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Abstract

We consider wavelet block thresholding method for density estimation. A block-thresholded density
estimator is proposed and is shown to achieve the optimal global rate of convergence over Besov spaces
and simultaneously attain the optimal adaptive pointwise convergence rate as well. These results are
obtained in part through the determination of an optimal block length.
© 2004 Elsevier Inc. All rights reserved.

AMS 1991 subject classificatioprimary 62G07; secondary 62G20

Keywords:Adaptive estimation; Besov space; Block thresholding; Density estimation; Holder space

1. Introduction

In nonparametric function estimation the performance of an estimator is typically mea-
sured under one of two commonly used losses: squared error at each point and integrated
squared error over the whole interval. The first is a measure of accuracy of an estimator
locally at a point and the second provides a global measure of precision. Minimax and
adaptation theories have been well developed for both the local and global losses. See for
examplg7,12-14,21,23]See also the references in Efromovjth].

* Corresponding author. Fax: +1-850-644-5271.
E-mail addresschicken@stat.fsu.ediE. Chicken).

1Research supported in part by NSF Grant DMS-0072578.

0047-259X/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmva.2004.07.003


http://www.elsevier.com/locate/jmva
mailto:chicken@stat.fsu.edu

E. Chicken, T.T. Cai/ Journal of Multivariate Analysis 95 (2005) 76—106 77

It has been noted in the literature that a local or global risk measure alone does not
fully capture the performance of an estimator. For functions of spatial inhomogeneity, local
smoothness of the functions varies significantly from point to point and a globally rate-
optimal estimator can have erratic local behavior. On the other hand, an estimator which is
locally rate optimal at each point can be far from optimal under the global log8]s&tore
recent focus has been on a simultaneously local and global analysis of the performance of an
estimator. The goal is to construct adaptive estimators which are near optimal simultaneously
under both pointwise loss and global loss over a collection of function classes. Such an
estimator permits the trade-off between variance and bias to be varied along the curve in an
optimal way, resulting in spatially adaptive smoothing in classical sense. This approach has
been used for example in Ci,6] and Efromovich17] in the context of nonparametric
regression and in C§b] for inverse problems.

Wavelet methodology has demonstrated considerable success in terms of spatial adap-
tivity and asymptotic optimality. In particular, block thresholding rules have been shown
to possess impressive properties. The estimators make simultaneous decisions to retain or
to discard all the coefficients within a block and increase estimation accuracy by utilizing
information about neighboring coefficients. The idea of block thresholding can be traced
back to EfromovicH15] in orthogonal series estimators. In the context of nonparametric
regression local block thresholding has been studied, for example, in Hall[&9RICai
[4,6], Cai and Silvermar9] and Efromovich[17]. Block thresholding rules for inverse
problems were considered in G&]. In particular itis shown in Cd#,6] that there are con-
flicting demands on the block size for achieving the global and local adaptivity. To achieve
the optimal global adaptivity the block size needs to be “large” and to achieve the optimal
local adaptivity the block size must be “small”. An optimal choice of block size is given
and the resulting estimator is shown to attain the adaptive minimax rate of convergence
simultaneously under both the pointwise and global losses.

Inthe present paper we consider block thresholding for density estimation. In this context,
Kerkyacharian et a[22] proposed a wavelet block thresholding estimator which uses an
entire resolution level as a block. The thresholding rule is not local and so does not enjoy
a high degree of spatial adaptivity. A local version of block thresholding density estimator
was introduced in Hall et aJ20]. The block size is chosen to be of the ordeg n)? where
n is the sample size. The estimator is shown to enjoy a number of advantages over the
conventional term-by-term thresholding estimators. The global properties of the estimator
were studied. The estimator adaptively attains the global optimal rate of convergence over
a range of function classes of inhomogeneous smoothness under integrated squared error.
However, as shown in this paper, the estimator does not achieve the optimal local adaptivity
under pointwise squared error. The block size is too large to fully capture subtle spatial
changes in the curvature of the underlying function.

In the present paper, we propose a block thresholding density estimator and give a si-
multaneously local and global analysis for the estimatorXgtXo, ..., X, be a random
sample from a distribution with density functiériWe wish to estimate the densitpased
on the sample. The estimation accuracy is measured both globally by the mean integrated
squared error

R(f, f)=EIf - I3, (1)
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and locally by the expected squared error loss at each givenygoint

R(f (x0), f(x0)) = E(f(x0) — f (x0))%. )

Our block thresholding procedure first divides the empirical coefficients at each resolution
level into nonoverlapping blocks and then simultaneously keeps or Kills all the coefficients
within a block, based on the magnitude of the sum of the squared empirical coefficients
within that block. Motivated by the analysis of block thresholding rules for nonparametric
regression in Caj6], the block size is chosen to be lag It is shown that the block
thresholding estimator adaptively achieves not only the optimal global rate over Besov
spaces, but simultaneously attains the adaptive local convergence rate as well. These results
are obtained in part through the determination of the optimal block length.

The paper is organized as follows. After Sectiim which background information on
wavelets and the function spaces of interest is given, we discuss block thresholding rules
for density estimation in Sectio® The asymptotic properties of the block thresholding
estimator are set forth in Secti@ along with a related theorem on a block thresholded
convolution kernel estimator. Simulation results for the proposed estimator are found in
Section 5 and proofs of the theorems are given in Seion

2. Wavelets and function spaces

An orthonormal wavelet basis is generated from dilation and translation of a “father”
wavelety and a “mother” wavelef. In this paper, the functiong andy are assumed to
be compactly supported arjdp = 1. We call a wavelet/ r-regular if y hasr vanishing
moments and continuous derivatives. Lef;; (1) = 2221 — j), ;1) = 21/2)(2'1 -
7). The collection §,,;, ¥;;, i>m, j € Z}is then an orthonormal basis @(R), see
[11,26]

Besov spaces arise naturally in many fields of analysis. They contain a number of tradi-
tional function spaces such as Holder and Sobolev spaces as special cases. A Besov space

, has three parameters:measures degree of smoothngssnd g specify the type
of norm used to measure the smoothness. Besov spaces can be defined by the sequence
norm of wavelet coefficients. For a given functifrdenotex,,; = [ f(t)(i)m] (t)dt and
=/ f(t)lpij (t) dt. Define the sequence norm of wavelet coefficientstf

q\ 1/¢q
o 1/p

If By, = lomjller + | Y | 26FVZYP {3, 1P . (3)
J

i=m

The standard modification applies for the cageg = co. Let the wavelety ber-regular.
Fors < r, the Besov spac8,, , is defined to be the Banach space consisting of functions
with finite Besov norm| - s, . The Holder spacel’ is a special case of a Besov space
B}, , with p = g = oco. See Tr|ebe[28 29]and Meyer{26] for more on the properties of
Besov spaces.
We shall measure the global adaptivity of an estimator over two families of rich function
classes which were used in Hall et[d9]. The classes contain functions of inhomogeneous
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smoothness and are different from other traditional smoothness classes. Functions in these
classes can be regarded as the superposition of smooth functions with irregular perturbations
such as jump discontinuities and high-frequency oscillations. Let

