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Optimal false discovery rate control for
dependent data

Jichun Xie, T. Tony Cai, John Maris and Hongzhe Li
∗

This paper considers the problem of optimal false discov-
ery rate control when the test statistics are dependent. An
optimal joint oracle procedure, which minimizes the false
non-discovery rate subject to a constraint on the false dis-
covery rate is developed. A data-driven marginal plug-in
procedure is then proposed to approximate the optimal joint
procedure for multivariate normal data. It is shown that the
marginal procedure is asymptotically optimal for multivari-
ate normal data with a short-range dependent covariance
structure. Numerical results show that the marginal pro-
cedure controls false discovery rate and leads to a smaller
false non-discovery rate than several commonly used p-value
based false discovery rate controlling methods. The proce-
dure is illustrated by an application to a genome-wide asso-
ciation study of neuroblastoma and it identifies a few more
genetic variants that are potentially associated with neu-
roblastoma than several p-value-based false discovery rate
controlling procedures.
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1. INTRODUCTION

False discovery rate control, introduced in the seminal
paper by [1], is one of the most important methodological
developments in multiple hypothesis testing. Although the
original false discovery rate controlling procedure was devel-
oped for independent p-values, Benjamini and Yekutieli [3]
showed that one can control the false discovery rate by the p
value-based procedure under a certain positive dependency
assumption, and thus demonstrated that the p-value based
procedure can be adaptive to certain dependency structure.
The result has recently been generalized to a family of step-
up procedures that still control the false discovery rate un-
der more general dependency among the p-values [4, 5, 20].
When the proportion of the true nulls is relatively small,
these procedures are often conservative. To overcome this
drawback, adaptive plug-in procedures have been developed
by incorporating an estimator of the unknown proportion
of the nulls in the threshold of the previous procedures
[2, 5, 21].

∗Corresponding author.

The focus of these new procedures is mainly on con-
trolling the false discovery rate when the test statistics or
the p-values are dependent. However, efficiency issue has
not been studied in these papers. Efron [8] used a local
false discovery rate to carry out both size and power cal-
culations on large-scale testing problems. Efron [9] further
investigated the issue of correlated z-values and accuracy
of large-scale statistical estimates under dependency. Sun
and Cai [23] developed an adaptive multiple testing rule for
false discovery rate control and showed that such a proce-
dure is optimal in the sense that it minimizes the false non-
discovery rate while controlling the false discovery rate. In
particular, the marginal false discovery rate and marginal
false non-discovery rate are used as the criteria for multi-
ple testing, where the marginal false discovery rate is de-
fined as mfdr = E(N10)/E(R), the proportion of the ex-
pected number of nulls (N10) among the expected number
of rejections (R), and marginal false non-discovery rate is
defined as mfnr = E(N01)/E(S), the proportion of the ex-
pected number of non-nulls among the expected number of
non-rejections (S). Genovese and Wasserman [10] showed
that under the independence assumption, mfdr and fdr

(mfnr and fnr) are asymptotically the same in the sense
that mfdr = fdr + O(m−1/2), where m is the number of
hypotheses being tested. It will be shown in Section 2 that
such asymptotic equivalence holds in a more general setting.

Sun and Cai [24] considered the case where the under-
lying latent indicator variable of being the null follows a
homogenous irreducible hidden Markov chain and obtained
an asymptotically optimal rule under this hidden Markov
model. In this paper, we consider the problem of optimal
fdr control for general dependent test statistics. Considerm
null hypotheses and let θi take value 0 if the ith null hypoth-
esis is true and 1 otherwise. The null hypotheses can then be
written as H0

i : θi = 0 (i = 1, . . . ,m). To test these hypothe-
ses, one has a sequence of test statistics x = (x1, . . . , xm),
which represents a realization of a random vector X where

X | θ ∼ g(x | θ), θi
i.i.d.∼ Bernoulli(p), i = 1, . . . ,m.(1)

We first present an oracle decision rule under this gen-
eral model for dependent statistics. Our development follows
that of [23] by showing that the large-scale multiple testing
problem has a corresponding equivalent weighted classifica-
tion problem in the sense that the optimal solution to mul-
tiple testing is also the optimal decision rule for weighted
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classification. However, our development does not require
the monotone likelihood ratio condition for such an equiva-
lence. In particular, let I{.} or I(.) be the indicator function,
Sun and Cai [23] focused on a class of decision rules

S = {δ(x) : δi(x) = I {T (xi) < c}},

where T (xi) is a function of xi that can depend on unknown
quantities such as proportion of nonnulls and/or the distri-
bution of Xi. Sun and Cai [23] further assumes that T (xi)
has monotone likelihood ratio. It was shown that the optimal
solution to the weighted classification problem is optimal in
S for the multiple testing problem. Our results show that
the optimal solution to the weighted classification problem is
optimal among all decision rules for multiple testing. Based
on the classification rule, the optimal oracle rule for multiple
testing under the dependency model (1) is obtained.

We further consider the case when X follows a multivari-
ate normal distribution, where the observation x has the
following distribution,

X | θ ∼ N(μ | θ,Σ), θi
i.i.d.∼ Bernoulli(p), i = 1, . . . ,m,

(2)

where μ | θ is the conditional mean vector and Σ is the
covariance matrix. Under this model and the short-range
dependency of Σ, the marginal oracle statistics are shown
to be a uniformly consistent approximation to the joint ora-
cle statistics. The marginal oracle statistics are much easier
to compute than the joint oracle statistics. We also develop
a data-driven marginal plug-in procedure and establish its
optimality for the fdr control. Extensive simulations and an
application to a genome-wide association study of neuroblas-
toma are presented to demonstrate the numerical properties
of this marginal plug-in procedure. The numerical results
show that the marginal procedure controls false discovery
rate and leads to a smaller false non-discovery rate than
several commonly used p-value based false discovery rate
controlling methods.

2. ORACLE DECISION RULE FOR
MULTIVARIATE TEST STATISTICS

In this section, we develop an oracle decision rule for mul-
tiple testing under dependence using a compound decision-
theoretic framework. Consider m null hypotheses H0

i , i =
1, . . . ,m and let θi take value 0 if the ith null hypoth-
esis is true and 1 otherwise. In this paper we shall as-
sume that θ1, . . . , θm are independent and identically dis-
tributed Bernoulli variables with success probability p. Let
X = (X1, . . . , Xm) be a sequence of test statistics for the m
null hypotheses H0

i : θi = 0 with the following density,

(3) x | θ ∼ g(x | θ), θi
i.i.d.∼ Bernoulli(p), i = 1, . . . ,m.

Based on an observation of X: x = (x1, . . . , xm), the goal is
to construct a multiple testing procedure δ = (δ1, . . . , δm)

which achieves the minimum mfnr while controlling mfdr

at a pre-specified level α. From the model (3), we note that
the marginal distribution of Xi now depends not just on θi
but the whole sequence of θ. Therefore, the methods of [23]
and [24] cannot be applied to the model we consider here.

As in [23] for the independent case, our goal is to develop
in the dependent case a multiple testing procedure which
minimizes the marginal false non-discovery rate while con-
trolling the marginal false discovery rate. As mentioned in
the introduction, Genovese and Wasserman [10] showed that
under the independence assumption, mfdr and fdr (mfnr

and fnr) are asymptotically the same in the sense that
mfdr = fdr + O(m−1/2). The following theorem shows
that the asymptotic equivalence between the FDR and the
mFDR holds in a more general short-range dependence set-
ting.

