0 is some absolute
constant and C > 0 is a large constant depending only on Cj.

7.3. Beyond sub-Gaussian distribution. Our differentially private PCA method can be
extended to distributions beyond the sub-Gaussian case. The primary technical challenge
lies in analyzing the sensitivity of the sample spectral projector. The leading term of sen-
sitivity is primarily determined by the quantity A; =~ maxep, [|U XU X5/ (nN),
where (A + 02)I, < cov(U'X;) < (A + 02)I, and 621, < cov(U[ X;) < 02I,_,. As-
suming that U X;/\ (also UIXi /o?) has independent entries with a finite fourth mo-
ment, we can show that [|U " X;[||U| X;||/(n\) < (62/A+ /02 /X)\/p(r +logn)/n (same
as Lemma 2.3) up to additional logarithmic factors with probability 1 — O(log_l(n)).
Therefore, we believe that our established bounds for differentially private PCA and co-
variance matrix estimation are optimal for a wide range of distributions. However, com-
plfting the proo£ still requires establishing sharp upper bounds for the following terms:
12 =S UTE =D UL 11Xl 10Xl 10T Xl ([P (X2 XX, ) UL Xi||, and,
|2 (2, X; X, )UT X|, etc., which should hold for all i € [n], where hy(-) and ha(-)
are some deterministic functions. It is possible to establish these bounds by imposing some
moment condition on the distribution of X, such as requiring E|(X,a)|™ < L™ for some
sufficiently large m > 4 and constant L > 0. See, e.g., [5] and [8]. Developing these bounds
would significantly complicate the current proof and presentation of theoretical results, in-
troduce additional logarithmic factors, and weaken the privacy guarantee. We leave these
extensions for future work.

>

8. Technical lemmas. In this section, we provide some technical lemmas that will be
frequently used in the subsequent proofs. Due to page constraints, all proofs are given in the
supplement [17].

Lemma 8.1 is a well-known dimension-free concentration inequality of sample covariance
matrix developed by [37]. Here, || - || denote the spectral norm of a matrix and ¢2-norm of a
vector.

LEMMA 8.1 ([37]). Suppose Xi,---,X,, are i.i.d. sampled from N (0,%) and S =

2?21 XZXZT/TL Then,
E|S - 2| = < tr@LHEH \/trf))

Moreover, there exists an absolute constant C1 > 0 such that, for all t > 1, with probability

at least 1 — e ?,

|ri—zu—Eri—zu)somzu<i+ﬁ<l+ t@j”“))

The following lemma characterizes the concentration of the norm of a Gaussian random
vector. Recall that X! is an independent copy of X;.
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LEMMA 8.2. Let X ~ N(0,%) and the eigenvalues of ¥ are A\; > --- > X\, > 0. Then,
there exist absolute constants C1,Cy, cq > 0 such that

P 1/2
P(‘ 1x11% ~ tr(z)‘ <Ci (uZA%) + 02)\1U> >1—e ",
i=1

for any u > 0. Under the spiked covariance model Y. € O(\,0?) and the condition that
p > Cglogn for some absolute constant Cg > 0, we have

IP’<{ m%u}cHXiHQ + |1 X112 < C3(rA + po?) + Cyn/(rA2 + pod) logn + Cs (A + Jz)logn}>
1€en

ﬂ{ mz[m]{ U X312 + mé[n}c IUTX!|? < C3r(A+ 02) + Cyn/7(A2 + o%) logn + Cs(\ + Uz)logn}
1€ €N

ﬂ{ max ||U | X;||> + max |U] X/||? < Cgpa2} >1—n 1
i€[n) i€[n]
where C3,Cy, Cs > 0 are some absolute constants. Let £y denote the above event. Moreover,

E(|X;]]2 < C3(rA+po?), E|UTX||? <Csr(A+0?) and E|U[ X;||> < Cspo®.

Denote A :=$ — ¥ and A(i) :=3() — . We shall frequently use several concentration
bounds related to A and A®) throughout the proof. For reader’s convenience, these concen-
tration bounds are collected in the following lemma.

LEMMA 8.3.  Suppose that &> € ©O(\,02), n > Cy(rlogn +log?n), 2r < p, and \/o? >
Cyp/n for some absolute constant C > 0. There exist absolute constants cy > 0 and Cy > 0
such that the event

En = {IIAII +max 1A < 02\/

A+ 02)(rA+po?) A
+ _
n 10
, 2()\ & o2
(13) ﬂ{HUTAULH +max ||[UTAODU, || < Cy "(””’}
i€[n] n
holds with probability P(Ex) > 1 — e=%("\P) Meanwhile, we have

N+ o2) (1A 2 2(\ & o2
EHA\\§CQ\/( +U)(,: TP nd E|UTAUL| <G "(Z")p.

There exist absolute constants ¢ > 0 and Cs > 0 such that the event

(14)
2 2
1= {né%HUT(XiX;/n)ULH + T XX UL < Cs Vo (A+02p(r+log”)}
71 T Ty .\/02()\+02)p(r+logn)
ﬂ{?é%( U (H;X]XJ)ULULX,, < Cyo ’

holds with probability P(1) > 1 — e~ ("\P) — 29799,
The following perturbation bound of principal subspace will be useful.

LEMMA 8.4. Suppose that \, > (4+ 0)||A|| for some § > 0, then
|AJ[UTAUL
IN2 '

|07 ~vUT | <2||A U AUL| + 64 + )
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SUPPLEMENTARY MATERIAL

Supplement to “Optimal Differentially Private PCA and Estimation for Spiked Co-
variance Matrices'
In this supplement, we present the proofs of Lemmas 2.2 through 2.4, additional technical
lemmas, and all the theorems. Additionally, we provide simulation results for differentially
private covariance matrix estimation.
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