F3,(M.L)={(f € B}, : Supff) € [~L. L1, | flly, <M} (4)

be the collection of functions with support contained-#1., L] and Besov horm bounded
by M. Following the notation of Hall et a[[19], the first function space of interest is
Vsl(Fzﬁq(M, L)) which consists of functions which are the sum of a function in the space

F3 ,(M, L), q>1and an irregular function |ﬁ(“+1/2) 1, (M, L).
A second space of interest, denoted‘byT(qu(M L)) consists of functions which
can be represented as the sum of a function in the sﬁ§1 eM, L), g >1 and a function
in P; .1 which is the set of piecewise polynomials of degdasupport in[—L, L], and
with the number of discontinuities no more than
Local adaptivity of an estimator is measured over the local Holder clatg@g, xo, J)
which is defined as follows. For @ s <1,

A*(M, x0,0) = {f : | f(x) — f(xo)| <Mx — xol*, x € (x0 — 8, x0 + 9))
and fors > 1,
A5 (M, x0,0) = (f : | ¢ (x) = £C7 (xo) | < M|x — xol', x € (x0 — &, x0 + )},

wheres™ is the largest integer strictly less thaandr = s — s*.

3. The estimators
3.1. Wavelet and convolution kernels

LetX1, Xo, ..., X,, bearandom sample of sinérom a distribution with density function
f. The objective is to estimate the density functfobased on the sample. We shall use
similar notation as in Hall et a[19]. Let K (x, y) be a kernel function oft?, and define
Ki(x,y) =2'K(2'x,2'y),i =0,1,2,....Additionally, K; f will be the integral operator
defined axk; f (x) = [ K;(x, y) f(y) dy. Note that

Ki(x) =n"1Y" Ki(x, Xpn)

m=1

is an unbiased estimate &f; f(x) for all x. If using a convolution kernelK (x, y) =

K (x —y). For waveletsK (x, y) = }_; ¢(x — j)¢(y — j), whereg is the father wavelet.
We impose the following conditions on the kern€l First, there exists a compactly

supported? e L? such that

Q(x) = 0 when|x| > go (5)
and

K (x,y)|<Q(x — y)forall x andy. (6)
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Next, K satisfies the moment condition of ordér
f|x|”+lQ<x)dx < o0
and
/K(x,y)(y—x)kdy =dq fork=0,1,..., N. (7)

Conditions B)—(7) are met in the wavelet case if the mother wavélditasN vanishing
moments.
As in Hall et al.[19] define the “innovation” kernel by

Di(xv y) - Ki-'t‘l(xv y) - Ki(-x7 )’)

fori =0,1,... .LetD; f be the integral operatdt; .1 f — K; f. Then, similarly toX;,
an unbiased estimator &f; f (x) is

Di(x) =n"t " Di(x, Xpn).

m=1

For the wavelet kernel defined abou€,and D; can be associated with the projection
operators of the multiresolution analysiS(x, y) is the projection operator on to the space
spanned byp and its integer translate®; (x, y) is, then, the operator projecting on to the
“detail” spaces of multiresolution analysisandD; perform similar tasks in the convolution

case: namely, projection operators on to coarse and detail spaces. This innovation kernel
will be used to define the density estimator.

3.2. Block thresholded estimators

The densityf may be written as

f(x)=Kof(¥) + Y Dif(x). ®)

i=0

The linear partKo f (x), will be estimated by?o(x). The remaining part will be estimated
using thresholding methods, and hence is nonlinear in nature.

Let ¢ andyr be compactly supported father and mother wavelets satisfying condiipns (
(7). We shall writeg; for ;. Then unbiased estimatesigf = (f, ¢;) andf;; = (f, ¥;;)
are

&j =n—1Z¢j(Xm) and Bij =n_121//,'j(xm)-
m=1 m=1

Note that the linear parKof(x) can be written akof(x) = [K(x,y)f(y)dy =
> #j¢;(x). The estimate ofKof(x) is then Ko(x) = Y ;8;¢;(x) = n~ 1Y,
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K (x, X,,). Similarly, note that

Di(x, y) = Kisa(x,¥) = KiGr, ) = 30, 0o ().
J

Therefore, in a manner similar to that used abovek@if (x), D; f(x) = Z; ﬁi.,xp,.j (x).

The estimate of the detail pai; f (x) is, then,D; (x) = Zj ﬁi,‘%,‘ (x). We can then rewrite
(8) as o

f) = Z % (x) + Z D Bt (), ©)

i=0 j

and estimated) as

R
foo) = Za,qs (x>+ZZﬁ,,w,,<x> Ko(x) + ) Di(x), (10)

i=0 j i=0

whereR s a finite truncation value for the infinite series.
An adaptive density estimator will be constructed by applying a block thresholding rule
as follows. In each resolution levigkhe indiceg are divided up into nonoverlapping blocks

of lengthl/ = log n. Within this block, the average estimated squared biéijeB(k) [3,2,
will be compared to the threshold. HerB(k) refers to the set of indicgsin block k.
By estimating all of these squared coefficients together, the additional information allows
a better comparison to the threshold, and hence a better convergence rate than the more
conventional term-by-term thresholding estimators. If the average squared bias is larger
than the threshold, all coefficients in the block will be kept. Otherwise, all coefficients will
discarded. )

LettingBjx =171 > e ﬁizj and estimating this with;; = /1 > e 31'/- the block
thresholding wavelet estimator bbecomes

foo) = Zoc,qs,(xHZZ > Bl (Big > en”™h. (11)

i=0 k jeB(k)

This may also be written as
R
f) = Ko)+ Y Y D) (x € i) (Bigx > en™),
i=0 &
whereD;j (x) = ZjeB(k) Bijlpl-j (x) is an estimate oD f (x) = ZjeB(k) ﬁ,.jz//ij (x), and

Jaw= |J tx:yy0 £00 = (suppy;;).

JEB(k) JjeB(k)

Note that if the support of is of lengtha, then the length of i is (o +1 — 1)/2' <21/2",
and these intervals overlap each other at either end by2- 1).
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The equivalent, block-thresholded convolution kernel estimator is

R
f0) = Ko@)+ Y Y " Di0)I(x € L)l (Aig > en™), (12)

i=0 k

where thel;; are nonoverlapping intervals of length’2, andA;; = (1 i (D; f(x))?dx,
is estimated byl =11 i D?(x) dx.