Theorem 1. Suppose that X = (X1, . . . , Xm) is a sequence
of random variables with the same marginal density f and
the short range dependency, so that Xi and Xj are indepen-

dent if |i − j| > mτ , for 0 ≤ τ < 1. Let δ̂i = I (Si ∈ R)
be a short-ranged rule to test H0

i , in the sense that Si only
depends on the variables that are dependent with Xi,

Si = S(Xi−�mτ�, . . . , Xi+�mτ�) (0 ≤ τ < 1).

Further suppose that

pr (Si ∈ R, θi = 1) ≥ pr (Si ∈ R, θi = 0),

and

pr (Si ∈ R, θi = 1) > 0 (i = 1, . . . ,m).

Then the fdr (fnr) of the rule δ̂ can be approximated by
the mfdr (mfnr),

lim
m→∞

(fdr−mfdr) = 0, lim
m→∞

(fnr−mfnr) = 0.

It has been shown that the multiple testing problem is
equivalent to a weighted classification problem in the inde-
pendent case [23] and under the dependency specified by
the hidden Markov model [24]. We consider the correspond-
ing weighted classification problem under the model (3) and
have the following theorem.

Theorem 2. Define the loss function:

(4) Lλ(δ, θ) =
1

m

∑
i

{δi I (θi = 0) + λ(1− δi) I (θi = 1)}.

Consider the model defined in (3). Suppose that p and g
are known. Then the classification risk E{Lλ(θ, δ)} is min-
imized by the Bayes rule δ(Λ, λ) = (δ1, . . . , δm), where

(5) δi = I

{
Λi(x) =

(1− p)g(x | θi = 0)

pg(x | θi = 1)
< λ

}
,

418 J. Xie et al.



for i = 1, . . . ,m. The minimum classification risk is

Rλ(δ(Λ, λ))

= p+

∫
K

{(1− p)g(x | θi = 0)− λpg(x | θi = 1)} dx,

where K = {x ∈ Ω : (1− p)g(x | θi = 0) < λpg(x | θi = 1)}.
The rule given in Theorem 2 is optimal for the weighted

classification problem. We next show that the optimality
property can be extended to the multiple testing problem.
Consider the optimal rule δ(Λ, λ) as defined in (5). Let
Gs

i (t) = pr (Λi ≤ t | θi = s), s = 0, 1, be the conditional
cumulative density functions (cdf) of Λi(x). The cdf of
Λi(x) is then given by Gi(t) = pr (Λi ≤ t) = (1− p)G0

i (t) +
pG1

i (t). Define the average conditional cdf’s of Λ, Gs(t) =
(1/m)

∑m
i=1 G

s
i (t) and average conditional probability den-

sity functions of Λ, gs(t) = ( d/ dt)Gs(t), s = 0, 1. The
following theorem shows that Λ is also optimal for multiple
testing.

Theorem 3. Let Ds = {δ : δi = I (Λi < λ), i = 1, . . . ,m},
where Λi’s are defined in (5). Given an mfdr level α and
a decision rule

δ(S,R) = {I (S1(x) ∈ R1), . . . , I (Sm(x) ∈ Rm)}

with mfdr{δ(S,R)} ≤ α, then there exists a λ determined
by δ(S,R), such that δ(Λ, λ) ∈ Ds outperforms δ(S,R) in
the sense that

mfdr{δ(Λ, λ)} ≤ mfdr{δ(S,R)} ≤ α,

and

mfnr{δ(Λ, λ)} ≤ mfnr{δ(S,R)}.

Theorem 3 reveals that the optimal solution for the multi-
ple testing problem belongs to the set Ds. Instead of search-
ing for all decision rules, one only needs to search in the col-
lection Ds for the optimal rule. The following result shows
that for a given mfdr value α, the optimal rule for the
multiple testing problem is unique.

Theorem 4. Consider the optimal decision rule δ(Λ, λ) in
(5) for the weighted classification problem with the loss func-
tion (4). There exists a unique λ(α), such that δ{Λ, λ(α)}
controls mfdr at level α and minimizes mfnr among all
decision rules.

Theorem 4 shows that there exists a one-to-one mapping
between the mfdr value α and the thresholding λ, which
determines the optimal rule. However, it is often hard to
obtain the corresponding λ(α) for a given α, in which case
we need to develop an oracle rule that depends on α directly
instead of λ(α). Define

(6) Tor,i =
(1− p)g(x| θi = 0)

g(x)
,

and, clearly Tor,i = Λi/(1+Λi) and increases with Λi. Thus,
for a given mfdr value α, one can rewrite the optimal oracle
rule (5) as

(7) δor,i = I

{
Tor,i < λ̃(α) =

λ(α)

1 + λ(α)

}
.

Let Rλ̃ =
∑m

i=1 I (Tor,i < λ̃)/m, Vλ̃ =
∑m

i=1 I (Tor,i < λ̃,
θi = 0)/m and Qλ̃ = Vλ̃/Rλ̃. Then,

mfdr = E(Qλ̃) = E{E(Vλ̃/Rλ̃ | x)}

= E

{∑m
i=1 I (Tor,i < λ̃)Tor,i∑m

i=1 I (Tor,i < λ̃)

}
= E

(∑mRλ̃
i=1 Tor,(i)

mRλ̃

)
,

where Tor,(i) is the ith order statistic of Tor,i (i = 1, . . . ,m).
Suppose the number of rejections is k = mR, then the false
discovery proportion is controlled at α if

(8)
1

k

k∑
i=1

Tor,(i) ≤ α.

If for every k, (8) is satisfied, then

mfdr = E

(
R∑
i=1

Tor,(i)/R

)
≤ α.

Based on the argument presented above, we have the fol-
lowing joint oracle procedure for multiple testing with de-
pendent statistics.

Theorem 5. Consider the model defined in (3). Suppose
that p and g are known. Define Tor,i as in (6). Then the
following procedure controls mfdr at level α:

(9) Reject all H(i) (i = 1, . . . , k),

where k = max

{
l :

1

l

l∑
i=1

Tor,(i) ≤ α

}
.

The final oracle rule (9) consists of two steps: the first step
is to calculate the oracle statistics Tor = (Tor,1, . . . , Tor,m),
and the second step is to rank the statistics and calculate the
running averages from the smallest to the largest in order
to determine the cutoff. We then reject all the hypotheses
with Tor,(i) below the cutoff.

3. MARGINAL APPROXIMATION TO THE
JOINT ORACLE PROCEDURE FOR
MULTIVARIATE NORMAL DATA

3.1 Marginal oracle rule

Theorems 3–5 show the optimality of the joint oracle rule
for multivariate test statistics. However, the oracle rule as-
sumes that the non-null proportion p and the distribution
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g(x| θ) are both known. Even if g(x| θ) is known, it is still
computationally challenging to calculate g(x| θi = 0) and
the mixture distribution

g(x) =
∑

θ1,...,θm

{
g(x | θ)

m∏
i=1

pθi(1− p)1−θi

}
.

The computational complexity to obtain Tor is O(m2m).
To resolve the computational difficulty associated with

the oracle rule, we show in the following section that under
the multivariate normal model (3) with short-range depen-
dence covariance structure, certain marginal oracle statistics
can be used to approximate the joint oracle statistics, which
leads to a computationally feasible optimal mfdr control-
ling procedure.

We make the following additional assumptions on the
model (3):

(A) The non-null proportion goes to zero: limm→∞ p(m) =0.
(B) The data x(m) = (x1, . . . , xm) is an observation of the

random variable X(m) = (X1, . . . , Xm), which follows a
multivariate normal distribution given the latent vari-
able θ(m) = (θ1, . . . , θm),

(10) X(m)| θ(m) ∼ N(μ(m) | θ(m),Σ(m)),

where (μ(m) | θ(m)) = (μ1 | θ1, . . . , μm | θm). The vari-
able μi | (θi = 0) follows a point mass distribution at
point 0 and μi | (θi = 1) follows the distribution with
cdf F 1(μ). Without loss of generality, assume X is re-

scaled so that Σ
(m)
ii = 1. Under this model, Xi has the

same unknown marginal probability density

(11) f(x) =

∫
ϕ(x− μ) dF (μ),

where F (μ) = (1− p)I(μ ≥ 0) + pF 1(μ).