Remark. As mentioned inthe introduction, block size plays a crucial role in the performance
of the resulting block thresholding estimator. It determines the degree of adaptivity. The
block size off = log n is chosen so that the estimator achieves both the optimal global and
local adaptivity.

Remark. Hal et al.[19] choose block siz&= C(log n)? and show that the block thresh-
olding estimator is adaptively rate optimal under the global mean integrated squared error.
However, as shown in the next section, this choice of block size is too large to achieve the
optimal local adaptivity.

4. Local and global adaptivity

The global minimax rate of convergence of an estimate of a density in a Besov class
F5 (M, L) to the true underlying density i& (2 ~2/+1). This minimax rate of con-
vergence can be achieved adaptively without knowing the smoothness parameters. For the
wavelet kernel density estimatdt) with block lengthl = log » and appropriate choice
of series truncation parametBy the optimal rate of convergence is achieved adaptively
over the spacé’sl(Fg’q (M, L)) N Bso(A), WhereBy (A) is the space of all functiorfavith
I flloo < A.

Theorem 1. Let f be the wavelet kernel density estimatbt) with the block lengtti =
log n, R = [log,(Dnl~1)] where D is a constant given {85), and

_ 2
e = 400897 (Cal QI + 121h¢; M)

whereC; andC» are the universal constants from Talagra2d]. Suppose that the wavelets
¢ andy are compactly supported and r-regular with> max(s1, N — 1) (i.e., conditions
(6), (7) with order N — 1, and(5) are me}. Then there exists a positive constant C such that
forall1/2 <s < N,g>1,ands; —s > s/ (2s + 1),

_sup E|f = fI5<Cn /@D,
feVsy (F3 ,(M,L)NBoo(A)

In this theorem (and the rest in this section) the function space paraméetérandA are
arbitrary finite constants. The bound consté@nis dependent on them as well as on the
choice of the kernel functiol (and hence oQ).
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The convolution kernel estimatat?) also achieves the global, optimal minimax conver-
gence rate with this smaller block length, although over a different space of irregular Besov
functions.

Theorem 2. Let f be the convolution kernel density estimatb®). Let/, R and ¢ be as
in theoreml. Let 7,, be a sequence of positive numbers such that fot all 0, 7, =

O (n*+Y@N+D)y |f K satisfies(6), (7) with order N — 1, and(5), and1/2 < s < N, then
there exists a positive constant C such that

sup sup E|llf — flI3<Cn=2/@+D,
d<N,t<1, feVdf(Fiq(M,L))ﬂBoc(A)

Here, it can be seen that the number of discontinuities that can be handled by the estimator
is on the order of the sample sin¢o a power.

One of the differences between Theorems 1 and 2 and those set forth in Ha[lL&f al.
is in regards to the block lengthIn this paper] = log n is used instead of their value
(log n)2. This choice of block length is crucial in estimators of the form given in the above
two theorems. In fact, larger block lengths are unsatisfactory in that they preclude local
convergence optimality.

When attention is focused on adaptive estimation there are some striking differences
between local and global theories. Under integrated squared error loss there are many
situations where rate adaptive estimators can be constructed. When attention is focused on
estimating a function at a given point rate optimal adaptive procedures typically do not
exist. A penalty, usually a logarithmic factor must be paid for not knowing the smoothness.
Important work in this area began with Lep§RB] where attention focused on a collection
of Lipschitz classes. See also Brown and Lidy; Efromovich and Low[18] and Lepski
and Spokoiny25]. Connections between local and global parameter space adaptation can
be found in Lepski et a[24], Cai[3] and EfromovicH17].

We shall use the local Holder clasB (M, xo, 0) defined in Section 2 to measure lo-
cal adaptivity. The minimax rate of convergence for estimaifrigg) over A*(M, xq, )
is n=2/@+D | epski[23] and Brown and Low2] showed that in adaptive pointwise
estimation, where the smoothness paramgisrunknown, the optimal adaptive rate of
convergence over* (M, xg, 9) is (n~tlog n)%/&+D By using a block length of =
log n in the wavelet kernel estimator, this optimal adaptive rate of convergence is achieved
simultaneously over a range of local Holder classes.

Theorem 3. Let f be the wavelet kernel density estimat(¥l). Let R,/ and c
be as in Theoreni, and supposep and s are bounded. IfLl/2 < s < N, andy has
N — 1 vanishing momentshen there exists a positive constant C such that foraniy
the support of f

sup E(f(x0) — f(x0)2< C(log n/n)>/@+D)
feA® (M,x0,0)NBoo(A)

By combining Theorem4 and3 we see that the block thresholding density estimator
(12) adaptively achieves not only the optimal global rate of convergence over a wide range
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of perturbed Besov spaces, but simultaneously attains the adaptive local convergence rate
as well.

The optimal global and local adaptivity cannot be attained if a larger block size is used.
With a block length of order larger than lag(for example/ = (log n)?), the global rate
may still be attained, but the local rate will not:

Theorem 4. Let f be the wavelet kernel density estimagd). Let R, [ and ¢ be as in
Theoreml, and suppose andy are as in Theorer8. If 1/2 < s < N and! = (log n)**"
for somer > 0, then for somey in the support of f and some constant C

sup  E(f(x0) — f(x0)2=C(log n/n)?/ @+ (log n)2s/ @+,
FeA (M ,xo,0)

5. Simulation results

In this section we compare the block thresholded wavelet estimator from this paper with
various other estimators via a simulation study. We will refer to the estimatbt)egitnply
as DenBlock.

The threshold: supplied by the theorems for DenBlock is useful for theoretical pur-
poses, but it is not practical for implementation. Since the thresholding in the estimator is
essentially a bias-variance comparison, we keep the estimated wavelet coefficients when the
average squared bias of the coefficients in a block exceeds the variance of those coefficients.
Thereforeg is replaced with an estimate of the variance of the coefficients in a block. This
variance is approximated by forming a pilot estimate of the derisityd evaluating it at
the center of the block.

Two of the competing estimators examined come from Cai and Silvef@hahhese esti-
mators, NeighCoeff and NeighBlock, are wavelet estimators where the comparison against
athreshold is not based on a single coefficient (as is done in VisuShrink, for example) or on
a single block of coefficients (as is done with DenBlock). Rather, neighboring coefficients
or blocks are considered when making the threshold comparison for a particular coefficient
or block. These estimator’s were devised for nonparametric regression settings, but they are
easily modified to the density estimation problem at hand.

For NeighBlock, the block length is= log n/2. However, the variance and squared bias
used for thresholding is computed not just from the current block, but includes information
from its neighbors to the immediate left and right (when possible). The total block size used
for making the thresholding decision is lagwhen the neighboring blocks are added in.

The variance of the coefficients in the extended block is replaced by the pilot estinfate of
evaluated in the center of the block as before.

NeighCoeff is NeighBlock with block length = 1. The extended block is of length
3. Again, the appropriate substitution is made in the threshold comparison as before. For
more information on these estimators and the thresholds used see Cai and Silf@rman
and Chickerj10].
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Fig. 1. Test densities. Solid line &aw dashed line isnixnorm and dotted line is the double exponential.

Additionally, other estimators were also looked at. Biased cross-validation and unbiased
cross validation kernel estimators with normal and triangle kernels were all implemented.

These estimators were compared against one another in terms of mean squared error on
the three test densities given in Fig.9awis a combination of sums of uniform random
variablesmixnormis a mixture of three normal densities, and the last is a double exponential
random variable. Formulas for these densities are in Chifk@n

Results of simulations for some of these estimators on various sample sizes are given
in Tables 1 and 2. In each table, the MSE of the estimate is given from a repetition of
size 60. Only one of the 4 kernel methods is reported here, the unbiased cross-validation
normal (UCVN) kernel estimator. The other kernel estimators mentioned above generally
performed worse than this one, and the results are not included hef@0$f® additional
simulation results.

Table 1 show MSEs for samples sizes= 20, 50, 100, 500, 1000 and 2000. Fasaw
the wavelet estimators have lower MSEs than UCVN with the exception of sample size
100. Once the sample size hits 100, all three of the wavelet estimators have the same MSE.
Examination of the thresholded coefficients reveals that for large sample sizes, all the detail
coefficients calculated are 0. Since the coarse coefficients are the same for each wavelet
estimate, the wavelet estimates are identical as well. At the lower sample sizes, NeighCoeff
seems preferable, then DenBlock. This agrees well with the simulation results from Cai and
Silverman[9].

For themixnormdensity, the UCVN is generally the best. This is perhaps not surprising
given that the kernel for UCVN is from the same family as the density being estimated.
Again, NeighCoeff is the best of the wavelet methods, while there is no clear distinction
between NeighBlock and DenBlock.

On the final density, the double exponential, the UCVN is the worst of the estimates.
The three wavelet estimators are approximately equivalent with the exception of the lowest
sample size.

Since the wavelet estimators are approximately equivalent in terms of MSE in large
sample sizesn(>>50), it is instructive to examine how the estimators work with respect
to small sample sizes. The results are given in Table 2. Here, the sample sizes-are
10, 15, 20, 25, 30 and 40.
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Table 1
MSE for saw, mixnorm and double exponential densities

Densityn DenBlock NeighBlock NeighCoeff UCVN
Saw

20 10.8811 11.3950 9.15801 15.5913
50 5.2177 5.5801 5.2177 7.0664
100 5.2608 5.2608 5.2608 3.9586
500 1.1692 1.1692 1.1692 1.4283
1000 0.6061 0.6061 0.6061 0.8280
2000 0.3317 0.3317 0.3317 0.4938
Mixnorm

20 23.7321 17.3795 12.7059 13.3004
50 5.8260 5.8558 5.8260 6.9934
100 6.0237 6.0237 6.0236 4.2097
500 1.4189 1.4189 1.4189 1.2991
1000 0.7400 0.7340 0.7400 0.6941
2000 0.4458 0.4458 0.4458 0.4135
Dbl exp

20 16.8195 15.0414 13.7677 20.1013
50 6.9654 6.7317 6.7394 9.6706
100 5.3400 5.3204 5.3203 5.3918
500 1.4070 1.3979 1.3975 1.8868
1000 0.9596 0.9577 0.9576 1.1357
2000 0.6773 0.6763 0.6763 0.7454

For saw; NeighCoeff is clearly the best estimator. It is only surpassed by UCVN at the
very low sizen = 10. NeighBlock has lower MSE than DenBlock for the lower sample
sizes, while DenBlock takes the lead for the larger sample sizes.

As with the sample sizes in Table 1, the UCVN is generally best at approximating
mixnorm NeighCoeff is the next best, while DenBlock and NeighBlock follow the same
relation as they did fosaw

On the double exponential, NeighCoeff is clearly best over the sample sizes in Table 2,
followed by NeighBlock, DenBlock, and lastly, UCVN.

The theorems in this paper show that DenBlock attains optimal convergence rates asymp-
totically. For the sample sizes considered here, however, NeighCoeff seems superior in
terms of MSE. In particular, NeighCoeff is better than DenBlock at low sample sizes. The
distinction between the wavelet estimators becomes blurred as the sample size increases.
This suggests that NeighCoeff should be used for sample sizes under 50, and any of the
three estimators are acceptable for langer

Some example reconstructions are given in Figs. 2 and 3. Fig. 2 shows a comparison of
DenBlock and UCVN with a sample size of 100 on #avdensity. DenBlock does well
at attaining the peaks and valleys of the density. UCVN clearly shows a density with four
modes, but does not capture the same highs and lows that DenBlock does. Fig. 3 is a typical
reconstruction of thenixnormdensity. Here, DenBlock does a good job at estimating the
peak on the left, but is too irregular over the central smooth portion. UCVN underestimates
the peak, but outperforms DenBlock on the smoother portion of the density.
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Table 2
MSE for saw, mixnorm and double exponential densities
Densityn DenBlock NeighBlock NeighCoeff UCVN
Saw
10 42.8131 32.9332 25.6171 23.3807
15 26.4683 21.5793 18.2141 21.6358
20 11.1075 10.1879 8.0783 16.4509
25 7.5533 8.7975 7.5533 13.9911
30 7.1597 7.3624 7.1597 10.8101
40 5.9266 6.0048 5.9266 9.1613
Mixnorm
10 51.7412 35.8192 24.5506 22.5039
15 25.4060 20.9517 17.5232 17.0204
20 20.2607 17.8310 14.4943 14.3062
25 12.6726 12.6614 11.2159 10.2094
30 8.3123 9.7426 8.3286 9.2793
40 7.2358 7.8616 7.2358 8.2652
Dbl exp
10 44.4253 29.4158 22.4899 24.6614
15 27.8926 17.7815 14.9310 19.5591
20 17.5577 14.0685 12.6403 17.4856
25 11.4431 9.8476 9.7666 13.3411
30 9.9258 9.2269 9.1675 12.9358
40 8.7121 8.1441 8.1549 12.7721
1.0

0.8

0.6 1

0.4

0.2

0.0 1

-1 0 1 2 3

Fig. 2. Typical reconstruction afaw » = 100. Solid line is DenBlock estimate, dashed line is UCVN estimate,
and dotted line is actual density.