(C) The minimum eigenvalue of Σ(m) is bounded away
from 0:

lim inf
m→∞

λmin(Σ
(m)) = κ > 0.

(D) The correlation structure of X(m) is short ranged with

Σ
(m)
ik = 0 whenever |i − k| ≥ mτ for some constant

τ ∈ (0, 1).

Define

(12) Tmg,i = (1− p)f(xi| θi = 0)/f(xi)

to be the marginal oracle rule, which only involves the
marginal distributions of xi. The following theorem shows
that as m → ∞, Tmg,i can approximate Tor,i well.

Theorem 6. Under the assumptions (A)–(C), let Tor,i and
Tmg,i be defined as in equations (6) and (12). Then for all

ε > 0 and for all i = 1, . . . ,m,

lim
m→∞

pr (|Tmg,i − Tor,i | > ε) = 0.

Theorem 6 reveals that the marginal oracle statistics
Tmg = (Tmg,i, . . . , Tmg,m) are a uniformly consistent approx-
imation to the joint oracle rule determined by Tor. Note
that Tmg in Theorem 6 is a separable rule with a computa-
tion complexity of O(m), much smaller than the complexity
of the joint oracle rule.

3.2 Estimating the marginal oracle statistics

In model (10), the marginal densities f(xi)’s are the same
for all i = 1, . . . ,m, as well as f(xi | θi). From now on, we
use f to denote the marginal density and let f , f0 and f1
be the marginal density, marginal density under the null
and marginal density under the alternative for Xi. Denote
estimator of f , f0, and the non-null proportion p as f̂ , f̂0
and p̂. Let T̂mg,i = {(1− p̂)f̂0(xi)/f̂(xi)} ∧ 1.

For many multiple testing problems, the theoretical null
distribution f0 for Xi is typically known. In short-range de-
pendency cases, Cai and Jin [6] provided an estimator for p
with the minimax convergence rate. Estimating f under the
assumptions (A)–(D) is not straightforward even when f is
a normal mixture under the assumption (B). However, it is
easy to obtain a non-parametric density estimate under the
short-range dependency assumption. Suppose that the range
of correlation is B = mτ (0 ≤ τ < 1) as in assumption (B).
Define K = m/B = m1−τ . We rank each coordinate of x in
the following way so that it becomes a matrix:

(13)

k = 1 2 . . . K
b = 1 x1 xB+1 . . . x(K−1)B+1

2 x2 xB+2 . . . x(K−1)B+2

...
...

...
. . .

...
B xB x2B . . . xKB

To facilitate the discussion, in the remaining part of this
subsection, we use double subindex to denote xi, i.e. xb,k

is x(k−1)B+b in the original vector notation. Note that each
row of (13) is an independent subsequence of x with length
K = m1−τ . Therefore, we can obtain a kernel estimator
f̂b(x) based on xb,· = (xb,1, . . . , xb,K), b = 1, . . . , B. Define

f̂(x0) =
∑B

b=1 f̂b(x0)/B. Note that f is a mixture of nor-
mal densities and therefore, it is infinitely differentiable. Van
der Vaart [26] showed that for any bounded a differentiable
function f such that

∫
|f (a)(z)| dz ≤ M , with appropriately

chosen bandwidth h = n−a/(1+2a), where n is the sample
size, for any x0, the kernel estimate f̂(x0) can achieve the
bound

(14) E{f̂(x0)− f(x0)}2 ≤ Cn−2a/(1+2a),

where C only depends on the true marginal density f , the
Kernel function and the bandwidth h. In our setting, set the
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sample size n = m/B = K. For each row of (13), the kernel

estimator f̂b(x) can attain the estimation upper bound (14).
Therefore,

E{f̂b(x0)− f(x0)}2 ≤ CK−2a/(1+2a) = Cm−2a(1−τ)/(1+2a),

for b = 1, . . . , B. Define f̂(x0) =
∑B

b=1 f̂b(x0)/B. When 0 ≤
τ < 1,

E{f̂(x0)− f(x0)}2 =
1

B2

B∑
b=1

E{f̂b(x0)− f(x0)}2 → 0.

The kernel estimators of f(x0) can be written as f̂b(x0) =∑K
k=1 w(x0, Xb,k)/K, where w is the kernel function. Thus

f̂(x0) =
1

B

B∑
b=1

f̂b(x0) =
1

KB

B∑
b=1

K∑
k=1

w(x0, Xb,k)

is the same as the kernel estimator viewing X1, . . . , Xm as
independent and identically distributed.

3.3 Asymptotic validity and optimality of
the marginal plug-in procedure

After obtaining the estimators for p, f and f0, we define
the marginal plug-in procedure as

(15) Reject all H(i) (i = 1, . . . , k),

where k = max

{
i :

1

i

i∑
j=1

T̂mg,(j) ≤ α

}
,

where T̂mg,(j) is the jth order statistic of T̂mg,j (j =
1, . . . ,m).

The next theorem shows that the plug-in procedure (15)
is asymptotically valid and optimal in the sense that it
asymptotically controls mfdr under the given level α and
minimizes mfnr.

Theorem 7. Assume θi follows Bernoulli(p) independently
(i = 1, . . . ,m). Let x = (x1, . . . , xm) be dependent observa-
tions satisfying the Assumptions (A), (B) and (C). Let p̂

be the consistent estimator of p, and f̂ , f̂0 be estimators of
f and f0 satisfying for all x0, E{f̂(x0) − f(x0)}2 → 0 and

E{f̂0(x0)−f0(x0)}2 → 0. Define T̂mg,i = (1−p̂)f̂0(xi)/f̂(xi).
The plug-in procedure (15) asymptotically controls the mfdr

at the given level α and simultaneously minimizes the mfnr.

4. SIMULATION STUDIES

4.1 Simulation 1: The performance of the
marginal oracle rule

In this section we evaluate the numerical performance of
the marginal procedure. In our simulations, we assumed a
multivariate mixture normal model:

(16) X | θ ∼ N(μ | θ,Σ),

where θi follows Bernoulli(p). We chose the parameters so
that the Assumptions (A)–(D) hold. All simulation results
were based on 1,000 replications.

In the following simulations, we set the number of hy-
potheses as m = 6, 000 and assume that the covariance
matrix Σ is a block-diagonal matrix with block size of 30.
Within each block, the sub-precision matrix is a banded
matrix with bandwidth 1, diagonal elements of 1 and off-
diagonal elements of 0.2. We set μ(θi = 0) = 0. We have
developed an efficient computational algorithm to compute
the joint oracle statistics under the banded precision matrix
assumption with computation complexity of O(2Bm), where
B is bandwidth for the precision matrix. Our aim is to com-
pare the performance of the optimal oracle rule with the
marginal oracle rule when the true parameters are known.