6. Proofs of theorems

In this section, proofs are given for Theorems 1, 3 and 4. Theorem 2’s proof is omitted
due toits similarity to the proof of Theorem 1. Before beginning, several preliminary results
are necessatry.
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Fig. 3. Typical reconstruction @hixnorm» = 100. Solid line is DenBlock estimate, dashed line is UCVN estimate
and dotted line is actual density.

6.1. Preliminaries
First, a simple lemma based on Minkowski’s inequality:

Lemma 1. LetYq, Yo, ..., Y, be random variables. Then
£(n) < s
i=1 i=1
Second, a theorem from Talagra2d] as stated in Hall et aJ19].

Theorem 5. LetUs, Uy, ..., U, be independent and identically distributed random vari-
ables. Lekq, €2, ..., &, be independent Rademacher random variables that are also inde-
pendent of thé/;. Let G be a class of functions uniformly bounded by M. If there exjsts v
H > 0such that for all

supvarg(U)<v,
geG

n
ESup)  eng(Un)<nH.
geG m=1
then there exist universal constartis and C» such that for all1 > 0,

n B , s o
P [SUF’(”lzg(Um) - Eg(U)> >X+C2H:| <o e[ Brhnam]

8eG m=1

Finally, a lemma from Hall et a[23].
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Lemma 2. If K (x, y) is a kernel satisfying conditiofl), 0 € L2, and J is a compact
interval, then

A 2 2
E [ (Rot) = Kof ) dx<If Il Q181 1/n.
and
A 2 25i
E [ (5160 = D) dr <1 1012 11/,

where|J| is the length of the interval.J

6.2. Proof of Theorem 1

We will prove this theorem foy = oco. For general > 1, the results will hold since
B3, C B Leti; be the integer such that 2 n?/@+1 < 21, Minkowski's inequality
implies that

2 by ?
EIf = f13 < 4E |Ro— Ko +4E ) [ Dicl (i)l (Bix > en™) — Dif}
i=0 L & 2
R 2
+4F Z |:Z DI (Jix)I (Bip > Cn_l) — Dif]
i=ig+1 L & ’
2
o0
+4 Z D;f
i=R+1 )
=TN+T+T3+14
T1 is bounded by Lemma 2:
Ti<Cnl. (13)

Each of the remaining piecé&% will be treated individually in their own sections.

6.2.1. Bound o>
To bound the nonlinear pafp, note that Lemma 1 and Minkowski's inequality give

1/2\ 2

is

2
n<C | E/ (Zﬁik(x)l(éik >cn—1)—D,-f(x)> dx
k

i=0
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For a fixedi <iy, the orthogonality of wavelets gives

2
E / (Z Dix()1(Bjx > en™) — Dif(x)) dx
y ~ 2
<& [ (bin - Dis ) as
VEY [ Duf )P dx 1< 2™
v ik

+EY | (Dif@)?dx 1(Big<en™HI(Bjx > 2en™)
k Jik

= Tor1+ Too + Ts.

Asin Hall etal.[19], T>1 is bounded by Lemma 23, is bounded by the size of the indicator
function and the fact that the number of intervals overlapping the suppdis afo more
than a constant times 2/

T21, To2<C2 /n.

To boundTz3, the following lemma from Hall et a[19] is useful

Lemma 3. If [, (Dix f (x))?dx <lc/(2n) then

~ 2 N 2
/ (D) dx>te/n| < / (D) — Duf ) dx>008e/n .
Ji Jik

and if/f[k (Dix f (x))?dx > 2ic/n then

~ 2 ~ 2
/ (D,-k(x)) dx<le/n' / (D,-k(x)—Dikf(x)) dx>0.16lc/n
Ji Ji

i

Using this lemma,
ta<E Y [ wurw?at ([ (buw - Durw) ax0a8em).
& Jik Jik

Using Young's inequality with), and the fact that the length of the interval is a constant
timesl /2,

/ (D f()2dx < / 1D f 12.dx
Jik Jik

< ClfIE Q42
So,

1/2
T23<Cl/2" Z P <|:/ (ﬁik(x) — Dikf(x)>2dx] 2\/0.16lc/n> .
Jik

k
(14)
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To bound the above probability, Talagrand’s theorem (Theorem 5) will be used. Similar to
Hall et al.

. 2 1/2
{ | (B~ Dire) dx}
Jik

=squ{ 12/ g(X) Dix(x, Xp)dx — E /g(x)D,-k(x,Xl)dx},
8¢ m=1

Jik

where
G = {/J g(x)Dix(x, )I(j € B(k))dx : IIgllzél}.
ik

Talagrand'’s theorem will be used with

M=2"210l2, v=IflecllQlf. H =1Qll2y/12lflloc/n.

and

=y0.16c/n — C2[|Qll2v/ 12| flloo/n > O.

The probability at {4) is then bounded by
. 2 2
P( [/1 (i) = Dif () dx} >i+ CzIIQ|I2\/12l||f||oo/n>
ik
<exp|-nC1[(2/1f 1=l QIZ) A (/@ 721012) ]}

For 0<i <y, constant and/ positive,
[ < (2L)_2||Q||‘11
25/(25+1)
" (VOI6: - CalQ12y/T220) 1) 1013

implies
21 (111 Q13) < 2/ (2721 0112) (15)
Thus, for large enough,
12
P (U (D,-(x) - D,-f(x))zdx} >,/o.161c/n> <cn, (16)
lik

whered is the constant

€1 (V016 ~ Col QIovI2A)

AllQl3

andc s large enough to make > 0. Putting (4) and (L6) together with the fact that the
number of intervald;; that intersect the support bfs no more tharC2' /1,

0=

To3<Cn°. (17)
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All pieces are now available to bourfd.

— . 2
Ig
I, < C Z (Tor+ T2 + T23)l/2]
Li=0
- " 2
<C Z((zf/n) +n—5/2)]
Li=0
< C (2"‘;1_1 + iszn_(s)
—C 'n—zs/(zs+1) + (log, nl/(2s+1))2n—5] _ (18)
6.2.2. Bound o3
As with T» before, write
R 5 L2\ 2
T<C| ) {E / (Z DixG)I By > en™) — Dl-f<x>) dx} :
i=ig+1 k

For a fixedi, iy + 1<i <R,

2
E / [(Z Dix ()1 (x € Ji)1 (Bix > cn—1)> - Dikfoc)} dx
k
<E). [ (Dur) - Dikf(x))zdx I(Bie > en™HI (Bix > ¢/(2n)
k Jik
N 2 A
+EY [ (B~ Dis ) dv 1B > en D1 (B </ @)
k Jik

FEY [ Duf o) dx 1Bu<en™1 By <2en™)
v ik

+EY | (Dif(x)?dx I(Bix <en™HI(Bigx > 2cn™)
k Jik

= T31+ 132+ 133+ T34.

By Lemma 3,
~ 2 ~
Tso = Y E /J (Do) = Dix f ()" dx 1 (B > en ™)1 (Bu <c/(2n)
k ik

A 2
< ZE[ | (Buo = Dus ) as
k 1
A s 12
- ({/ (D,-k(x) — Dikf(x)> dx} 2\/0.081c/n> :|
Ji
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To bound this, we use the fact that for any nonnegative random vaxable
o
EY?I(Y > a) =a’P(Y > a) +/ 2yP(Y > y)dy.
a

The integrals irii3, are of this form with

. 2 1/2
Y = [ / (D) ~ Dt ) dx] >0
Jik

anda = /0.08¢/n. Using Talagrand’s theorem as was done for the piege

(y — C2H)? Y= CoH
I fllsollQNI3 27211012

Py > y)gexp|:—nC1<

and therefore

N —
IfllscllQlZ 2720l

> — CoH)? — CoH
—i—/ 2y exp| —nCq v 2 )2 A yi/Z 2 dy
a IflcllQllf  2721Ql2
= Tz321+ T322.

Foriy; + 1<i <R and(a — C2H) positive
201 _ L) 72|Q|f

n («/—oo C2llQll2v/122L) )IIQII§

implies (@ — C2H)?|| fII:HIQIIT2 < (a — C2H)271/2 Q|15 % Note thata — CoH > 0
implies that at (15) is positive as well. Therefore,

(V008 — Call Ql1ovI2A)

_ 2, _
EY2I(Y > a) < azexp|:—nC1<(a Cofl)y”  a CZH)}

(19)

T321 < Cl/nexpy —Cil

Al Q|2
< Cn"Llog n, (20)
wherey is the constant
€1 (VOO — €2l QIovT2A)’ on
Y=

AllQlf

andc is large enough to makg positive. ForTszy, letag = || fllsoll QI Ql;*277/% +
CoH > 0. Then, ifa <ao,

o = CaH) / ( CzH)
2y ex 2y ex Ci1=——)d
/ ’ p( ||f||oo||Q||1> v Cimisr,)

T3221+ T3222.

T322
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To boundTsy21, note that by a change of variables and increase in upper limit of integration,

(a— CZH)2>

Ts221 < | fllsollQl2n~2CT exp| —nCy
I fllsll Q112

00 2
y
+/ 2C,Hy(1/y) exp| —nci——— ) ay. 22

oo YA p( " 1||f||<>o||Q||§) g &2

The first term on the right of22) is bounded byCrn~1~7, wherey is the constant inX1).
To bound the second term, use integration by parts.

00 y2
2C,Hy(1/y) exp| —nC1————— | dy
/a_czH I fllocll Q112

C2H |1 flloll QI3 exp(_n oo CzH)Z)

— 1— >
a—CyH nCi I fllocll QII2

_/00 CzHllflloollQllfiexp ne— 2 Nay
a—CaH nCy  y? 1 fllsoll Q117

Since the integrand in second term on the right side above is strictly positive, this integral
is also bounded bg'n—?~1. Using integration by parts of222,

T3220<C (n_l + n_l 2 |Og n/n+ 2in—2> e—nd/Zi’

whered is the constant

d=Cillfll=cl QI3/11Q13. (23)
If a > ag, thenTz2< T3202. Therefore,

Ts2 = Y (Ts21+ T3221+ T3229)
k

< 2'/logn <n_7"1 log n)

+2'/log n (nl +n"Y /2 logn/n + 2fn2) e /2 (24)

To boundTzsy, observe that the only difference between and 734 is the range of the
indexi. Therefore, by repeating the argument o8, the bound forTz, is the same as at

€Yy

T34§Cn_5. (25)
This bound requires that
20)72|1011%
2Rlog n/n< (L) 7ol = D, (26)

2
(Vo1& - Call Qllzv/122) ) Q13

which implies the condition atL@).
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The bound orf3 is found in a similar manner td.g).

- 2
R
T3 < C| > (Tsi+ Tsa+ T3z + Taa)'/?
_i:i_;'“‘l
R 2 R 2 R 2
1/2 1/2
< C Z (T + Ts)'? | + Z Ty | + Z Ty
i=ig+1 i=is+1 i=ig+1

Observe that for <R,
Zie—nd/zi <zlee—nd/zR < Den(log n)—le—dlog n/De _ Den(log n)—ln—d/D(..

Therefore, 2:-74/2' is |ess than or equal to some constant i D.. This condition is met
if

N2
¢>(032) 7 (CallQlzv/I2+ [ Qlacy V7). (27)
Therefore, using the bound f@k2 given at @4),
R 2
> 17| <c(n+n"togn). (28)

i=is+1
Using the bound fof34 found at @5),

2

R
3 14%| < (logyR)*n". (29)
i=igt+1

In Hall et al.[19] it is shown that

2
R
Y. T+ Te'? | <cn 2/@HD, (30)
i=ig+1
Therefore, using48)—(30),
T3<C [n*ZS/ @+ 4y + (log, R)® n,(;] . (31)

6.2.3. Bound oy
The final piecel} is easily bounded

2
00 00

Tp=C Z Difl| =C Z Zﬁlzj (32)

i=R+1 2 i=R+1 j
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Sincef = f1+ f2wherefi € By andf; € B:sl+l/2)*1,oo C B ",

ﬂij = ff.(x)'pij(x)dx
= /(fl(X)+fz(X)) Wij(x)dx
= Puj + Baijs
and @2) becomes
InsC |: > > (ﬁi’j + ﬁ%ij>:| :
i=R+1 j

From the bounds on wavelet coefficients given 3t §nd @), Zj ﬁij<C2*2”, and
Y, ﬁ%,.j < C27261-9) Therefore, usink = D.n/I,

Ta<Cn~2/@+D (33)

provided that; — s > s/(2s + 1).

6.2.4. Determination of constantsd, D, and ¢
Using the bounds froml@), (18), (31), and @3)

Elf-fI2 < cC [n—zf/@”l) + (log, R)?n ™" +n_7].