We considered different settings of the parameters and
present the results in Figure 1. Overall, we observe that the
results from the marginal oracle rule are similar to those
from the optimal joint oracle rule. Both procedures control
the fdr at the desired levels and have smaller mfnrs than
the Benjamini and Hochberg procedure. The upper left and
upper right panels show the observed fdr versus the alterna-
tive mean value for mfdr = 0.05, and p = 0.20 and p = 0.02,
respectively, indicating that the marginal oracle rule can in-
deed control fdr at the desired level. As expected, the Ben-
jamini and Hochberg procedure is quite conservative. The
upper middle left and right plots show the fnr as a function
of the mfdr for μ(θi = 1) = 2.50, and p = 0.20 and p = 0.02,
respectively. The lower middle left and right plots show the
fnr versus the alternative mean value with mfdr = 0.05,
and p = 0.20 and p = 0.02, respectively. These plots indicate
that the joint oracle and the marginal oracle rules perform
similarly, and both have smaller fnr than the bh procedure.
Finally, the bottom plot shows the fnr as a function of the
non-null proportion p for mfdr = 0.05 and μ1 = 3.5. We
observe that as p increases, the Benjamini and Hochberg
procedure becomes increasingly more conservative, but the
marginal oracle rule still performs almost as efficiently as
the joint oracle rule.

4.2 Simulation 2: The performance of the
plug-in marginal rule

In this simulation, we evaluated the performance of the
marginal plug-in procedure and compared this with other p-
value-based procedures, including Storey’s α procedure [21],
two two-stage adaptive procedures of [5], the adaptive pro-
cedure of [2], the q-value procedure [22] and the Benjamini
and Hochberg procedure [1], in different settings, to evaluate
their empirical fdr and fnr. We chose the Benjamini and
Hochberg procedure since it is the first and still one of the
most widely used procedures for fdr control. The Storey’s
α procedure was chosen since [5] compared it with several
other procedures and concluded that it is the best procedure
among them in terms of controlling fdr and increased power
under both independent and dependent settings.The q-value
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Figure 1. Comparison of the joint oracle procedure (black circle), the marginal oracle procedure (dark grey triangle) and the
Benjamini and Hochberg procedure (grey plus sign). The upper left: mfdr = 0.05, p = 0.2; the upper right: mfdr = 0.05,

p = 0.02; the upper middle left: μ1 = 2.5, p = 0.2; the upper middle right: μ1 = 2.5, p = 0.02; the lower middle left:
mfdr = 0.05, p = 0.2; the lower middle right: mfdr = 0.05, p = 0.02; the lower left: μ1 = 3.5, mfdr = 0.05.
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Table 1. Comparison of empirical fdr(10−2 unit) vs. mfdr(10−2 unit) of six different procedures, including the marginal
plug-in procedure (MG), the original Benjamini & Hochberg’s procedure (BH), the Storey’s α procedure (Storey), the

Blanchard & Roquain’s two stage procedure with Holm’s step-down for the first step (BR I), and the Blanchard & Roquain’s
two stage procedure controlling the family-wise error rate for the first step (BR II), the procedure of [2] (BK), and the q-value

procedure (QV)

mfdr

Model Method 1 3 5 7 9
A1 MG 1.00(0.31) 3.07(0.50) 5.26(0.63) 7.45(0.75) 9.61(0.80)

BH 0.79(0.28) 2.34(0.47) 3.94(0.57) 5.52(0.70) 7.10(0.76)
Storey 0.98(0.30) 2.89(0.52) 4.90(0.65) 6.87(0.81) 8.85(0.86)
BR I 0.39(0.20) 1.17(0.34) 1.95(0.42) 2.74(0.51) 3.54(0.56)
BR II 0.39(0.20) 1.17(0.34) 1.95(0.42) 2.74(0.51) 3.54(0.56)
BK 0.97(0.30) 2.89(0.52) 4.90(0.65) 6.86(0.81) 8.83(0.86)
QV 1.00(0.31) 2.93(0.53) 4.96(0.68) 6.94(0.85) 8.88(0.91)

A2 MG 1.03(1.07) 3.21(1.72) 5.44(2.14) 7.87(2.35) 10.33(2.71)
BH 0.96(1.09) 2.93(1.73) 4.86(2.22) 6.88(2.48) 8.79(2.93)
Storey 0.98(1.11) 2.97(1.74) 4.93(2.26) 6.97(2.51) 8.92(2.94)
BR I 0.50(0.82) 1.49(1.27) 2.38(1.64) 3.42(1.83) 4.40(2.10)
BR II 0.50(0.82) 1.49(1.27) 2.38(1.63) 3.42(1.83) 4.40(2.10)
BK 1.08(1.14) 3.25(1.80) 5.29(2.29) 7.42(2.51) 9.38(2.92)
QV 1.00(1.10) 3.00(1.75) 4.99(2.27) 7.04(2.53) 9.01(2.94)

A3 MG 0.98(0.31) 3.09(0.56) 5.27(0.73) 7.45(0.82) 9.72(0.97)
BH 0.77(0.27) 2.32(0.50) 3.93(0.64) 5.49(0.71) 7.12(0.84)
Storey 0.94(0.30) 2.88(0.56) 4.90(0.73) 6.86(0.81) 8.89(0.95)
BR I 0.38(0.20) 1.14(0.35) 1.95(0.46) 2.74(0.51) 3.55(0.60)
BR II 0.38(0.20) 1.14(0.35) 1.95(0.46) 2.74(0.51) 3.55(0.60)
BK 0.94(0.30) 2.87(0.56) 4.89(0.72) 6.85(0.80) 8.88(0.94)
QV 0.96(0.31) 2.91(0.58) 4.94(0.76) 6.89(0.84) 8.96(1.03)

A4 MG 1.06(2.33) 3.88(4.74) 6.20(5.44) 8.79(6.47) 11.63(7.02)
BH 0.87(1.88) 3.04(4.00) 4.68(4.59) 6.67(5.68) 8.48(6.09)
Storey 0.89(1.90) 3.10(4.06) 4.78(4.66) 6.80(5.78) 8.65(6.18)
BR I 0.45(1.28) 1.55(2.90) 2.33(3.21) 3.42(4.17) 4.21(4.31)
BR II 0.45(1.28) 1.55(2.90) 2.33(3.21) 3.42(4.17) 4.20(4.30)
BK 0.98(1.97) 3.35(4.13) 5.10(4.69) 7.18(5.75) 9.07(6.13)
QV 0.91(1.93) 3.18(4.11) 4.90(4.72) 6.93(5.79) 8.86(6.29)

procedure is chosen because it is also widely used and least
conservative. The procedures of [5] and [2] were developed
for dependent test statistics and chosen for comparisons.

In all simulations, we set m = 6, 000, where two thousand
variables were generated from a block-structured covariance
with block size of 40, two thousand variables were generated
from a block-structured covariance of block size of 20, and
two thousand variables were generated independently. We
generated μ(θi = 1) from distribution 0.8Unif(−6,−3) +
0.2Unif(3, 6) and considered four different scenarios:

A1. p = 0.2 and within-block covariance matrix is randomly
generated and is sparse. For blocks of size of 40, the
proportion of non-zero off-diagonal elements is about
0.03 and for blocks of size 20, the proportion of non-
zero off-diagonal elements is about 0.08. All the within-
block covariance matrices are regularized so that the
condition number is equal to the block size.

A2. p = 0.02 and within-block covariance matrix structure
is the same as Model A1.

A3. p = 0.2 and within-block covariance matrix is exchange-
able with non-diagonal elements of 0.2.

A4. p = 0.2 and within-block covariance matrix is exchange-
able with non-diagonal elements of 0.8.

The empirical fdr comparison results are shown in Ta-
ble 1. We observe that the marginal plug-in procedure con-
trols the fdr well when within-block correlation is low or
moderate. However, when the within-block correlation be-
comes high as in Model A4, the marginal plug-in approach
results in inflated fdr. This is due to the use of kernel esti-
mate of the marginal density when the correlations among
the observations are high. Although other procedures can
control fdr at the desired levels, the procedures of [5] are
too conservative in the settings we considered.

We compared the fnr result in the moderate correlation
setting where the marginal plug-in procedure can control
fdr at the desired level and present the results in Table 2.
Within each block, the sub-covariance matrix was randomly
generated and was sparse. We generated μ(θi = 1) from two
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Table 2. Comparison of empirical fnr(10−2 unit) vs. mfdr, β2, p1 and p. See Table 1 for details of these seven methods
compared

mfdr

Model Method 0.01 0.03 0.05 0.07 0.09
B1 MG 12.79(0.35) 9.33(0.35) 7.60(0.35) 6.42(0.34) 5.57(0.32)

BH 14.00(0.36) 10.73(0.39) 9.01(0.39) 7.84(0.38) 6.96(0.36)
Storey 13.62(0.37) 10.15(0.39) 8.38(0.39) 7.17(0.38) 6.28(0.35)
BR I 15.68(0.33) 12.88(0.37) 11.31(0.38) 10.19(0.39) 9.37(0.38)
BR II 15.68(0.33) 12.88(0.37) 11.31(0.38) 10.19(0.39) 9.37(0.38)
BK 13.78(0.37) 10.33(0.40) 8.54(0.41) 7.32(0.39) 6.41(0.36)
QV 13.38(0.39) 9.98(0.40) 8.24(0.39) 7.07(0.38) 6.19(0.37)

B2 MG 1.75(0.09) 1.54(0.10) 1.41(0.11) 1.30(0.12) 1.23(0.11)
BH 1.79(0.09) 1.60(0.10) 1.48(0.12) 1.38(0.12) 1.31(0.12)
Storey 1.79(0.09) 1.60(0.11) 1.48(0.12) 1.38(0.12) 1.31(0.12)
BR I 1.86(0.07) 1.73(0.09) 1.64(0.11) 1.56(0.11) 1.51(0.11)
BR II 1.87(0.07) 1.73(0.09) 1.64(0.11) 1.56(0.11) 1.51(0.11)
BK 1.78(0.09) 1.59(0.10) 1.47(0.12) 1.37(0.12) 1.30(0.12)
QV 1.79(0.09) 1.59(0.10) 1.48(0.12) 1.38(0.12) 1.31(0.12)

β2

3 3.75 4.5 5.25 6
C1 MG 7.61(0.35) 3.60(0.26) 1.93(0.18) 1.37(0.16) 1.18(0.15)

BH 9.00(0.38) 4.24(0.28) 2.26(0.20) 1.78(0.18) 1.71(0.18)
Storey 8.37(0.38) 3.79(0.28) 2.02(0.19) 1.62(0.18) 1.56(0.18)
BR I 11.31(0.38) 5.86(0.32) 3.11(0.23) 2.32(0.19) 2.17(0.20)
BR II 11.31(0.38) 5.86(0.32) 3.11(0.23) 2.32(0.19) 2.17(0.20)
BK 8.53(0.40) 3.83(0.28) 2.03(0.19) 1.62(0.18) 1.56(0.18)
QV 8.23(0.39) 6.08(6.08) 4.43(0.31) 3.23(0.26) 2.46(0.23)

C2 MG 1.41(0.11) 1.16(0.11) 0.92(0.10) 0.72(0.10) 0.56(0.09)
BH 1.48(0.12) 1.23(0.11) 0.99(0.11) 0.78(0.10) 0.60(0.09)
Storey 1.48(0.12) 1.23(0.11) 0.99(0.11) 0.78(0.10) 0.59(0.09)
BR I 1.63(0.11) 1.42(0.11) 1.17(0.12) 0.95(0.11) 0.74(0.10)
BR II 1.64(0.11) 1.42(0.11) 1.17(0.12) 0.95(0.11) 0.74(0.10)
BK 1.47(0.12) 1.22(0.12) 0.97(0.11) 0.76(0.10) 0.58(0.09)
QV 1.47(0.12) 1.23(0.12) 0.98(0.11) 0.77(0.10) 0.59(0.09)

p1
0 0.25 0.5 0.75 1

D1 MG 5.96(0.32) 7.80(0.34) 8.22(0.36) 7.79(0.35) 5.96(0.31)
BH 9.00(0.38) 8.99(0.38) 9.00(0.38) 9.00(0.39) 8.97(0.37)
Storey 8.37(0.38) 8.36(0.38) 8.37(0.38) 8.36(0.38) 8.34(0.37)
BR I 11.30(0.38) 11.31(0.38) 11.31(0.4) 11.30(0.38) 11.28(0.38)
BR II 11.30(0.38) 11.31(0.38) 11.31(0.4) 11.30(0.38) 11.28(0.38)
BK 8.53(0.39) 8.52(0.39) 8.53(0.39) 8.53(0.39) 8.50(0.38)
QV 8.23(0.39) 8.22(0.39) 8.24(0.39) 8.22(0.39) 8.24(0.40)

D2 MG 1.29(0.12) 1.36(0.12) 1.40(0.11) 1.44(0.11) 1.46(0.11)
BH 1.48(0.12) 1.48(0.12) 1.47(0.11) 1.48(0.12) 1.48(0.12)
Storey 1.48(0.12) 1.48(0.12) 1.47(0.11) 1.48(0.12) 1.48(0.12)
BR I 1.64(0.11) 1.63(0.11) 1.64(0.11) 1.64(0.11) 1.64(0.11)
BR II 1.64(0.11) 1.63(0.11) 1.64(0.11) 1.64(0.11) 1.64(0.11)
BK 1.47(0.12) 1.47(0.12) 1.46(0.11) 1.47(0.12) 1.47(0.12)
QV 1.48(0.12) 1.47(0.12) 1.47(0.11) 1.48(0.12) 1.47(0.12)

p
0.01 0.07 0.13 0.19 0.25

E MG 0.80(0.07) 3.95(0.21) 6.15(0.27) 7.93(0.33) 9.49(0.38)
BH 0.81(0.07) 4.04(0.22) 6.48(0.29) 8.63(0.35) 10.74(0.41)
Storey 0.82(0.08) 3.98(0.22) 6.22(0.29) 8.07(0.35) 9.71(0.40)
BR I 0.87(0.06) 4.78(0.22) 7.94(0.30) 10.83(0.35) 13.66(0.41)
BR II 0.88(0.06) 4.78(0.22) 7.94(0.30) 10.83(0.35) 13.66(0.41)
BK 0.80(0.08) 4.00(0.22) 6.30(0.30) 8.22(0.36) 9.93(0.42)
QV 0.81(0.07) 3.96(0.22) 6.17(0.30) 7.94(0.37) 9.49(0.43)
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point mass distribution (p1/p)δ(β1)+(p2/p)δ(β2). The non-
null proportion was p = p1 + p2. We considered four sets
of models in order to compare the empirical fnr obtained
from different methods.

In Model B, we considered the empirical fnr versus
mfdr level under two different non-null proportions p = 0.2
(Model B1) and p = 0.02 (Model B2), respectively. We set
p1 = 0.8p, β1 = −3, p2 = 0.2p and β2 = 3. Under such set-
tings, the two-stage procedures of [5] have lower fnr than
the Benjamini and Hochberg procedure because they are
quite conservative. Other procedures have smaller fnr than
the Benjamini and Hochberg procedure especially when p
is large. The marginal plug-in method has the smallest fnr
values.