Fory, n=7" <n=%/@+D for all % < s < Nifand only if y>2N/(2N + 1). The above
constraintis metforalf inthe space interestif the value of the threstwgiset accordingly:

2
2N
c>A(0.08)71 (Cz\/1_2||Q||2 + ||Q||1,/m) : (34)

Note that the condition al@) and (L5) thata — Co H and/ be positive are met if34) holds.
Sincec must satisfy both34) and @7), and(2L) 1 <|| f |l < A, the value may be set as

2

1
c=A(0.0871 <C2\/1_2||Q||2 +11Qll1,/ C—l) .

2
D = 11017* (1212L)(Cov/24| Ql2(AY2 — L72) + @) 2| 0l c; )
(35)

Let
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The value for the constam,. can then be taken to b8, = D~L. Ford, note thats — y is
a positive constant, so

(log, R)2 n 0= (log, R)Z n"In= 0= < cp2/@+D),
Therefore, using the bound forat 27),
E|f — f”§< Cn—Zs/(Zs—&-l)’

and the Theorem 1 is proved.

6.3. Proof of Theorem 3

To simplify the proof, assume thats in A° (M) rather than in the local Holder classes
A% (M, xo, 0) for pointsxg in the support of. Write f(xp) — f(x0) as

fxo) = f(xo0) = Z (8j — ;) ¢ (x0)

J

lg

+ Z Z Z (Bij%j (x0)I (Bix > en™h) — Bij¥i (xo))
i=0 k jeBk)

R

+ 22 Y (B ol Bi = e = fu;00)

i=i;+1 k jeB(k)

o0
+ D D By o)
i=R+1 j
= L1+ Lo+ L3+ Lg,

wherei; is as before. Then
7 2 2 2 2 2
E (f(xo) _ f(xo)) <C (ELl +‘EL2+ EL2 + EL4) .
In each of these sums, the total number of indjeelere the support af;; or ¢ ; intersects
the pointxg is no more than @ + 1, wheregg is as in 6). This fact will be used several

times in the following proof.

6.3.1. Bound ori
Recalling that/ $? = 1 and thatp is bounded,

EL? < CEY [(3) — %) ¢;(x0)]”
J
< CIPIZEY (3 — )

J
_ CE Z[ (3 — 27)? $2(0).
J
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Using the orthogonality of the ;,

2
EL? < CE/ (Z&jd’j(")_“f‘ﬁ/(x))
j

. 2
- CE/ {Ko(x) . Kof(x)} dx
By applying Lemma 2,

EL}<Cn 2. (36)

6.3.2. Bound oriy
To boundL», break it into the following sums:

|:ZZ Z (ﬂu z) o) I (Bi > en™h)

i=0 k jeB(k)

EL3

i=0 j
= E(Lp1+ L2)?<CEL3, + CEL3,.
To boundL»1, first apply Lemma 1:

‘ 2
EL} < E |:ZZ > (Bij - :Bij) Vij (o)l (B > C"_l):|

i=0 k jeB(k)

j 2
+ Z Z Bijwi (x0) ! (Bix <cn_l)i|

o\ 1/272

i=0 k jeB(k)

Z |:Z Z (/’)z/ ﬁij) wij(XO)I(éik > cnl)j|

12\ ?
< Wi 22’/2{E2(,, ,)} : (37)

i=0
Now, E " ;(B;; — B;)? is of ordern—1
EZ(BU - ﬁij)z = Zvarﬁij
J J

< D _on”hvary(X)
J

Cnfl/ lﬂl-zj(x) dx. (38)
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Using this result,37) becomes

5 is P12 1 1/2
ELy < €| D272 (n7Y)

i=0

2

< Cn—2v/(2v+l).

The bound forLy; is found by breaking it in to two pieces.

Ly = ZZ Z ﬁijl//ij(xO)I(éik <en HI(Bix > 2en™h

i=0 k jeB(k)

+Y D0 D" B0 I (Bix <en™HI(Bi<2en™h

i=0 k jeB(k)
= Lop1+ Lo2o.

The piecel.»21 is bounded using Talagrand’s theorem. First, note that by Lemma 3 and the
fact thatf € A°(M) = B <C2726+1/2 we have

E Z Z ﬁp,"//,‘j(xo)l(éikécnil)I(B,-k > 2en™ Y

k jeB(k)

SCE | ) 27222 llool (Bix <en™HI(Bi > 2en”™Y)
k jeB(k)

<22 Z Z P (/ (ﬁik(x) — D,-kf(x))zdx > 0.16¢log n/n) )

k jeBk)

Then
N 2 .
P (/ (D,-k(x) - D,-kf(x)> dx > 0.16¢log n/n) <cn 9,

whereJ is as before. Therefore, using this bound on the probability and Lemma 1,
: 272\
Ls
ELS) < | Y | ED. D> Bijwbijo)l (B <en HI(Bi > 2cn™ 1)

i=0 k jeB(k)

. 2
Ly
< C (Z 2—1'.8‘”—(5/2)
i=0

< cn .
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To boundL22», observe that
2

E Z Z ﬁijwij(XO)I(éikgcn_l)I(Bik<2Cn_l)

k jeB(k)

SC2WIR Y. Y BAI(Bix<2mn™).

k jeB®)
Now, Bix < 2cn~ 1 implies that
2
> D Biscin.
k jeB(k)
By virtue off being inA* (M),
2 —2i(s+1/2
D D pyscTEeTE,
k jeB(k)
Therefore,
SN BrBr<2enh<c (}fl log 1 A 2*21‘(”1/2)) ,
k jeB(k)

and so

E|>" 3" Bijhi; o) (Bix <en ™M1 (Big <2cn™?)

& jeBk)
<Cc2 (n_l logn A 2_2i(3+1/2)) .

Therefore, the bound ohyy; is (after an application of Lemma 1)

j 2
gy . 172
Engz <C [Z 2i/2 (n‘llog A 2—2!(s+1/2)) / }
i=0
-1 —2i(s+1/2) - _1\1/@2s+D) o
Now,n *logn<2 whenever 2< (n(log n) ) . Therefore, lettind, be
the integer such that2< (n(log n)~2)" @Y < 2ix+1,
i ; 2
EL%ZZ <C Zzi/z Iog n/n+ Z 2[/22—[(S+l/2)
i=0 i=i+1
('Og n)Zs/(25+l)
< C .

n

The bound or£ L3, is therefore

C (n—(s + (n_llog n)ZY/(ZH-l)) ,
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and hence

. 25/(25+1)
EL2<C I:n_‘) + <n—1 log n) ‘ } . (39)

6.3.3. Bound ori3
As with Ly, breakL 3 into the following parts:

R
E Z Z Z <[}ij _ﬁij) lpij(xo)l(éik >cn Y

i=i;+1 k jeB(k)

EL3

R 2
+ Y YY" Bl o (B <en™h)
i=i;+1 k jeB(k)
= E(La1+ L3)?<CEL3, + CEL3,.
Additionally, L31 must be divided as well.
R 2
ELy <cel Y % (/}ij —ﬂij) Wi o) [ (B > en™HI (B > en™1/2)

i=ig+1 k jeB(k)
2

R
A (/?,.j—ﬁ,.j) Vi o) [ (Bix > en™ HI (B <cn™Y/2)

i=ig+1 k jeB(k)
2 2
= CEL311+ CEL312.