Model C considered the fnr as a function of β2 under
p = 0.2 (Model C1) and p = 0.02 (Model C2), respectively,
setting α = 0.05, β1 = −3, p1 = 0.1 and p2 = 0.1. Decrease
in the empirical fnr of the marginal plug-in procedure be-
comes larger as the alternative distribution becomes more
asymmetric. This trend is confirmed in Model D, where we
set mfdr = 0.05, β1 = −3, β2 = 3 and considered fnr

as a function of p1 with p = 0.2 (Model D1) and p = 0.02
(Model D2), respectively. Compared to other procedures,
the marginal plug-in procedure resulted in higher efficiency
when the alternative marginal distribution was highly asym-
metric. This is because all other procedures are based on the
p-values, which are the probabilities under the null, ignoring
the information from the alternative marginal distribution.
The marginal plug-in procedure compares the probability
under the marginal null and marginal alternative and there-
fore is more adaptive to the shape of the marginal alterna-
tive.

In Model E, we set β1 = −3, β2 = 3, p1 = p2 = 0.5p
and considered fnr as a function of the non-null propor-
tion p. As p increases, the marginal plug-in procedure, the
Storey’s α procedure, the procedure of [2] and the q-value
procedure performed more efficiently than the Benjamini
and Hochberg procedure since all of them are adaptive to the
proportion of the non-nulls. The marginal plug-in method
still gives the smallest fnr values.

5. APPLICATION TO ANALYSIS OF
CASE-CONTROL GENETIC STUDY OF

NEUROBLASTOMA

We applied the proposed fdr controlling procedure to a
case-control genetic study of neuroblastoma conducted at
the Children’s Hospital of Philadelphia. Neuroblastoma is
a pediatric cancer of the developing sympathetic nervous
system and is the most common solid tumors outside the
central nervous system. It is a complex disease, with rare
familial forms occurring due to mutations in PHOX2B or
ALK [15, 16], and several common variations being en-
riched in sporadic neuroblastoma cases [14]. The latter ge-
netic associations were discovered in a genome-wide associ-
ation study of sporadic neuroblastoma cases, compared to

children without cancer, conducted at the Children’s Hos-
pital of Philadelphia. After initial quality controls on sam-
ples and the marker genotypes, our discovery data set con-
tained 1,627 neuroblastoma case subjects of European an-
cestry, each of which contained 479,804 markers. To correct
the potential effects of population structure, 2,575 matching
control subjects of European ancestry were selected based
on their low identity-by-state estimates with case subjects.

For each marker, a score statistic was obtained by fitting
a logistic regression model using an additive coding of the
genotypes. Due to linkage disequilibrium among the mark-
ers, these score statistics cannot be treated as independent.
However, despite existence of long-range linkage disequilib-
rium, the linkage disequilibrium in general decay as the dis-
tance between two markers decreases [13, 18]. We therefore
can reasonably assume that the score statistics across all the
markers are short-range dependent. To apply our proposed
method, we used the method of [6] to estimate p and used
the kernel density estimation for the marginal densities. We
set different nominal mfdr values (mfdr ∈ [0.01,0.2]) and
examined the number of rejections based on the proposed
marginal plug-in procedure and several p-value based proce-
dures (see Figure 2). For a given mfdr level, the marginal
plug-in procedure always identifies more significant markers
than the bh and other p-value based procedures that can ac-
count for dependency of the test statistics, suggesting that
it may lead to a smaller fnr and therefore better power
of detecting the neuroblastoma associated markers. This is
especially important for initial genome-wide scanning in or-
der to identify the potential candidate markers for follow-up
studies.

The marginal plug-in procedure identified 30 markers
that are associated with neuroblastoma for mfdr = 0.05. In
contrast, the Benjamini and Hochberg procedure identified
24 markers, the Storey’s α procedure identified 24 markers,
and the two stage procedures of [5] and the adaptive proce-
dure of [2] identified 21, 21 and 25 markers, respectively. The
six additional markers identified by our proposed marginal
plug-in procedure, but missed by the standard Benjamini
and Hochberg procedure, are presented in Table 3. The
BARD1 gene provides instructions for making a protein that
helps control cell growth and division. Within the nucleus
of cells, the BARD1 protein interacts with the protein pro-
duced from the BRCA1 gene. Together, these two proteins
mediate DNA damage response [12]. This provides some bi-
ological evidence for the association between the BARD1
gene and neuroblastoma. In fact, the recent publication of
[7] identified the variants in BARD1 tumor suppressor gene
influence susceptibility to high-risk neuroblastoma. Another
gene, DGKI, is known to regulate Ras guanyl-releasing pro-
tein 3 and inhibits Rap1 signaling [19]. However, the associ-
ation between the variant in DGKI gene and neuroblastoma
is not clear and deserves further biological validation. Gene
XPO4, encodes a nuclear export protein whose substrate,
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Figure 2. Comparison of number of rejections vs the mfdr

level for the marginal plug-in procedure (circle) and the
p-value based procedures, including the Storey’s α procedure
(upward triangle), the Blanchard & Roquain procedure with
Holm’s step down in the first step (plus sign), the Blanchard
& Roquain procedure with family-wise error control in step 1

(cross sign), the procedure of [2] (diamond) and the
Benjamini and Hochberg procedure (downward triangle) for
the case-control neuroblastoma genome-wide association

study.

EIF5A2, is amplified in human tumors, is required for pro-
liferation of XPO4-deficient tumor cells, and promotes hepa-
tocellular carcinoma in mice [27]. Another gene IKZF1 that
encodes the lymphoid transcription factor IKAROS, has re-
cently been reported to be associated with the poor outcome
in acute lymphoblastic leukemia [17], and was also discov-
ered to harbor common variations associated with suscepti-
bility to this disease [25]. The NR5A2 gene encodes a tran-
scription factor that has been discovered to be responsible
for the reprogramming of differentiated cells into stem cells.
Stem cells generated from differentiated cells are known as
induced pluripotent stem cells [11].

6. DISCUSSION

We have studied in this paper the multiple testing prob-
lem under the setting where the test statistics are depen-
dent. It is shown that for any multiple testing problem
under the dependent model (3), there exists a correspond-
ing weighted classification problem, such that the optimal
decision rule for the classification problem is also an op-
timal solution to the multiple testing problem. Although
the oracle rule obtained is optimal under the dependent
model (3), it is not easy to implement. A marginal oracle rule
is shown to approximate the optimal joint oracle rule when

Table 3. Six single nucleotide polymorphism markers
identified by the marginal plug-in procedure, but missed by

the Benjamini and Hochberg procedure for the neuroblastoma
data. Z score2 is the square of the score statistic from a
logistic regression with genotypes coded as 0, 1, and 2.

Chrom stands for Chromosome

Marker Gene Chrom Z score2 p-value
rs4770073 XPO4 13 21.74 3.13×10−6

rs7557557 BARD1 2 21.79 3.05×10−6

rs1714518 RSRC1 3 21.86 2.93×10−6

rs10248903 IKZF1 7 2.25 4.03×10−6

rs3828112 NR5A2 1 20.59 5.67×10−6

rs2059320 DGKI 7 20.42 6.21×10−6

the test statistics follow a multivariate normal distribution
with short range dependence. A data-driven marginal plug-
in procedure is developed and is shown to be asymptotically
valid and optimal in such a setting.

It should be emphasized that the marginal plug-in proce-
dure is not necessarily the same as the adaptive compound
decision rules. We showed that the marginal density of Xi

can be estimated by treating the data as independent. The
procedure we adopted here produces a consistent estima-
tor for the marginal density. However, for dependent data,
this might not be the optimal choice. It is an interesting fu-
ture research topic to develop alternative estimation meth-
ods that can estimate the marginal densities with a faster
convergence rate. In addition, in order to show the asymp-
totic optimality of the marginal plug-in procedure, we re-
quire Assumptions (A)–(D). Among them, Assumptions (A)
and (C) are necessary and cannot be weakened. For the de-
pendency structure that does not satisfy either Assumption
(A) or (C), the marginal plug-in procedure does not have
the asymptotic optimality. How to obtain a practical and
asymptotically optimal FDR controlling procedure under
more general dependency structure for test statistics is still
a challenging open problem.
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APPENDIX A. PROOFS

We collect the proofs of the main theorems in this Ap-
pendix.