To take care of 311, notice that

E{Y > (Bij - 5ij) Vi) (Bix > en™ DI (Big > cn™1/2)

k jeB(k)
2
éC Zznc_lBikE Z (Blj — ﬁlj) l//,j(xo)
k jeB&)
Asin (38)
2
A . A 2
E| S (By—by)vseo | < 2WIZE Y (B - 8;)
jeB(k) JEB(K)
< C2/n.
Since

JEBK)
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the bound forE L3, then follows from an application of Lemma 1

X 2n 2 v2)?
EL3); < C Z (Z T;Z_ZI(SH/Z))
i=ig+1 k
2

R
< C Z 2—is
i=ig+1
< Cnfzs/(Zs+l).

To boundEL3,,, Talagrand’s theorem will be used. To begin, note that by Lemma 3
2

Z Z <Zgij - ﬂij) lﬁij (XO)I(éik > Cn_l)I(Bik <Cn_l/2)

k jeB(k)

SC2WILEY . > (B,-j - ﬁ,;,')zué,-k > en HI(Bi<cen™1/2)

k jeBk)

<C2EY. /J (D)~ Dif0)) d
k ik

b </ ([),»k(x) _ D,-kf(x))zdx ~ 0.08log n/n)
Jik

=C2 T32.

This is bounded just a%s32 was at 24). The number of indicek is here no more than a
constant, giving a bound of

c2 |:n_7'_1log n—+ <n_1 +nY /2 logn/n + Zin_2> exp( r;cj)i|

wherey is as in 1) andd is as in @3). Therefore, repeating the argument for the piége
at (28),

EL3,<C(n™" +n1R?).

Only L35 still needs bounding.

R
EL , <c| Y > B (x0)|
k

i=ig+1 k jeB(k)

R
<cf ) 2Pl et
i=ig+1

< Cn*Zb/(ZA‘l’l) .
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The bound forL3 is then

EL2<C (n—zy/ @+1) 4 n—“«’) . (40)

6.3.4. Bound o4
L4 is bounded much liké.3> was. The only difference is the range of the indexd the
lack of an indicator function.

2
EL; = E( D3> B0

i=R+1 k jeB(k)

cl > 2™
i=R+1

< Cn—25/(2§+l)- (41)

N

6.3.5. Determination of constantsd, and ¢
From the bounds derived &8), (39), (40), and @1),

E (f(xo) - f(XO))Z <C (n“s + (log n/n)®/@+D 4 n—v) .

As before, we neegand/ to be larger than 2 /(2N + 1) and @7) to hold, so

1
c>A(0.0871 (C2IIQ||2 + ||Q||1,/C—l>

will suffice, as well as imply the necessary conditionsy@ndod. This implies

2

E (f(xo) — f(xo))2 <C(log n/n)zs/(zs+1)

and the proof is complete.

6.4. Proof of Theorem 4

Suppose the block lengtiin the wavelet estimatod.() is taken to be of order larger than
log n, say! = (log n)*" for somer > 0. Then, assume that* is a density function with
one “detail” coefficientf}; ;,, whichis as large as possible, and no other non-zero coefficients
B;; overlapping the support af;, ;.. Outside this supportf* has sufficient mass to ensure
it integrates to one. This functiofi* is desired to be in the spact’ (M, xg, 6), so let

Birj = 276+ Leti’ be such that2 = (n/[)¥@+Y, and j’ an integer such that
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W (2" xo — j')|=¢" > 0 for some constant. Let

“
I

1/2
< sup E(f(xo)—f<xo)>2)

feA* (M)

WV

(EF 6o - Foa?)

|:E (Z(Bi’jl(é/ > c/n) = By (x0) + Z(&j — ;)¢ j(x0)

jeB’ J

R
+> > ( > (Bl Bix > ¢/n) — ﬁi,wi,»(xo))

i=0 k \jeBk)

om1/2

+> (Z(—B@,)wi,(xo))) :

i>R \ j

whereB’ is the block containing the nonzero “detail” coefficient, and the final sum is over
the remaining blocks. Since

(E(Y + Y X0AHY2=(EYHY2 - 3 (EXH?
for random variableX’; andY [19],

o\ 1/2

JjeB’

s> |E (Z(B,.,jl(é’ > c/n) — ﬁi/j)lpl-/j(xo))

o\ 1/2

-|E (Z(ac,- - aquj(xo))
J

o\ 1/2

R
~-|E > ( > By - ﬁ,-pwij(xo)) I(Bix > c/n))
=0 %

i JEB(k)

o\ 1/2

-|E ZZBijwij(xO))
i>R j
= Uy — Uy — U3z — Us.

Now, U>< C+~/n~1 by Lemma 2.U3 is easily seen to be bounded 6&/n~2/(2+1) py
noting that in the previous sectiongL3, < Cn=2/@+D E1Z <C((n”(log n)*")~1 +



E. Chicken, T.T. Cai/ Journal of Multivariate Analysis 95 (2005) 76—106 105

n~2/@+Dy and the other relevant pieces are zero. The valugsintld may be taken the
same as in the case whére= log n. Us < Cv/n—2%/(&+D by repeating the argument for
L4. Fory large enough (i.e., threshotdas chosen)/, + Uz + Us < Cv/n=2/(2+D | For
Ui,

. . . 1/2
U = [EGuy = By W2, o (B > ¢/m) + EZ 02 o)l (B'<c/m)]
2 2 A 1/2
> (Eﬂi/j,n//i/j/(xo)I(B’ <¢/mI(B gc/n))

R 1/2
= [B 02 o E1B < c/miB<c/@m],

whereB is the mean of the true squared coefficients in the block containing the nonzero
coefficient. By Talagrand’s theorem and Lemma 3,

EI(B'>c/n)[(B<c/(2n))<Cn”7,

wherey is as before. For suitablg this is less than}. Therefore, the expectation of the
indicators in the lower bound fdy; is at least 12. So,

1/2
U > (205, @0)

=C /(l/n)ZY/(ZH-l).
Therefore,
S=Uy—Up—U3>C,/(/n)>/@Z+D)

or
sup  E(f(x0) — f(x0))?=C(log n/n)*/@*D(log n)?s/&+D,
feA* (M, xq,0)
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