Proof of Theorem 1. Define U0 =
∑m

i=1 I (Si ∈ R, θi = 0),
U1 =

∑m
i=1 I (Si ∈ R, θi = 1). Let V0 = E(U0)/m =

pr (Si ∈ R, θi = 0) and V1 = E(U1)/m = pr (Si ∈ R, θi =
1). The mfdr and fdr can be written as

mfdr =
E(U0)

E(U0 + U1)
=

V0

V0 + V1
,

426 J. Xie et al.



fdr = E{Ψ(U0, U1)} = mE

(
U0

U0 + U1

)
.

Let Ψ(y1, y2) = y1/(y1+y2). By Taylor expansion, fdr =
E{Ψ(U0, U1)} = mfdr+ (A) + (B), where

(A) =
1

2

∂2Ψ

∂2y1
(V0, V1)E{(U0 −mV0)

2}

+
∂2Ψ

∂y1∂y2
(V0, V1)E(U0 −mV0)E(U1 −mV1)

+
1

2

∂2Ψ

∂2y2
(V0, V1)E{(U1 −mV1)

2},

(B) =
∑

k1+k2=3

1

k1!k2!
E{ζ · (U0 − V0)

k1(U1 − V1)
k2},

with ζ(U0, U1, V0, V1) =
∫ 1

0
(1 − t)3 ∂3Ψ

∂y
k1
1 ∂y

k2
2

(tU0 + (1 −
t)mV0, tU1 + (1− t)mV1) dt.

We need to bound (A) and (B) respectively. For any k1+
k2 = k,∣∣∣∣∂kΨ(y1, y2)

∂yk1
1 ∂yk2

2

(V0, V1)

∣∣∣∣ ≤ Ck!
max(mV0,mV1)

(mV0 +mV1)k+1

≤ Ck!

(V0 + V1)kmk
,

E{ (U0 −mV0)
2}

= mE{(I{Si ∈ R, θi = 0} − V0)
2}

+

m∑
i=1

∑
j �=i

E{(I{Si ∈ R, θi = 0} − V0)

× (I{Sj ∈ R, θj = 0} − V0)}
≤ mV0(1− V0) + 4m1+τ .

The inequality is due to the fact that Si (i = 1, . . . ,m) is
short-ranged and the dependency structure of X is short-
ranged, so that Si and Sj are independent if |i− j| > 2mτ .
Similarly, we can show that E{(U1 − mV1)

2} ≤ Cm1+τ .
Therefore, by Cauchy–Schwarz inequality,

(A) ≤ C

(V0 + V1)2m2
{mV0(1− V0) + 2m1+τ} = C1m

−1+τ ,

where C1 depends on V0 and V1.
For any k1 + k2 = k,∣∣∣∣(1− t)k

∂kΨ(y1, y2)

∂yk1
1 ∂yk2

2

(tU0 + (1− t)mV0, tU1 + (1− t)mV1)

∣∣∣∣
≤ Ck!(1− t)k max{tU0 + (1− t)V0, tU1 + (1− t)V1}

{t(U0 + U1) + (1− t)m(V0 + V1)}k+1

≤ Ck!

{ t
1−t (U0 + U1) +m(V0 + V1)}k

≤ Ck!

(V0 + V1)kmk
.

Thus, |ζ(U0, U1, V0, V1)| ≤ C1/m
k.

Let W0,i = I (Si ∈ R, θi = 0) − V0 and W1,i = I (Si ∈
R, θi = 1)− V1. We have

E{(U0 −mV0)
3} = mE(W 3

0,i) +

m∑
i=1

∑
j �=i

E(W0,iW
2
0,j)

+
m∑
i=1

∑
j �=i

∑
l �=i,j

E(W0,iW0,jW0,l)

≤ m+m(4mτ ) +m(4mτ )(8mτ )

≤ Cm1+2τ ,

and

E{(U0 −mV0)(U1 −mV1)
2}

= m2E(W0,iW
2
1,j) +

m∑
i=1

m∑
j=1

∑
l �=j

E(W0,iW1,jW1,l)

≤ m2 +m2(4mτ ) ≤ Cm2+τ .

Similarly, E{(U1 − mV1)
3} ≤ Cm1+2τ and E{(U0 −

mV0)(U1 −mV1)
2} ≤ Cm2+τ . Therefore,

(B) =
∑

k1+k2=3

C1

m3
E{(U0−mV0)

k1(U1−mV1)
k2} ≤ C1m

−1+τ .

This leads to fdr = mfdr+ 2C1m
−1+τ .

Following a similar argument, we can show that fnr =
mfnr+ 2C1m

−1+τ .

The proof of Theorem 2 follows that of [23] and ia omitted
here.

Proof of Theorem 3. Given the fdr level α, consider a de-
cision rule δ(S,R), with mfdr(δ(S,R)) ≤ α. Suppose that
the expected rejection number for δ(S,R) is r. For δ(Λ, λ)
defined in (5), the expected number of rejections is

r(λ) = E

{
m∑
i=1

I (Λi < 1/λ)

}

= mpG1(1/λ) +m(1− p)G0(1/λ).

Thus, r(λ) monotonically decreases with λ. In addition, it
is easy to see that

lim
λ→0

{r(λ)/m} = 1, lim
λ→∞

r(λ) = 0.

Therefore, for a given rejection number r determined by
δ(S,R), there exists a unique λ(r) such that the rule
δ(Λ, λ(r)) has the same rejection number.

For δ(S,R), suppose the expected false discovery number
is vS and the true discovery number is kS . Similarly, suppose
vΛ and kΛ is the expected false and true discovery number
for δ(Λ, λ). Then r = vS + kS = vΛ + kΛ. Consider the loss
function

Lλ(r) =
1

m

∑
i

{λ(r)δi I (θi = 0) + (1− δi) I (θi = 1)},
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then the risk for δ(S,R) and δ(Λ, λ) is Rλ(r) = p +
(1/m) {λ(r)vL − kL} , L = S,Λ. Since Rλ(r)(δ(Λ, λ)) ≤
Rλ(r)(δ(S,R)), it implies that vΛ ≤ vS and kΛ ≥ kS .

Let mfdrL and mfnrL be the mfdr and mfnr of
δ(S,R) and δ(Λ, λ), L = S,Λ. Note that

mfdrL = vL/r and mfnrL = (m1 − kL)/(m− r).

The fact that vΛ ≤ vS and kΛ ≥ kS leads to mfdrΛ ≤
mfdrS and mfnrΛ ≤ mfnrS .

The proof of Theorem 4 requires the following Lemma.

Lemma 1. Consider the oracle classification statistic Λ
defined in (5). Let gs(t), s = 0, 1 be the average condi-
tional pdf ’s of Λ. Then g1(t)/g0(t) = (1 − p)/(pt). That is,
g1(t)/g0(t) is monotonically decreasing in t.

The proof of Lemma 1 is similar to the proof of Corol-
lary 1 in [24] and is omitted.

Proof of Theorem 4. Note that Lemma 1 implies that∫ c

0

g0(t) dt

/∫ c

0

g1(t) dt

<

∫ c

0

g0(t) dt

/∫ c

0

g1(c)

g0(c)
g0(t) dt = g0(c)/g1(c),

which is equivalent to g1(c)G0(c) < g0(c)G1(c). Similarly,
we can get g1(c)(1−G0(c)) > g0(c)(1−G1(c)).

Let c = 1/λ. We show that mfdr strictly increases with c.

mfdr =
E{

∑n
i=1 I (Ti ≤ c, θi = 0)}

E{
∑m

i=1 I (Ti ≤ c)}

=
(1− p)

∑m
i=1 G

0
i (c)∑m

i=1 Gi(c)
=

(1− p)G0(c)

G(c)
.

The derivative

d

dc
mfdr =

p(1− p){g0(c)G1(c)− g1(c)G0(c)}
(G(c))2

> 0.

Therefore, the mfdr strictly increases with c and therefore
decreases with λ.

We can show that mfnr = p{1 − G1(c)}/{1 − G(c)}
and the derivative of mfnr is {g0(c)(1−G1(c))− g1(c)(1−
G0(c))}/{1−G(c)}2 < 0. Therefore, mfnr strictly decreases
with c and increases with λ.

Proof of Theorem 6. First, we have

|Tmg,i − Tor,i |

=

∣∣∣∣ (1− p)f(xi|θi = 0)

f(xi)

∣∣∣∣
∣∣∣∣g(x−i|xi, θi = 0)

g(x−i|xi)
− 1

∣∣∣∣
≤

∣∣∣∣{g(x−i|xi, θi = 0)− g(x−i|xi, θi = 1)} pr (θi = 1|xi)

g(x−i|xi)

∣∣∣∣
=

∣∣∣∣pf(xi|θi = 1){g(x−i|xi, θi = 0)− g(x−i|xi, θi = 1)}
g(x)

∣∣∣∣

≤
∣∣∣∣ 2p|Ω(m)

ii |1/2∑
θ exp{−1

2 (x− μ(θ))TΣ−1(x− μ(θ))} pr (θ)

∣∣∣∣.
For m sufficiently large, λmin(Σ

(m)) > κ/2 and |Ω(m)
ii | ≤

λmax(Ω
(m)) < 2/κ. For all η > 0, there exists an l0, such that

pr (|
∑

θ exp{−1
2 (x−μ(θ))TΣ−1(x−μ(θ))} pr (θ)| < l0)) < η.

For all ε > 0, there exists an m sufficiently large, such that
2
√
2p/(

√
κε) < l0. Then for all i = 1, . . . ,m,

pr (|Tmg,i − Tor,i | > ε)

= pr

(∣∣∣∣∑
θ

exp
[
−{x− μ(θ)}TΣ−1{x− μ(θ)}/2

]

× pr (θ)

∣∣∣∣ < l0

)
< η.

The proof of Theorem 7 requires the following two lem-
mas.

Lemma 2. Assume Assumptions (A), (B) and (C) hold.

Let p̂, f̂ , and f̂0 be estimates such that p̂ converges to p
in probability, and for all x, E{f̂(x) − f(x)}2 → 0 and

E{f̂0(x) − f0(x)}2 → 0, then T̂mg,i converges to Tor,i in
probability.

The proof of Lemma 2 is similar to the proof of Lem-
mas A.1 and A.2 in [23] and is omitted.

Lemma 3. Let R̂λ = 1
m

∑m
i=1 I (T̂mg,i ≤ λ) and V̂t =

1
m

∑m
i=1 I (T̂mg,i ≤ t)T̂mg,i. Define Q̂λ = V̂λ/R̂λ. Then for

α < t < 1, Q̂λ converges to Qλ in probability.

Proof of Lemma 3. Let νi = E{I (Tor,i < λ)} and Zi =
I (Tor,i < λ) − νi. On {x : |Tor,i − Tmg,i| ≤ ε}, I (Tor,i <
λ) = I (Tmg,i < λ) holds unless λ − ε ≤ Tmg,i ≤ λ + ε.
Therefore, for any ε > 0,

|E{I(Tor,i < λ)} − E{I (Tmg,i < λ)}|
≤ pr (|Tor,i − Tmg,i| > ε) + pr (λ− ε < Tmg < λ+ ε).

The first term converges to zero uniformly by Theorem 6,
and the second term converges to zero uniformly by the
continuity of Tmg. Consequently, νi → pr (Tmg < λ) uni-
formly. The short range dependency structure of X leads
to the short range dependency structure of Z, and conse-
quently

var(Z̄) = var(Zi)/m+

m∑
i=1

∑
j �=i

cov(Zi, Zj)/(m
2)

≤ 1/m+m−1+τ → 0.

By weak law of large numbers of triangle arrays, we have Z̄
converges to 0 in probability. Thus,

|Rλ − pr (Tmg < λ)| ≤ 1

m

m∑
i=1

|νi − pr (Tmg < λ)|+ |Z̄| → 0.
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Similarly, we write R̂λ as R̂λ =
∑m

i=1{I (T̂mg,i < λ) −
pr (T̂mg < λ)}+ pr (T̂mg < λ). The first part goes to 0 by the
weak law of large numbers for triangle arrays, and the sec-
ond part goes to pr (Tmg < λ). Then we have R̂λ converges
to Rλ in probability.

We next prove V̂λ converges to Vλ in probability. For any
ε > 0, ifm is sufficiently large, for all i, E(Tor,i−Tmg,i) ≤ ε+
pr (|Tor,i − Tmg,i| > ε) < 2ε. Therefore, E(Tor,i) → E(Tmg)
uniformly. We then have

E{Tor,i I (Tor,i < λ)} − E{Tmg I (Tmg < λ)}
≤ pr (|Tor,i − Tmg| > ε)

+ E(Tor,i − Tmg) + pr (λ− ε ≤ Tmg ≤ λ+ ε).

All three parts go to zero uniformly asm → ∞. Similar to
the convergence of Rλ shown above, we can obtain that Vλ

converges to E{Tmg I (Tmg < λ)} in probability. We can show
similarly that V̂λ converges to E{Tmg I (Tmg < λ)} in proba-
bility. Then V̂λ converges to Vλ in probability. Consequently,
we conclude that Q̂λ = V̂λ/R̂λ converges to Vλ/Rλ = Qλ in
probability.

Proof of Theorem 7. Define threshold λ = sup{t ∈ (0, 1) :

Q(t) ≤ α} and the plug-in threshold λ̂ = sup{t ∈
(0, 1) : Q̂(t) ≤ α}. Since Q̂λ converges to Qλ in proba-

bility, by Lemma A.5 in [23], we have λ̂ converges to λ
in probability. The plug-in procedure is equivalent to re-
jecting H0

i when T̂mg,i ≤ λ̂. In the proof for Lemma 3,
we have

∑m
i=1 pr (Tor,i < λ)/m → pr (Tmg < λ) and

1
m

∑m
i=1 pr (Tor,i < λ | H0

i ) converges to pr (Tmg < λ | H0
i )

in probability. Following the same arguments, T̂mg,i − λ̂ →
Tmg,i − λ uniformly, and thus

1

m

m∑
i=1

pr (T̂mg,i < λ) → pr (Tmg < λ),

and

1

m

m∑
i=1

pr (T̂mg,i < λ | H0
i ) → pr (Tmg < λ | H0

i ).

It follows that

1

m

m∑
i=1

pr (T̂mg,i < λ̂ | H0
i )−

1

m

m∑
i=1

pr (Tor,i < λ | H0
i ) → 0,

1

m

m∑
i=1

pr (T̂mg,i < λ̂)− 1

m

m∑
i=1

pr (Tor,i < λ) → 0.

This leads to

E(V̂λ̂)

ER̂λ̂)
=

E(Vλ)

E(Rλ)
= mfdror.

Following a similar argument, we can show that

E(V̂λ̂)/E(R̂λ̂) → mfnror.
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